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Introduction 
This course will develop the idea of formal proof by way of examples involving simple objects 
such as integers and sets.  The material enables academic study of Computer Science and will 
be promoted with examples from the analysis of algorithms and cryptography. 

Syllabus 
These notes cover the second half of the course. 

Sets, relations and functions 
• Sets, subsets and Boolean operations.  Indicator (characteristic) functions and their 

algebra.  Principle of inclusion-exclusion, with applications to Euler’s function.  Boolean 
logic.  [2 lectures] 

• Binary relations.  Composition of relations.  Equivalence relations and quotients of sets.  
Closures and Warshall’s algorithm.  Partial orders and total orders.  Hasse diagrams.  
Well founded relations and well ordering.  Well founded induction.  [3 lectures] 

• Functions;  Injective, surjective and bijective functions.  Numbers of such functions 
between sets.  Sorting.  The Schröder-Bernstein theorem.  Countability.  A countable 
union of countable sets is countable.  The uncountability of R.  Existence of 
transcendental numbers.  [3 lectures] 

The course and these notes are based on the course previously given by Peter Robinson. 

Objectives 
On completing the course, students should be able to: 

• Analyse problems using set theory. 

• Explain and use the principle of inclusion and exclusion. 

• Recognise relations and discuss their properties. 

• Describe and analyse Warshall’s algorithm. 

• State, prove and apply the Schröder-Bernstein theorem. 

• Differentiate countable and uncountable sets. 

These notes do not constitute a complete transcript of all the lectures and they are not a 
substitute for text books.  They are intended to give a reasonable synopsis of the subjects 
discussed, but they give neither complete proofs of all the theorems nor all the background 
material. 
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Sets 
A set is just a collection of objects, or elements.  We write x ∈ A when an element x is in the 
set A and x ∉ A when it isn’t. 

Sets can be finite or infinite.  (Indeed, there are many different infinite sizes.)  If they are finite, 
you can define them explicitly by listing their elements, otherwise a pattern or restriction can be 
used: 

L = {a, b, c} 
M = {alpha, bravo, charlie} 
N = {1, 2, 3, …} 
Z = {… -3, -2, -1, 0, 1, 2, 3, …} 
P = {x ∈ N | x > 1 and 1 < y < x ⇒ (x, y) = 1} 

Given a finite set, A, write |A| for the number of elements in A. 

Write ∅ for the empty set, {}.  So |∅| = 0. 

One set, A, is a subset of another set, B, if every element of A is also a member of B.  We 
write this with a rounded less-than-or-equal sign: A ⊆ B.  So N ⊆ Z.  When the containment is 
strict (as in this case), we write N ⊂ Z for a proper subset. 

Two sets, A and B, are equal if they contain the same elements.  This will often be proved by 
showing that each is a subset of the other: A ⊆ B and B ⊆ A. 

Sets can themselves be members of other sets.  There is an important distinction between, for 
example, {a, b, c} and {{a, b, c}}, or between ∅ and {∅}. 

Again, patterns can be used: 

S = {X ⊆ L | a ∈ X} = {{a}, {a, b}, {a, c}, {a, b, c}} 

then L ∈ S but a ∉ S. 

The power set, P (X), is the set of all subsets of X.  So, for the set L above: 

P (L) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} 

It is important to specify the universe of discourse when discussing sets.  This is the set of all 
possible elements that might be considered.  It is often written as Ω. 

Russell’s paradox 
Consider R = {X | X ∉ X}.  Then L ∈ R and S ∈ R, but is R ∈ R? 

Combining sets 
There are several ways of combining existing sets to make new ones:  

The complement of a set, A, is the collection, Ac or A , of elements (within the universe of 
discourse) that are not in A.  Ac = {x ∈ Ω | x ∉ A}.  This is a case where it is necessary to be 
particularly clear about the universe. 

Other operations include: 

Union A ∪ B = {x | x ∈ A OR x ∈ B} 
Intersection A ∩ B = {x | x ∈ A AND x ∈ B} 
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Difference A \ B = {x | x ∈ A AND x ∉ B} 
= A ∩ Bc 

Symmetric difference A ∆ B = (A \ B) ∪ (B \ A) 
These operations satisfy various properties: 

Idempotence A ∪ A = A A ∩ A = A 
Complements A ∪ Ac = Ω A ∩ Ac = ∅ 
 (Ac)c = A  
Commutativity A ∪ B = B ∪ A A ∩ B = B ∩ A 
Associativity A ∪ (B ∪ C) = (A ∪ B) ∪ C A ∩ (B ∩ C) = (A ∩ B) ∩ C 
De Morgan’s Laws (A ∪ B)c = Ac ∩ Bc (A ∩ B)c = Ac ∪ Bc 
Distributivity A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
Empty set A ∪ ∅ = A A ∩ ∅ = ∅ 
Universal set A ∪ Ω = Ω A ∩ Ω = A 
Absorption A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A 

Venn diagrams 
Venn diagrams provide a way of showing combinations of sets: 

 Ω
A

B C

A

B C

A

B C

A A ∪ B A ∩ B

A

B C

A

B C

A

B C

A \ B A ∆ B A ∆ B ∆ C
 

Normal form 
Symmetric difference can be expressed as a union of differences and each difference can be 
expressed as an intersection of sets and complements of sets.  De Morgan’s Laws can be used 
to expand complemented expressions and distributivity can be used to expand intersections into 
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unions.  Together these transformations allow any expression to be reduced to a union of terms 
each of which is the intersection of the underlying sets and their complements. 

This expression is unique (up to the order of the terms and the factors within each term) so two 
expressions can be checked for equality by reducing them to this normal form. 

