Introduction

Introduction

This course covers three main topics:

e modular design of applications and systems software,
using the facilities of the Java programming language as
examples,

e the need for and implementation of concurrency control
and communication in inter-process and intra-process
contexts and

e the concept of transactions and their implementation and
uses.

Concurrent Systems and Applications replaces the Further
Java and Concurrent Systems courses this year

Where possible concrete examples and source code will be
used to illustrate topics in concurrent systems

More background information and general principles will be
given than in the old Further Java course

Feedback’s useful at any point — either through the lab web-
site, or e-mail tth20@cam.ac.uk (or turn up at FNO6).

Notation

Many examples are illustrated using UML-style class
diagrams in which nodes represent classes and edges
between them denote different kinds of relationship between
those classes

refers to

extends

D

operationl()
operation2()

aggregated from

The notation is consistent with Gamma et al’s text book;
others may vary

Concurrency

‘Concurrent systems’ just means those consisting of multiple
things that might be happening at the same time, e.g.

e Between the system as a whole and its user, external
devices, etc.

e Between applications running at the same time on a
computer — whether through context switching by the OS
or by genuine concurrency on a multi-processor machine

o Explicitly between multiple threads within an application

e Implicitly within an application, e.g. when receiving
call-backs through a user-interface tool-kit

e Other ‘housekeeping’ activities within an application,
e.g. garbage collection

Books

These course notes are not intended as a complete reference
text — either to the subject or for practical programming in
Java. For the latter, local documentation is available on the
web.

http://www-uxsup.csx.cam.ac.uk/java/jdk-

1.2.2/docs is most relevant.

e Bacon, J. (1997). Concurrent Systems. Addison-Wesley
(2nd ed.)

e Bracha, G., Gosling, J., Joy, B. & Steele, G. (2000). The
Java Language Specification. Addison-Wesley (2nd ed.).
http://java.sun.com/docs/books/jls/

o Lea, D. (1999). Concurrent Programming in Java.
Addison-Wesley (2nd ed.)

e Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994).
Design Patterns. Addison-Wesley

Outline

e Objects and classes
— Terminology
« class, object, method
— Structuring programs
« encapsulation, inheritance
+ abstract classes, interfaces
« design patterns

e GUIs (as examples of the above)
— AWT, Swing

e Reflection and serialization

— Class, Method, Field classes
— newlnstance(), clone()
— Serializable, Externalizable

e Multi-threaded programming

— Thread / process distinction

— Thread control in Java
+« Creation
« Why terminating threads is hard in this context
 interrupt(), wait(), suspend(), resume()

— Thread scheduling (uni- and multi-processor
techniques)

Outline (2)

e Communication within processes

— Scenario: a shared address space
— General problems:
« Safety, liveness
— Simple atomic operations
— Mutual-exclusion
+ Condition variables
« Deadlock detection and avoidance
— Building other protocols (multi-reader etc)
— Alternatives

e Communication between processes

— Scenario: separate address spaces (and machines?)
— General problems:
+ Parallel execution
+ Independent failures (of processes or links)
* Maintaining consistent state
+ No global time
— Naming
— Access control
— IDLs and marshalling to portable data formats
— Java RMI case study
— Message passing
+ Sockets API

Outline (3)

e Transactions
— Scenario: controlled through a transaction manager
— Correctness criteria: serialisability, linearizability
— ACID properties
— Optimistic / pessimistic schemes
— 2 phase-locking
— Timestamp ordering
— Cascading aborts

— Logging

e Further Java topics
— Memory models + volatile fields
— Class loaders
— Finalizers

Objects and classes

Object-oriented programming

Programs in Java are made up of objects, packaging together
data and the operations that may be performed on the data

For example, we could define:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17 }

class TelephoneEntry {

String name;
String number;

TelephoneEntry(String name, String number) {
this.name = name;
this.number = number;

}

String getName () {
return name;

}

TelephoneEntry duplicate() {
return new TelephoneEntry(name, number);

}

Object-oriented programming (2)