Partitions 
A partition of a set Ω is just a division of the whole of Ω into non-overlapping subsets. 

Mathematically a partition P of a set Ω is a subset P ⊆ P (Ω) such that 

1. Ω=
∈
t

PS

S  (P covers Ω) and 

2. If S, T ∈ P then S ∩ T ≠ ∅ implies that S = T (the elements of P are disjoint). 

Examples: 

• {{a, b, c}} and {{a}, {b, c}} are both partitions of {a, b, c}. 

• Neither {a, b, c} nor {{a, b}, {b, c}} are partitions of {a, b, c}. 

Product sets 
The product of two sets A and B is the set of pairs of elements from A and B: 

A × B = {(a, b) | a ∈ A AND b ∈ B} 

So {a, b} × {b, c} = {(a, b), (a, c), (b, b), (b,c)} 

This can be extended to ordered n-tuples: 

A1 = A 
An = A × An-1 for n > 1 

For convenience, we write elements as (a, b, c) rather than (a, (b, c)).  This gives the usual 
notation for Euclidean space, R3. 

Disjoint sums 
The disjoint sum of two sets A and B is A + B = ({0} × A) ∪ ({1} × B). 

So {a, b} + {b, c} = {(0, a), (0, b), (1, b), (1, c)} while {a, b} ∪ {b, c} = {a, b, c}. 

Indicator functions 

Given a set A ⊆ Ω, define the indicator or characteristic function for A for x ∈ Ω by 

I x
x A

A ( ) =
∈




1
0

if 
otherwise

. 

Observations 
• IA∪B (x) = MAX (IA (x), IB (x)) 

• IA∩B (x) = MIN (IA (x), IB (x)) = IA (x) IB (x) 

• IA
c
 (x) = 1 - IA (x) 

• A = {x ∈ Ω | IA (x) = 1} 

• | | ( )A I xA
x

=
∈
∑

Ω
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Inclusion and exclusion 
Observe 

|A ∪ B| = |A| + |B| - |A ∩ B| 
and 
|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|. 

This leads to the general principle of inclusion and exclusion.  Given a collection, C, of sets, say 
C = {As | s ∈ S} for some index set, S = {1, 2, …, n}.  Then write 

n
Ss

s AAAA ∪∪∪=
∈

�� 21 .  The principle states that A As
s S

T
t

t TT S∈ ∈≠ ⊆
= − −∑� �( )| |1

φ
. 

Proof:  Write }every for  |{ TtAxxAA t
Tt

tT ∈∈Ω∈==
∈
� with A∅ = Ω and use indicator 

functions, observing that ∏
∈

=
Tt

AA tT
II : 

 )(
21

xI
nAAA ∩∩∩ �

 = )()()(
21

xIxIxI
nAAA

�  

  = ))(1())(1))((1(
21

xIxIxI
nAAA −−− �  

  = ))(()1( || xI
ST Tt

A
T

t∑ ∏
⊆ ∈

−  

  = )()1( || xI
ST

A
T

T∑
⊆

−  

Now sum over all x ∈ Ω to give A As
s S

T
T

T S∈ ⊆
= −∑� ( ) | |1  and observe: 

 As
s S∈
�  = Ω −

∈
As

s S
�  

  = Ω −
∈

As
s S
�  

  = − −
∈≠ ⊆

∑ ( ) | |1 T
t

t TT S
A�

φ
 

Application 
Recall Euler’s totient function ϕ(m) which counts the natural numbers less than m and co-prime 

to m.  We can now show again that ϕ( )
|

m m p
p m

= −

 


∏

prime 
1 1 . 

Proof:  Write m p p pk k
n
kn= 1 2

1 2
�  as a product of distinct primes. 

Let Ai = {x ∈ N | 0 < x ≤ m and pi | x} for 1 ≤ i ≤ n so |Ai| = m / pi.  Moreover, 

ji
ji pp

m=∩ AA  and, more generally, 
∏
∈

∈

==

Tt
tTt

tT p
m

�AA . 

Now ϕ(m) = �
ni

i
≤≤1

A  

  = ∑
⊆

−
},2,1{

A)1(
nT

T
T

�
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Boolean logic 
Propositions are statements that can be either true (T) or false (F).  They will often include a 
symbol, x say, which can be thought of as an argument;  the proposition P(x) will be true for 
some values of x and false for other values. 

Propositions can be combined to make new ones: 
 

P Q NOT P P AND Q P OR Q P IMPLIES Q P EQUIVALENT TO Q 
  ¬P, ~P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q 

F F T F F T T 

F T T F T T F 

T F F F T F F 

T T F T T T T 

Note that OR is inclusive - P OR Q is true if either or both of P and Q are true. 

P ⇒ Q means P implies Q.  This is the same as saying, “If P is true then Q is true.”  If P is 
false, it says nothing about Q.  It is actually equivalent to (NOT P) OR Q.  It is also equivalent to 
¬Q ⇒ ¬P. 

Boolean logic enjoys a collection of properties that are similar to the ones shown above for sets.  
These can be used to prove statements by reducing them to a standard ”sum of products” form. 

Quantifiers 
Given a proposition, P(x), involving a variable, x, in some set, S, P(x) may be true for some 
values of x and false for others.  If it is true for every x, we write ∀ x ∈ S . P(x) to mean “For all 
x in S, P(x) is true”.  If there is at least one x for which P(x) is true, we write ∃ x ∈ S . P(x) to 
mean “There exists an x in S such that P(x) is true.” 

Exercises 
1. Let A = {1, 3, 5} and B = {2, 3}.  Write down explicit sets for: 

• A ∪ B and A ∩ B 

• A \ B and B \ A 

• (A ∪ B) \ B and (A \ B) ∪ B 

• A ∆ B and B ∆ A 
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• A × B, B × A and A × ∅ 

• A + B, B + A and A + ∅ 

2. Let A, B and C be sets.  Prove or find counter-examples to: 

• A ∪ (B ∪ C) = (A ∪ B) ∪ C 

• A ∪ (B ∩ C) = (A ∩ B) ∪ C 

• A ∪ (B ∩ C) = (A ∩ B) ∪ (A ∩ C) 

• A \ (B ∪ C) = (A \ B) ∩ (A \ C) 

• A \ (B ∆ C) = (A \ B) ∆ (A \ C) 

• (A × C) ∪ (B × D) = (A ∪ B) × (C ∪ D) 

• (A × C) ∩ (B × D) = (A ∩ B) × (C ∩ D) 

3. What is the difference between ∀ x . (∃ y . P(x, y)) and ∃ y . (∀ x . P(x, y))?  You might 
like to consider the universe to be the set of people and P(x, y) to mean “x loves y”. 

4. If |A| = m and |B| = n, what are the sizes of A × B and A + B?  How big is P (A)? 

5. Of 100 students, 35 play football, 36 row and 24 play tiddlywinks.  13 play football and 
row, 2 play football and tiddlywinks but never row, 12 row and play tiddlywinks while 4 
play every game in sight to avoid work of any form.  How many students participate in 
none of these three vices? 

6. There are n students at St Botolph’s College, each with an individual pigeon hole in the 
Porters’ Lodge.  Because of the University policy on anonymous candidature, the porters 
are obliged to deliver examination results by posting n letters randomly, one in each of 
the n pigeon holes.  Of course, there are n! ways of doing this.  How many of them result 
in no student receiving the correct letter? 

Hint:  This is a question about inclusion and exclusion. 

7. Simplify the Boolean expression ¬(¬(a ∧ ¬(a∧b)) ∧ ¬(¬(a∧b) ∧ b)). 

8. Use Boolean simplification to show that {[(a ⇒ b) ∨ (a ⇒ d)] ⇒ (b ∨ d)} = a ∨ b ∨ d. 

9. Consider the argument: “If Anna can cancan or Kant can’t cant, then Greville will cavil 
vilely.  If Greville will cavil vilely, Will will want.  But Will won’t want.  Therefore Kant can 
cant.”  By rewriting the statement inside the double quotes as a single Boolean 
expression in terms of four variables and simplifying, show that it is true and hence that 
the argument is valid. 
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Relations 
A relation, R, between two sets, A and B, is just a subset R ⊆ A × B.  A relation, R, on a 
single set, A, is just a subset R ⊆ A × A. 

We write a R b as shorthand for (a, b) ∈ R. 

Write R (A, B) for the collection of all relations between two sets, A and B.  Obviously 
R (A, B) = P (A × B). 

Composition of relations 
Suppose R ⊆ A × B is a relation between A and B, and S ⊆ B × C is a relation between B 
and C, then we define the composition of R and S to be the relation between A and C defined 
by R ο S = {(a, c) | ∃ b ∈ B . (a, b) ∈ R ∧ (b, c) ∈ S} ⊆ A × C.  Sometimes this is written 
as S ο R, which may seem confusing but is actually sensible for reasons that will become 
apparent later. 

This can be extended to n-fold composition.  Given a relation R on a set, A, write: 

R1 = R 
Rn = Rn-1 ο R for n > 1. 

We can also define the inverse of a relation:  R-1 = {(b, a) | (a, b) ∈ R}, which is a relation 
between B and A.  Observe that (R ο S)-1 = S-1 ο R-1. 

Equivalence relations 
An equivalence relation is a relation, R, on a set, A, satisfying three properties: 

• Reflexive:  ∀ a ∈ A . (a, a) ∈ R 

• Symmetric:  (a, b) ∈ R ⇒ (b, a) ∈ R 

• Transitive:  (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R 

Intuitively, we can think of an equivalence relation as a sort of weak equality - (a, b) ∈ R 
means that a and b are indistinguishable within some framework. 

Examples 
• Given n ∈ N, define R on Z by (a, b) ∈ R ⇔ n | (b - a). 

• Define S on Z × N by ((z1, n1), (z2, n2)) ∈ S ⇔ z1 n2 = z2 n1. 

Equivalence classes 
Given an equivalence relation R on a set, A, define the equivalence class of an element a ∈ A 
to be the set of elements of A related to a:  [a] = {b ∈ A | (a, b) ∈ R} = {b ∈ A | a R b}. 

The set of equivalence classes {[a] | a ∈ A} forms a partition of A, that is: 

• The classes cover A:  A][
A

=
∈
�
a

a . 

Proof:  Given any a ∈ A, a R a by reflexivity so a ∈ [a] and [ ]t
A∈

∈
a

aa . 
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• They are disjoint (or equal):  ∀ a, b ∈ A . [a] ∩ [b] ≠ ∅ ⇒ [a] = [b]. 

Proof:  Suppose x ∈ [a] ∩ [b], so a R x and b R x.  Then x R b by symmetry.  Given 
any v ∈ [b], observe b R v.  Now a R x, x R b and b R v, so a R v by transitivity.  
Therefore v ∈ [a] and so [b] ⊆ [a].  But [a] ⊆ [b] similarly, so [a] = [b]. 

The set of equivalence classes is called the quotient set, A/R. 

In the two examples above, Z/R represents the integers modulo n and (Z × N)/S represents the 
rational numbers. 