This example shows a number of concepts:

e Lines 1-17 comprise a complete class definition. A class
defines how a particular kind of object works. Each
object is said to be an instance of a particular class, e.g.
line 15 creates a new instance of the TelephoneEntry
class

e Lines 2-3 are field definitions. These are ordinary
‘instance fields” and so a separate value is held for each
object

e Lines 5-8 define a constructor. This provides initialization
code for setting the field values for a new object

e Lines 10-12, 14-16 define two methods. These are
‘instance methods” and so must be invoked on a specific
object

Object references

e A program manipulates objects through object references

e A value of an object reference type either (i) identifies a
particular instance or (ii) is the special value null

e More than one reference can refer to the same object, for
example:

TelephoneEntry tel = new TelephoneEntry ("Tim",
"34476");
TelephoneEntry te2 = tel;

creates two references to the same object:

tel name ="Tim"

number = "34476"

te?

e Iftel.name is updated then that new value can also be
accessed by te2.name

Composition

e Placing a field of reference type in a class definition is a
form of composition

e A new kind of data structure is defined in terms of
existing ones, e.g.

class TEList

{
TelephoneEntry te;
TEList next;

e Used when modelling things related by a ‘has a’
relationship

— e.g. a Car class might be expected to have a field of
type Engine and a field of type Wheels[]

e By convention field names are spelled with an initial
lower-case letter and have names that are nouns, e.g.
steeringWheel or leftChild

Overloaded methods

e The same name can be used for more than one method in

any class. They are said to be overloaded

e ...however, they must have distinct parameter types to

disambiguate which one to call,

e Itis insufficient to merely have distinct return types, e.g.

how would the following invocations behave?

void doSomething (String number) {
this.number = number;

}

String doSomething (String c¢) {
System.getRuntime().exec(c);
return "OK";

}

String s = o.doSomething (“rm -rf /");
o.doSomething ("12345");

e The choice would have to depend on the context in

which an expression occurs

Overloaded methods (2)

e Calls to overloaded methods must also be unambiguous,
e.g.

void f(int x, long vY)
{

}

void f(long X, int y)
{

}

e Which should f(10,10) call? There is no best match

e However, unlike before, the caller can easily resolve the
ambiguity by writing e.g. f((long)10,10) to convert
the first parameter to a value of type long

Constructors

e Using constructors makes it easier to ensure that all fields
are appropriately initialized

e If the constructor signature changes (e.g. an extra
parameter is added) then other classes using the old
signature will fail to compile: the error is detected earlier

e As with methods, constructors can be overloaded

e Unlike methods, constructors do not have a declared
return type or use the return statement

e A default constructor without any parameters is generated
automatically if the programmer does not define any

Inheritance

e Previous examples have defined new classes in terms of
existing ones using composition — e.g. a class Bus
containing a field of type Engine

e Inheritance is another way of combining classes — it
typically models an is a relationship, e.g. between a Car
class and a more general Vehicle class

e Inheritance defines a new sub-class in terms of an
existing super-class. The sub-class is intended to be a
more specialized version of the super-class. It is typically
used to

— add new fields
— add new methods
— provide new implementations of existing methods

e A programmer defines inheritance using the extends
keyword, e.g.

class NameNumberPlace extends NameNumber

{
String place;

Types and inheritance

e Reference types in Java are associated with particular
classes:

class A {
A anotherA; // Reference type A

}

e Such reference variables can also refer to any object of a
sub-class of the one named, e.g. if B extends A then
the field anotherA could refer to an instance of B

e A particular object may be accessed through fields of
different reference types over the course of its lifetime; it's
class is determined at its time of creation

e (Casting operations convert references to an object
between different reference types, e.g.

A refl = new B();
B ref2 = (B) refl; // super -> sub
refl = ref2; // no cast needed: sub -> super

e The castin line 2 is needed because the variable refl
may refer to any instance of Aor B. ref2 may only refer
to instances of B. Casts are checked at run-time in Java.

x® N o AW N =

Arrays and inheritance

e If B extends A then how are B[] and A[] related?

e As might be expected, B[] is a sub-type of A[] , creating
a subtle problem:

A[] arrayl;
B[] array2;
arrayl = new A[2];
array2 = new B[2];

arrayl[0] = new B(); // Al] <- B, ok
array2[0] = new B(); // B[] <- B, ok
arrayl[1l] = new A(); // A[] <- A, ok
array2[1] = new A(); // B[] <- A, fails

e Line 8 fails at run-time: array2 refers to an object that is
an array of references to things of type B and so an object
of class A is incompatible

Fields and inheritance
e Afield in the sub-class is said to hide a field in the
super-class if it has the same name. The hidden field can

be accessed by writing super.name rather than
this.name

e For example:

class A {
int X;
int vy;
int z;
}
class B extends A {
String X;
int vy;
void f () {
x = "Field defined in B";
y = 42; /I B
super.x = 17; /I A
super.y = 20; /I A
7z = 23 I A
}

Methods and inheritance

A class inherits methods from its superclass

e It can overload them by making additional definitions
with different signatures

e It can override them by supplying new definitions with
the same signature

class A {

}

int £ () {}

class B extends A {

}

int f () {

System.out.printin ("Override");

}

int f (int x) {
System.out.printin ("Overload"),

}

e When an overridden method is called, the code to
execute is based on the class of the target object, not the
type of the object reference

© o0 N o U1 B~ W N =

_
—_ O

Methods and inheritance (2)

e Consequently, the type of an object reference does not
effect the chosen method in these examples. A common
mistake:

class A {
void f () {
System.out.printin ("Super-class");
}
}

class B extends A {
void f () {
System.out.println ("Sub-class");
((A)this).f(); // Try to call original
}
}

e As with fields, the super keyword is used:

super.f();

Packages

e Java groups classes into packages. Classes within a
package are typically written by co-operating
programmers and expected to be used together

e Each class has a fully qualified name consisting of its
package name, a full stop, and then the class name. e.g.
uk.ac.cam.cl.tih20.NameNumber

e The package keyword is used to select which package a
class definition is placed in, e.g.

package uk.ac.cam.cl.tlh20.examples;

class TelephoneEntry { ... }

e Definitions in the current package and java.lang can
always be accessed. Otherwise, the import keyword
can be used:

import java.util.*; // All from that package
import java.awt.Graphics; // Just named class

Modifiers

e This section looks at a number of moditiers that may be
used when defining classes, fields and methods. Only
access modifiers may be applied to constructors

<class-modifiers> class NameNumber {

<field-modifiers> String name;
<field-modifiers> String number;

NameNumber () {
/* Only access modifiers are allowed */

}

<method-modifiers> String getName () {
return name;

}

<method-modifiers> String getNumber () {
return number;

}
}

The final modifier

e Afinal method cannot be over-ridden in a sub-class —
typically used because it allows faster calls to the
method, but also used for security

e Afinal class cannot be sub-classed at all

e The value of a final field is fixed after initialization —
either directly or in every constructor, e.g.

class FinalField {

final String A = "Initial value";
final String B;
FinalField () {
B = "Initial value";
}

—_

© o0 N o 1 B~ W N

The abstract modifier

e Used on class and method definitions. An abstract
method is one for which the class does not supply an
implementation (and hence cannot be instantiated), e.g.

public class A {
abstract int methodName ();

public class B extends A {
int methodName () {
return 42;

e Abstract classes are used where functionality is moved
into a super-class, e.g. an abstract super-class
representing ‘sets of objects’ supporting iteration,
counting, etc., but relying on sub-classes to provide the
actual representation

e Note that fields cannot be abstract : they cannot be
overridden in sub-classes

The static modifier

e The static modifier can be applied to any method or
field definition. (It can also be applied to nested classes,
discussed later)

e It means that the field/method is associated with the class
as a whole rather than with any particular object

e For example, suppose the example TelephoneEntry
class maintains a count of the number of times that it has
ever been instantiated: there is only 1 value for the whole
class, rather than a separate value for each object

e Similarly, static methods are not associated with a
current object — unqualified field names and the this
keyword cannot be used

e static methods can be called by explicitly naming the
class within which the method is defined. The named
class is searched, then its super-class, etc. Otherwise the
search begins from the class in which the method call is
made

The static modifier (2)

1 class Example {
static int instantiationCount = O

String name;

this.name = name;

2

3

4

5

6 Example (String name) {
7

8 instantiationCount ++;
9

0

1

}
1
1 String getName () {
12 return String;
13}
14
15 static int getinstantiationCount () {
16 return instantiationCount;
17 }
18 }

Access modifiers

e Previous examples have relied on the programmer being
careful when implementing encapsulation