Closures 

Given a set, Ω, a property, P, of subsets of Ω and a particular subset S ⊆ Ω, which may or 
may not satisfy P, we might ask the question, “What is the smallest subset of Ω containing S 
which does satisfy P?”  That is, find C ⊆ Ω such that: 

• S ⊆ C. 

• P(C) is true. 

• If D ⊆ Ω also satisfies S ⊆ D and P(D), then C ⊆ D. 

Such a set, C, is called the P-closure of S.  Such a closure need not necessarily exist.  
However, there is one particular class of properties for which closures will always exist.  These 
are the intersection-closed properties. 

Let C = {S ⊆ Ω | P(S) is true} be the collection of all subsets of Ω satisfying P. P is 
intersection-closed if, for any subset B ⊆ C, the intersection of all the subsets in B also satisfies 

P.  That is, if I S
S B

=
∈
� , then P(I) is true. 

We can now calculate the P-closure of a given subset S ⊆ Ω as 
{ }�  trueis )(BPBSB ∧⊆Ω⊆  as long as P(Ω) is true. 

If we consider relations on a set A, which are just subsets of Ω = A × A, it turns out that 
reflexivity, symmetry and transitivity are all intersection-closed properties.  Given a relation, R ⊆ 
A × A, this allows us to form the: 

• Reflexive closure:  r(R) = R ∪ IA where IA = {(a, a) | a ∈ A} 

• Symmetric closure:  s(R) = R ∪ R-1 

• Transitive closure:  t(R) = R+ where R+ = R ∪ R2 ∪ R3 ∪ R4 ∪ … 

Observe that (a, b) ∈ t(R) ⇔ ∃ n ∈ N and x0 = a, x1, x2, … xn = b with 
(xi, xi+1) ∈ R for 0 ≤ i < n. 

Warshall’s algorithm 
It is helpful to regard calculating the transitive closure as a route finding problem in a graph.  
Consider the elements of A to be locations identified by natural numbers, two of which are 
related by R if they are directly connected.  Two locations are related by R2 if they are 
connected via a path with two steps, by R3 if they are linked via a path with three steps and so 
on.  Two locations are related by the transitive closure of R if they are indirectly connected via 
an arbitrarily long sequence of intermediate steps. 
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Suppose that A is finite with |A| = n.  Then R can be represented as an n × n array of Boolean 
values.  Calculating R2 is rather like a matrix multiplication requiring n2 values to be found, each 
of which is the sum of n products, which makes it an O(n3) operation.  It turns out that, when |A| 
= n, the union of powers of R in the transitive closure can stop at Rn (no path will require more 
than n intermediate steps), so forming the transitive closure naïvely is an O(n4) operation. 

For example, consider the following graph: 

1 2 3 4
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example because the longest path is only three steps long.) 

However, we can do better than this. 

The outer loop of the naïve algorithm iterates over the length of the path linking two locations.  
Warshall’s algorithm has a different structure in which the outer loop iterates over highest 
numbered intermediate point encountered along a path. 

Suppose that A = {1, 2, 3, …, n} and represent R by the Boolean matrix [m(i, j)] where 
m(i, j) = ((i, j) ∈ R).  Now define mk(i, j) to be true if an only if there is a path from i to j using 
only intermediate locations numbered between 1 and k.  So m0 = m representing direct 
connections that do not require any intermediate locations. 

In order to get from i to j using only intermediate locations numbered between 1 and k+1, 
either we can do it using only locations between 1 and k or we must visit location k+1, but there 
will be at most one such visit.  So mk+1(i, j) = mk(i, j)) ∨ (mk(i, k+1) ∧ mk(k+1, j)).  Finally mn 
will be the transitive closure, allowing any intermediate locations. 

For the above example, 
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because the only route from 3 to 3 is via 4 which appears only at the last iteration. 

It is necessary to iterate over i, j and k (in the right order), so this is an O(n3) operation. 
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Partial orders 
A partial order is a relation R on a set, A, satisfying three properties: 

• Reflexive:  ∀ a ∈ A . (a, a) ∈ R 

• Anti-symmetric:  (a, b) ∈ R ∧ (b, a) ∈ R ⇒ a = b. 

• Transitive:  (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R 

Intuitively, we can think of (a, b) ∈ R as meaning a ≤ b.  The notation a R b meaning (a, b) ∈ 
R may have seemed strange for arbitrary relations, but a ≤ b reads more easily than (a, b) ∈ 
≤.  The order is partial because it is possible to have pairs of elements that are not comparable - 
(a, b) ∉ R and (b, a) ∉ R. 

It is possible to have two different partial orders on a single set so it may be necessary to refer 
to the pair (A, R) or (A, ≤) to avoid ambiguity. 

Total order 
A partially ordered set, (A, ≤), is totally ordered if any pair of elements of A can be compared 
using ≤.  That is, ∀ a, b ∈ A . (a ≤ b) ∨ (b ≤ a). 

Examples 
• Conventional numerical order on N, Z, Q or R, all of which are total. 

• Division order on N or N0: (a, b) ∈ D ⇔ a | b.  This is partial, for example 2 and 3 
can not be compared. 

• However, the division order on Z is not a partial order. 

• Division order on Dn = {x ∈ N | x | n} for any n ∈ N. 

• For any set A, the power set of A ordered by subset inclusion, (P (A), ⊆).  Again, this 
is partial. 

• For any two partially ordered sets (A, ≤A) and (B, ≤B) there are two important orders 
on the product set A × B. 

• Product order:  (a1, b1) ≤P (a2, b2) ⇔ (a1 ≤A a2) ∧ (b1 ≤B b2). 