— e.g. to interact with classes through their methods
rather than directly accessing their fields

e Access modifiers can be used to ensure that
encapsulation is honoured and also, in some standard
libraries, to ensure that untrusted downloaded code

executes safely

public
protected
default

private

&
g
Q
Q
§
)

“»
o O
k3 &
v f
3 S
%) X
v v
some

© o0 N O U b~ W N =

_
— O

The protected modifier

e Aprotected entity is always accessible in the package
within which it is defined

o Additionally, it is accessible within sub-classes (B) of the
defining class (A), but only when actually accessed on
instances of B or its sub-classes

public class A {
protected int fieldl;

}

public class B extends A {
public void method2 (B b_ref, A a ref) {
System.out.printin (field1);
System.out.printin (b_ref.fieldl);
System.out.printin (a_ref.field1);
}
}

e Lines 7-8 are OK: this and b_ref must refer to
instances of B or its sub-classes

e Line9isincorrect: a_ref may refer to any instance of A
or its sub-classes

Other modifiers

e A strictfp method is implemented at run-time using
IEEE 754/854 arithmetic (see Numerical Analysis 1) —
identical results are guaranteed on all computers. Can be
applied to classes (= all methods are implicitly
strictfp)

e Anative method is implemented in native code — e.g.
to interact with existing code or for (perceived)
performance reasons. The mechanism for locating the
native implementation is system-dependent

e There are three other modifiers to be covered later:

— synchronized and volatile are used in
multi-threaded applications
— transient is used with the serialization API

Interfaces

e There are often groups of classes that provide different
implementations of the same kind of functionality

— e.g. the collection classes in Java 1.2 — HashSet and
ArraySet provide set operations, ArrayList and
LinkedList provide list-based operations

e In that example there are some operations available on
all collections, further operations on all sets and a third
set of operations on the HashSet class itself

e inheritance and abstract classes can be used to move
common functionality into super-classes such as
Collection and Set

— Each class can only have a single super-class, so
should HashSet extend a class representing the
hashtable aspects of its behaviour, or a class
representing the set-like operations available on it?

e More generally, it is often desirable to separate the
definition of a standard programming interface (e.g.
set-like operations) from their implementation using an
actual data structure (e.g. a hash table)

Interfaces (2)

e Each Java class may only extend a single super-class,
but it can implement a number of interfaces

interface Set {
boolean isEmpty();
void insert(Object 0);
boolean contains(Object 0);

}

class HashSet implements Hashtable, Set {

e Aninterface definition just declares method
signatures and static final fields

e An ordinary interface may have public or default
access. All methods and fields are implicitly public

e An interface may extend one or more super-interfaces

e A class thatimplements an interface must supply
definitions for each of the declared methods (or be
declared an abstract class)

Nested classes

e A nested class/interface is one whose definition appears
inside another class or interface

e There are four cases:

— inner classes in which the enclosed class is an
ordinary class (i.e. non-static)

— static nested classes in which the enclosed definition
is declared static

— nested interfaces in which an interface is declared
within an enclosing class or interface

— anonymous inner classes

e Beware: the term inner class is sometimes used
incorrectly to refer to all nested classes

inner classes C nested classes

e In general nested classes are used (i) for programming
convenience to associate related classes for readability
(if) as a shorthand for defining common kinds of
relationship (iii) to provide one class with access to
private members or local variables from its enclosing
class

N o W N

Nested classes (2)

e An inner class definition associates each instance of the
enclosed class with an instance of the enclosing class,

e.g.
class Bus {
Engine e;

class Wheel {

e Each instance of Wheel is associated with an enclosing
instance of Bus. For example methods defined at Line 5
can access the field e without qualification

e An instance of Bus must explicitly keep track of the
associated Wheel instances, if it wishes to do so

e As with static fields and static methods, a static
nested class is not associated with any instance of an
enclosing class. They are often used to organise ‘helper’
classes that are only useful in combination with the
enclosing class. Nested interfaces are implicitly declared
static

© o0 N o 1 B~ W N =

10
11
12

Anonymous inner classes

e Anonymous inner classes provide a short-hand way of
defining inner classes

class A {
void methodl () {
Object ref = new Object () {
void method2 () { };
I3
}
}

e An anonymous inner class may be defined using an
interface name rather than a class name, e.g.

interface Ifc {
void InterfaceMethod ();

}

class A {
void methodl () {
Ifc i = new Ifc () {
void InterfaceMethod () {

GUIs in Java

Graphical interfaces
e The Abstract Window Toolkit (AWT) and Java Foundation

Classes (JFC) provide facilities that can be used for
creating graphical applications in Java

e We'll look at them for a number of reasons:

e ...firstly to introduce the facilities provided and show how
they can be used

e ...secondly because their design illustrates many of the
object-oriented features of the Java programming
language

These examples are intended to show the overall structure of
these libraries, not to be a thorough reference

Graphical interfaces (2)

The Java Foundation Classes (JFC) extends the original AWT
with (e.g):

e Swing components

e Pluggable look and feel
e Accessibility API

e Java 2D rendering API

e Drag and drop

API specs are available on-line
(http://www.java.sun.com/products/jfc) but the emphasis
here is how these facilities differ architecturally from AWT

AWT GUI components each had peers responsible for their

display, e.g. an instance of java.awt.Scrollbar has an
instance of a class implementing
java.awt.peer.ScrollbarPeer as its peer.

Graphics

e In both AWT and Swing, basic rendering primitives are
available on instances of Graphics , e.g. using Java
applets:

import java.awt.*;

public class E1 extends java.applet.Applet
{
public void paint (Graphics g) {
g.drawLine (0, 0, 100, 100);
}
}

In E1.html

<htmI><body>

<applet code="El.class" width=100 height=100>
</applet>

</body></ntml>

Graphics (2)

e Here the rendering is performed by making invocations
on an object of type Graphics

e Simple primitives are available, e.g.

void setColor (Color c¢);

void copyArea (int x, int y, int w,
int h, int dx, int dy);

void drawLine (int x1, int y1,
int x2, int y2);

void drawArc (int x, int y, int w, int h,
int start, int end);

e More abstractly, an instance of Graphics represents the
component on which to draw (more on those later), a
translation origin, the clipping mask, the current font, the
drawing mode etc

Component hierarchy

Component

void paint(Graphics g)
void setSize(int w, int h)

|

Button -
CheckBox Canvas Container TextComponent
Choice Label Component add(Component g) String getText()
List Scrollbar void setText(String s)

JComponent Window ScrollPane I Textrield
TextArea
void show()
void dispose() Panel I
JButton, ...
| | |
Applet Dialog Frame
void init() void setMenuBar()
void start()
void stop()
void destroy()
void start() FileDialog
: : JFrame
String getDirectory()
String getFile() Container getContentPane()

Components

e In general a graphical interface is built up from AWT
components and containers

e Components represent the building blocks of the
interface, for example buttons, check-boxes or text boxes

e Each kind of component is modelled by a separate Java
class (e.g. java.awt.Button). Instances of those
classes provide particular things in particular windows —
e.g. to create a button bar the programmer would
instantiate the Button class multiple times

e As you might expect, new kinds of component can be
created by sub-classing existing ones — e.g. sub-classing
Canvas (a blank rectangular area of the screen) to define
how that component should be rendered by overriding its
paint method

Components (2)

e Containers are a special kind of component that can
contain other AWT components — as expected, the
abstract class java.awt.Container extends
java.awt.Component

e Containers implement an add method to place
components within them

e Containers are used to model top-level windows — for
example java.awt.Window (a plain window, without
title bar or borders) and java.awt.Frame (a
‘decorated” window with a title bar etc)

e Other containers allow the programmer to control how
components are organized — in the simplest case
java.awt.Panel

e In fact, java.applet.Applet is actually a sub-class of
Panel

Swing

e The java.awt.peer.* definitions are interfaces
defining operations that may be performed on the peer

e A particular implementation of AWT provides classes
implementing these interfaces, typically using native code

e Hence the look and feel follows that of the underlying
system

What are the problems here? Should portability include the
exact mode of interacting with applications? What about
devices without existing graphical toolkits, or non-graphical
forms of input?