• Lexicographic order: (a1, b1) ≤L (a2, b2) ⇔ (a1 <A a2) ∨ (a1 = a2 ∧ b1 ≤B b2). 

If (A, ≤A) and (B, ≤B) are both total orders, then the lexicographic order on A × B will 
be total, but the product order will generally only be partial. 

 (a1, b1) ≤P (a2, b2) ⇒ (a1, b1) ≤L (a2, b2), so the product order (consider as a subset 
of (A × B) × (A × B)) is a subset of the lexicographic order. 

• For any totally ordered (finite) alphabet A, A* = {ε} ∪ A ∪ A2 ∪ A3 ∪ … is the set 
of all strings made from that alphabet, where ε is the empty string.  The full 
lexicographic order, ≤F, on A* is defined recursively as follows.  Given two words u, v 
∈ A*, if u = ε then u ≤F v and if v = ε then v ≤F u.  Otherwise, both u and v are non-
empty so we can write u = u1x and v = v1y where u1 and v1 are the first letters of u and 
v respectively.  Now u ≤F v ⇔ (u = ε) ∨ (u1 <A v1) ∨ (u1 = v1 ∧ x ≤F y) 
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Hasse diagrams 
A Hasse diagram represents a partial order pictorially as a directed graph with nodes for the 
elements of the underlying set and arcs between pairs of elements related by the order but with 
no intermediate elements in the order.  For simplicity, we omit the arcs for reflexivity and even 
omit the arrows on the arcs if they point up the page. 

Here are the Hasse diagrams for D36 and (P ({1, 2, 3}), ⊆): 

1

36

4

1812

96

2 3

∅

{1, 2, 3}

{1, 3}

{2}

{2, 3}{1, 2}

{3}{1}

 
 

Well founded relations 
A relation R on a set A is well founded if there is no infinite sequence a1, a2, a3, … of elements 
in A with (a2, a1) ∈ R, (a3, a2) ∈ R, …. 

Note that R can not be reflexive and it need not be transitive.  Note also that the definition is 
asymmetric:  it says nothing about ascending sequences. 

When discussing well founded relations, it is convenient to use the notation < for a relation on 
the set A.  Then we can write ≤ for the relation on A defined by: 

a1 ≤ a2 ⇔ a1 = a2 or a1 < a2 

for all a1, a2 ∈ A.  Again, neither < nor ≤ need be transitive.  We can also write > and ≥ for the 
inverse relations defined by: 

a1 > a2 ⇔ a2 < a1 
a1 ≥ a2 ⇔ a2 ≤ a1 

for all a1, a2 ∈ A. 

Proposition 
Let < be a relation on a set A.  The relation < is well founded if and only if every infinite 
sequence a1, a2, a3, … of elements in A with a1 ≥ a2 ≥ a3 ≥ …  is ultimately constant, so there 
is some M ∈ N such that am = aM for all m ≥ M. 

Examples 
• Conventional numerical order < on N but not on Z. 
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• If two relations <A on A and <B on B are well founded, then the lexicographic relation 
<L on A × B defined by: 
 (a1, b1) <L (a2, b2) ⇔ (a1 <A a2) ∨ (a1 = a2 ∧ b1 <B b2) 
is also well founded 

 Proof:  Suppose (a1, b1) ≥L (a2, b2) ≥L (a3, b3) ≥L ….  Then a1 ≥A a2 ≥A a3 ≥A … by 
the definition of lexicographic order, so the sequence is ultimately constant because 
(A, ≤A) is well founded.  So ∃ M ∈ N such that ∀ m ≥ M . am  = aM.  Now bM ≥B 
bM+1 ≥B bM+2 ≥B …, so this sequence is also ultimately constant because (B, ≤B) is 
well founded. So ∃ N ∈ N such that ∀ n ≥ N . bn  = bN.  But N ≥ M, so ∀ n ≥ N . 
(an, bn) = (aN, bN) and the original sequence is ultimately constant. 

 Now, if (a1, b1) ≥P (a2, b2) ≥P (a3, b3) ≥P … then (a1, b1) ≥L (a2, b2) ≥L (a3, b3) ≥L 
…, so again the sequence is ultimately constant. 

• The full lexicographic order on A* is not well founded if A has more than one element.  
Consider the sequence b, ab, aab, aaab, …. 

Proposition 
Let < be a relation on a set A.  The relation < is well founded if and only if any non-empty 
subset S ⊆ A contains a <-minimal element.  That is, there is an element m ∈ S such that 

∀ a ∈ A . a < m ⇒ a ∉ S 
In other words, if a set with a well-founded relation < contains a counterexample to some 
property, then it contains a <-minimal counterexample.  (Just let S be the set of all 
counterexamples.) 

Well ordering 
A total order (A, ≤) is a well ordering if < is well founded. This is equivalent to saying that every 
subset of A contains a minimal element with respect to ≤.  That is, ∀ ∅ ≠ S ⊆ A . ∃ s ∈ S . ∀ 
t ∈ S . t ≤ s ⇒ t = s.  The minimal element will be unique since ≤ is total.  This is the 
characterisation of well ordering in the natural numbers that was used in the first half of this 
course. 

A chain in a partially ordered set (A, ≤) is a subset C ⊆ A that is totally ordered by ≤.  An 
infinite descending chain is a sequence of elements a1 > a2 > a3 > ….  (A, ≤) is well ordered 
precisely when there are no infinite descending chains of elements in A. 

Topological sorting 
Suppose that (A, ≤) is partially ordered but is not totally ordered.  Can we find a topological sort 
of A, that is, a total order on A that respects ≤?  If A is finite then ≤ is necessarily well-founded 
and we can develop an algorithm as follows. 

A is itself a subset of A and so it contains a minimal element.  Put this first in the total order.  
Now take the rest of A, find a minimal element and put it second.  Continue in this way to build 
up a total order on the whole of A. 

In fact there is a slight subtlety.  At the each step there may be more than one minimal element.  
These can not be compared with each other, so it does not matter what order they have in the 
total order.  Instead of putting just one of them into the total order we could include all of them in 
some arbitrary order before going on to the next step and finding the minimal elements in the 
remainder of A. 

The former is a depth first algorithm, the latter a breadth first one, and they may well give rise to 
two different total orders, each of which respects the original partial order. 



Lent 2002  14 

Complete ordering 
A partially ordered set, (A, ≤), is complete if every (ascending) chain in A has a least upper 
bound in A.  The least upper bound need not appear in the chain itself.  This will prove useful in 
giving a mathematical meaning to the behaviour of programs. 

Well founded induction 
Given a well founded relation, <, on a set A and a Boolean proposition, P, involving elements of 
A, let M be the set of minimal elements in A (with respect to <).  The principle of well founded 
induction states that, if 

• ∀ m ∈ M . P(m) is true, and 

• ∀ b ∈ A . [(∀ c ∈ A . c < b ⇒ P(c)) ⇒ P(b)], 

then ∀ a ∈ A . P(a).  These are rather like the base case and inductive step in mathematical 
induction.  In fact we can even omit the first condition if we understand c < b ⇒ P(c) to be true 
if b ∈ M (so there is no c < b). 

Examples 
• Ackermann’s function is defined by 
fun ack (0, n) = n + 1
| ack (m, 0) = ack (m-1, 1)
| ack (m, n) = ack (m-1, ack (m, n-1));

 Is ack well defined for all values of m and n ≥ 0?  The answer is “yes” and the proof 
uses well founded induction on the arguments in N0 × N0 under the lexicographic 
order. 

 Given an argument pair (m, n), observe that the definition only uses applications of 
ack with argument pairs that come earlier in the lexicographic order, so ack (m, n) is 
well defined if they are.  However, ack is well defined for the (unique) minimal 
argument pair (0, 0), so it is well defined for all argument pairs. 

• The town of Königsberg spans a river with two islands linked to the banks and each 
other by seven bridges: 

 
 Is it possible to set out from any point in the town and cross each bridge exactly once, 

returning to the starting point?  In this case the answer is “no”. 

 In general, this is the problem of finding an Eulerian circuit in a graph.  A graph consists 
of a set of nodes or vertices (the two river banks and the two islands in Königsberg) 
linked by arcs or edges (the bridges).  Formally, G = (V, E) where V is the set of 
vertices, E the set of edges and E ⊆ V × V so E is just a relation on V.  Often we will 
consider directed graphs, but in this case E is symmetric and the arcs are not directed.  
A connected graph has an Eulerian circuit if (and only if) every vertex has even degree, 
that is, it has an even number of edges connected to it. 
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 Clearly this condition is necessary, and the proof that it is also sufficient uses induction 
on the set of graphs under the product order:  G1 ≤ G2 ⇔ (V1 ⊆ V2) ∧ (E1 ⊆ E2),  
which will be well founded if V1 and V2 are finite. 

 Observe that the empty graph G = (∅, ∅) is uniquely minimal with respect to this 
ordering and satisfies the theorem. 

 Consider a connected graph G where every node has even degree.  Pick a random 
vertex and set out on a circuit.  Every vertex has even degree, so we only stop when we 
have returned to the start.  Delete the edges in this circuit from G.  The resulting graph 
will have a number of connected components, each of which precedes the original 
graph in the product order and so each has an Eulerian circuit (or is an isolated vertex).  
Link each of these into the original circuit to give an Eulerian circuit for the whole graph. 

Exercises 
1. Let A = {1, 2, 3, 4}, B = {a, b, c, d} and C = {x, y, z}, and let R = {(1, a), (2, d), 

(3, a), (3, b), (3, d)} and S = {(b, x), (b, z), (c, y), (d, z)}.  What is the composition of 
R and S, R ο S? 

2. Let A = {1, 2, 3, 4} and consider the relation R = {(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), 
(4, 4)} on A.  Is R reflexive, symmetric, anti-symmetric or transitive?  Find the reflexive, 
symmetric and transitive closures of R. 

3. If |A| = k and |B| = m, how many relations are there between A and B? 

If further |C| = n, how many ternary relations are there in A × B × C?  [Hint: a binary 
relation is just a subset of A × B, so a ternary relation is just a subset of A × B × C.] 

4. Let A = {1, 2, 3}.  List all the partitions of A.  How many equivalence relations are there 
on A?  How many relations are there on A? 

5. Let R and S be relations between A and B.  Show that, if R ⊆ S, then R-1 ⊆ S-1.  Prove 
that (R ∩ S)-1 = R-1 ∩ S-1 and (R ∪ S)-1 = R-1 ∪ S-1. 

6. Give an example of a relation R on a set A with |A| = n such that  
t (R) ≠ R1 ∪ R2 ∪ … ∪ Rn-1. 

7. Show that the smallest equivalence relation containing the two equivalence relations R 
and S on a set A is t (R ∪ S). 

8. Define a relation R on N by (x, y) ∈ R ⇔ ∃ prime p . y = px.  Describe in words the 
reflexive, symmetric and transitive closures of R. 

Which of the following are true: 

• r(s(R)) = s(r(R)) 

• r(t(R)) = t(r(R)) 

• s(t(R)) = t(s(R)) 
Which of them hold for all relations on N? 