Swing GUI components are rendered in Java — i.e. drawn
using invocations on java.awt.Graphics

e Exact control over appearance

o Flexibility over look and feel

Swing (2)

Superficially there’s a clear correspondence between Swing

components in javax.swing and AWT components in
java.awt

Component JComponent
Button JButton
List JList
¢¢ JProgressBar
¢?2 JPasswordField

JComponent extends Container (and transitively
Component)

But there’s no direct relationship between (e.g.) JButton
and Button

© o0 N O U b~ w N =

—_ e e e e e
N U1 A W N =, O

Containers

e Components are organized within a container under the

control of a layout manager, e.g.

import java.awt.*;
public class Buttons extends Frame {
public Buttons() {
super();
setLayout(new BorderLayout());
add("North", new Button("North"));
add("South", new Button("South"));
add("East", new Button("East"));
add("West", new Button("West"));
add("Center", new Button("Center"));
}
public static void main (String args[]) {
Buttons b = new Buttons();
b.pack(); b.setVisible(true);

}
}

e For Swing, change Frame — JFrame and obtain the

container using getContentPane() , e.g.

getContentPane().setLayout(...);

Containers (2)

e BorderLayout , shown above, contains up to 5
components

e CardLayout treats each component in the container as

a card. 1 card is visible at a time. Methods first and
next flip through them

e FlowLayout lays out components in horizontal
left-to-right lines — e.g. for button bars. A new line is
started when the current one becomes full

e GridLayout places components on a rectangular grid
of equal-sized cells, e.g. setLayout (new
GridLayout (3,2)) creates a 3x2 grid

e GridBagLayout is a more flexible layout manager: the

rectangular cells may vary in size and instances of
GridBagConstraints are used to describe how
particular cells scale

Usually nesting containers to define a spatial hierarchy is
preferable to using a complex layout manager: it promotes
re-use of the nested components

Receiving input

e An event-based mechanism is used for delivering input to
applications

e Different kinds of event are represented by sub-classes of
java.awt. AWTEvent . These are all in the
java.awt.event package. E.g. MouseEvent is used
for mouse clicks, KeyEvent for keyboard input, etc.

e The system delivers events by invoking methods on a
Listener . E.g. instances of MouseListener are used
to receive MouseEvent :

public interface MouseListener
extends EventListener

public void mouseClicked(MouseEvent e);

Receiving input (2)

e Note that each kind of listener is represented by an
interface definition rather than by a class. The
programmer can therefore define one class that
implements all of the listeners that they are interested in
(typically the main part of the program, or the class
representing a particular part of the Ul)

e Instances of AWTEvent have a getSource() method
that returns the component generating the event, so a
single listener can disambiguate events from different
sources. Sub-classes add methods to obtain other details
—e.g. getX() andgetY() ona MouseEvent

e Components provide methods for registering listeners
with them, e.g. addMouseListener on Component

Receiving input (3)

o All components can generate:

1. ComponentEvent when it is resized, moved, shown or
hidden

2. FocusEvent when it gains or loses the focus
3. KeyEvent when a key is pressed or released

4. MouseEvent when mouse buttons are pressed or
released

5. MouseMotionEvent when the mouse is dragged or
moved

e Containers can generate ContainerEvent ~ when
components are added or removed

e Windows can generate WindowEvent when opened,
closed, iconified etc

Input using inner classes

e Anonymous inner classes can be used as an effective way
of handling some forms of input, e.g.

addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e)

{

}
D;

e Recall that this defines an anonymous inner class that
implements the ActionListener interface

e This idiom is useful because the inner class is able to
access the fields and methods of the enclosing instance

Input using inner classes (2)

e A further idiom is to define inner classes that extend
adapter classes from the java.awt.event package.
The adapters provide ‘no-op” implementations of the
associated interfaces — e.g. MouseMotionAdapter for
MouseMotionListener

e The programmer just needs to override the methods for
the kinds of event that they are interested in: there is no
need to define empty methods for the entire interface

addMouseMotionListener
(new MouseMotionAdapter () {
public void mouseDragged (MouseEvent e)

{

}
j

e The anonymous inner class extends the
MouseMotionAdapter class

Button / JButton

e Instances of java.awt.Button
(javax.swing.JButton) represent labelled buttons:

Button b = new Button ("Quit");
add (b);

e Inputis delivered using ActionEvent supporting
getActionCommand (defaults to the button’s label) and
getModifiers (e.g. if SHIFT/CTRI/ALT were pressed).
An ActionListener has a single actionPerformed
method