Express the smallest equivalence relation containing an arbitrary relation using the 
symmetric, reflexive and transitive closures. 

What is the smallest partial order containing R?  Is it possible to find the smallest partial 
order containing an arbitrary relation? 
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9. Give two topological sorts of N × N that respect the product order.  One should have the 
property that, given any point (x, y) ∈ N × N, any infinite subset of N × N should 
include a point (x’, y’) with (x, y) < (x’, y’) and the other should cause this property not 
to hold in general. 
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Functions 
A (total) function f from a set A to a set B, written f: A → B, is a relation f ⊆ A × B that 
satisfies: 

• Uniquely defined:  (a, b1) ∈ f ∧ (a, b2) ∈ f ⇒ b1 = b2 

• Everywhere defined:  ∀ a ∈ A ∃ b ∈ B . (a, b) ∈ f 

We write f(a) for the unique element b ∈ B with (a, b) ∈ f to give the usual notation. 

If only the first of these two properties holds, then f is a partial function from A to B which is 
undefined for certain elements of A.  It is sometimes convenient to refer to this undefined value 
explicitly as ⊥ (pronounced bottom).  A partial function from A to B is the same as a total 
function from A to (B + {⊥}). 

A is called the domain of f, and B is called its range.   

The set f(A) = {b∈B | ∃ a∈A . f(a) = b} is the image of A under f. 

Given two functions f: A → B and g: B → C, the composition of f and g is the function 
h: A → C defined by h(a) = g(f(a)).  This is just f ο g the composition of f and g as relations, 
and explains why g ο f is a sensible notation for that composition. 

It is sometimes convenient to write A → B for the set of all functions from A to B. 

Counting functions 
If A and B are finite sets with |A| = m and |B| = n, then |A → B| = nm. 

A → B is sometimes written as BA, so |BA| = |B||A|. 

Classifications of functions 
A function f: A → B is injective (also described as one-to-one or 1-1) if ∀ a1, a2 ∈ A . 
f(a1) = f(a2) ⇒ a1 = a2. 

Example:  f: N → N defined by f(x) = x2 is injective, but f: Z → Z defined the same way 
would not be. 

A function f: A → B is surjective (also described as onto) if ∀ b ∈ B . ∃ a ∈ A . f(a) = b. 

Example:  f: Z → Z defined by f(x) = x + 1 is surjective, but f: N → N defined the same way 
would not be. 

A function f: A → B is bijective (also described as a one-to-one correspondence) if it is both 
injective and surjective.  A bijection from a set to itself is a permutation. 

If a function f: A → B is injective, then its inverse as a relation f –1 ⊆ B × A satisfies the 
uniquely defined criterion for a function.  If f is surjective, then f –1 satisfies the everywhere 
defined criterion.  So, given a bijection f: A → B, its inverse as a relation is also a function 
f -1: B → A.  In fact f –1 is also a bijection. 

Given a universe Ω, define a relation on P (Ω) by A ≈ B if and only if there is a bijection from 
A to B.  This is an equivalence relation and two sets are said to have the same cardinality if 
they are related by it.  For finite sets this means that they have the same number of elements 
and it is reasonable to extend the definition to infinite sets. 
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Observe that N0 ≈ N (map n → n + 1).  Indeed, Z ≈ N (map z → 2z + 1 if z ≥ 0 and –2z 
otherwise) and N × N ≈ N (map (m, n) → ½(m+n−1)(m+n−2) + n).  In fact, Q ≈ N as 
well, but proving that requires a little preparation. 

Sorting 
If A is a finite, totally ordered set with |A| = m, there are m! permutations of A.  Sorting A 
involves choosing the single permutation from these m! that makes a chain in A.  Encoding this 
in binary would require log2 (m!) ≈ m log2 (m) bits of information.  Any algorithm to sort A 
would yield one bit of information for each comparison of two elements and so we should not 
expect to do better than O(m log2 (m)) comparisons. 

Schröder-Bernstein theorem 

Suppose f: A → B and g: B → A are injections.  Then there is a bijection from A to B. 

Proof:  Let B0 = B \ f(A) and A0 = A \ g(B). 

gf
BA

f(A)

A0

 

Define Bn = f(An-1) and An = g(Bn-1) for n > 0.  Observe that f: An-1 → Bn and g: Bn-1 → An 
are bijections. 

gf
BA A0

A1
A2

 

Now define ��

n
n

even 
420even AAAAA =∪∪∪=  and define Aodd, Beven and Bodd similarly. 

Let A∞ = A \ (Aeven ∪ Aodd) so A = Aeven ∪ Aodd ∪ A∞ and these three sets are disjoint.  
Proceed similarly for B. 

Define h: A → B to be equal to f on Aeven, to g-1 on Aodd and to either on A∞, which gives the 
desired bijection. 
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Countability 
Recall that two sets have the same cardinality if there is a bijection between them.  A set is 
countably infinite if it has the same cardinality as N.  This cardinality is known as ℵ0 (the 
Hebrew letter Aleph with a subscript of 0).  A countable set is either finite or countably infinite. 

The Schröder-Bernstein theorem shows that any set, A, is countable if, and only if, there is an 
injection A → N or, equivalently, there is a surjection N → A. 

Example:  Q is countable.  We can construct injections Q → Z × N, Z × N → N × N and 
N × N → N, which can be composed to form an injection Q → N and so Q is countable. 

Countable union of countable sets 
Suppose that {Ai | i ∈ I} is a countable collection of countable sets.  That is, the index set I is 
countable and for each i ∈ I the set Ai is countable.  Then Ai

i I∈
�  is countable. 

Proof:  I is countable, so there is an injection f: I → N.  For each i ∈ I the set Ai is countable, 
so there is an injection gi: Ai → N.  Define h: ∪Ai → N as follows.  For any x ∈ ∪ Ai, let m 

be the minimal element of { f(i) | x ∈ Ai } and let j be f –1(m).  Now let )()( xg
m

jpxh =  where 

pm is the mth prime.  Then h is an injection and so ∪Ai is countable. 

Uncountability of P (N)     
Suppose that P (N) is countable, so there is a bijection f: N → P (N). 

Let A = {n ∈ N | n ∉ f(n)} ⊆ N so A ∈ P (N), and let a ∈ N be such that f(a) = A. 

Now ask whether or not a ∈ A?  Suppose so, then a ∉ f(a) = A, a contradiction.  Suppose 
not, then a ∈ f(a) = A, another contradiction.  Hence f could not exist and so P (N) is not 
countable. 

Uncountability of R 

Suppose that R is countable, so there is a bijection g: R → N.  Define h: P (N) → R as 

follows.  Given A ⊆ N, let ∑
∈

−=
A
10)A(

a

ah , giving a decimal number between 0 and 1 with 

ones in digit positions corresponding to members of A and zeroes elsewhere.  h is an injection, 
so the composition h ο g: P (N) → N is also an injection.  But this would imply that P (N) 
were countable which gives a contradiction, so R is not countable. 

Investigating cardinality 
We have now seen two ways to investigate the cardinality of a set: 

• To prove that the set A is countable, we must construct an injection from A into a set 
that is known to be countable.  For example, Q was shown to be countable by 
constructing an injection into N. 

• To prove that the set A is uncountable, we must construct an injection from a set that is 
known to be uncountable into A.  For example, R was shown to be uncountable by 
construction an injection from P (N). 
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Algebraic and transcendental numbers 
An algebraic number is a real number, x, that is the root of a polynomial with integer 
coefficients:  a0 + a1 x + a2 x2 + a3 x3 + … + an xn = 0 with ai ∈ Z and for some n ∈ N. 

There are only countably many such equations and each has only a finite number of roots, so 
there are only countably many algebraic numbers.  However, there are uncountably many real 
numbers.  Therefore there exist transcendental numbers which are not algebraic.  Indeed, most 
(in some sense) numbers are transcendental.  π and e (the base of natural logarithms) are both 
examples, but proving that they (or any other numbers) are transcendental is harder… 

Exercises 

1. Let A2 = {1, 2} and A3 = {a, b, c}.  List the elements of the four sets Ai → Aj for  
i, j ∈ {2, 3}.  Annotate those elements which are injections, surjections and bijections. 

2. Let B be a fixed subset of the set A.  Define a relation R on the subsets of A in P (A) by 
(X, Y) ∈ R ⇔ X ∩ B = Y ∩ B.  Show that R is an equivalence relation and describe a 
bijection between P (A) /R and P (B). 

3. Suppose that f: A → B and g: B → C are both injective.  Show that their composition is 
also injective.  Suppose instead that they are both surjective;  show that their composition 
is surjective too.  What can be deduced if f and g are both bijections? 

4. If possible, find explicit bijections between the following pairs of sets.  If this is not 
possible in general, explain why and say if any special cases can have bijections. 

• A × (B × C) ↔ (A × B) × C 

• A × A ↔ A 

• A × A ↔ A + A 

• [(A × B) → C] ↔ [A → (B → C)] 

• [(A → B) → C] ↔ [A → (B → C)] 

• [(A + B) → C] ↔ (A → C) × (B → C) 

5. Let R and S be equivalence relations on A and B respectively with p and q the natural 
mappings of A and B into A/R and B/S.  Suppose that f: A → B is an arbitrary function.  
Show that the following two statements are equivalent: 

• ∃ g: A/R → B/S with p ο g = f ο q. 

• ∀ a1, a2 ∈ A . (a1, a2) ∈ R ⇒ (f(a1), f(a2)) ∈ S. 

6. A function f: A → B between two partially ordered sets is monotonic if it respects the 
ordering in A and B, that is, a1 ≤A a2 ⇒ f(a1) ≤B f(a2).  Two partially ordered sets, A 
and B, are isomorphic if there is a monotonic bijection f: A → B whose inverse f -1 is 
also monotonic.  Show that (P ({a, b, c}), ⊆) and ({0, 1}3, ≤P) are isomorphic. 

7. If A and B are finite sets with |A| = m and |B| = n, how many partial functions are there 
A → B? 

8. Show that the collection of all finite subsets of N is countable but that the collection of all 
subsets of N is not countable. 
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9. By considering indicator functions or otherwise, find a bijection from the set of functions 
{f: N → {0, 1}} to P (N) and so deduce that the former is uncountable. 

10. Which of the following sets are finite, which are countably infinite and which are 
uncountable? 

• {f: N → {0, 1} | ∀ n ∈ N . f(n) ≤ f(n+1)} 

• {f: N → {0, 1} | ∀ n ∈ N . f(2n) ≠ f(2n+1)} 

• {f: N → {0, 1} | ∀ n ∈ N . f(n) ≠ f(n+1)} 

• {f: N → N | ∀ n ∈ N . f(n) ≤ f(n+1)} 

• {f: N → N | ∀ n ∈ N . f(n) ≥ f(n+1)} 

11. Show that Q × Q is countable and deduce that any collection of disjoint discs (that is, 
circular areas) in the plane R2 is countable.  Is the same true if “discs” is replaced by 
“circles” (that is, just the perimeters of the circles)? 
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Revision guide 
The following diagram shows the development of the key ideas presented in the second half of 
the course: 
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