Checkbox / JCheckBox

e A check box is a graphical component that can be in
either an on or and off state — mouse clicks change
between the states. For example:

setLayout(new GridLayout(3, 1));
add(new Checkbox("one", null, true));
add(new Checkbox("two"));

add(new Checkbox("three"));

o ane
o Two
I.lthrE!E!

e Check boxes can be grouped together (only one may be
on in each group) with setCheckboxGroup

e An ltemListener receives input events through an
itemStateChanged method

Label / JLabel

o Label objects represent single lines of read-only text — i.e.
changeable by the application, but not able to be edited
directly by the user. For example:

setLayout(new FlowLayout(FlowLayout. CENTER,
10, 10));

add(new Label("Hi There!"));

add(new Label("Another Label"));

Hi There! Another Label

e The text string maybe passed to the constructor, or
controlled using setText and getText methods

List / JList

e Instances of these classes represent scrollable lists of text
items. The programmer can control how many items are

visible at once. For example:

List Ist = new List(4, false);
Ist.add("Tinky-winky"); Ist.add("Dipsy");
Ist.add("La-la"); Ist.add("Po");
Tinku—uinkoy

Ilip=vw

La= 1|3

e Input can be received using an ItemListener
entries are selected or deselected) and/or an

ActionListener (when the user double-clicks on an

entry)

Scrollbar / JScrollBar

e These classes embody scroll bars, for example used in a
colour selector:

new Scrollbar(Scrollbar.VERTICAL, 0, 1, 0, 255);

a8t

e The parameters control the orientation, initial value,
‘bubble size’, minimum and maximum values

e An AdjustmentListener receives input events via a
adjustmentValueChanged method

TextComponent / JTextComponent

e These are super-classes for TextArea (JTextArea)and
TextField (JTextField)

e They define methods getText and setText , control
over whether the text is editable by the user and whether
some portion of the text is selected

o TextArea and TextField are multiple and single-line
text regions, e.g.

TextField tf = new TextField ("Hello!", 20);
TextArea ta = new TextArea ("Goodbye!", 5, 20);
add("North", tf); add("South", ta);

Hel 1ol

Goodbye | ik

Menus

e Menus can be defined using the Menu, MenuBar,
MenuComponent, MenuContainer , Menultem and
MenuShortcut classes

e In AWT menus are not components, but can be bound to
instances of Frame using the setMenuBar method

e In Swing JMenu sub-classes JMenultem

AbstractButton and hence JComponent
Examples I Option= I
" Baszic I
Simple
4 Check

More Examples -

e Inputis received using an ActionListener on a menu
item (typically the same listener would be used for many
items)

Choice

e An instance of java.awt.Choice represents a pop-up
menu of choices — the current choice is displayed as the
title of the menu. For example:

Choice ColorChooser = new Choice();
ColorChooser.add("Green");
ColorChooser.add("Red");
ColorChooser.add("Blue");

CFEEN |

e An ltemListener is used for input events

Swing internals

Swing components use a ‘model-view-controller’
architecture (derived from Smalltalk-80)

L ood
View e @
Display

comaia} [] g

Input devices

This separates three aspects of the component:

e The view, responsible for rendering it to the display
e The controller, responsible for receiving input

e The model, the underlying logical representation

Multiple views may be based on the same model (e.g. a
table of numbers and a graphical chart). This separation
allows views can hopefully be changed independently of
application logic

Model-View-Controller (2)

For simplicity the model and view are combined in Swing to
form a delegate

The component itself (here JButton) contains references to
the current delegate and current model

ComponentUl I ItemSelectable I

ButtonUl I ButtonModel I

]
MacButtonUlI DefaultButtonModel I
? MotifButtonUl I 5 |

(+ other models)

Accessibility

Intended to allow interaction with Java applications through
technologies such as screen readers and screen magnifiers

Pacakge: javax.accessibility

User interface components should implement Accessible
defining a single method

/

public AccessibleContext
getAccessibleContext()

This is implemented by the Swing components

Accessibility (2)

An instance of AccessibleContext describes and is used
to interact with a particular Ul component. It defines
methods to retrieve associated instances of

e AccessibleAction — representing operations that may
be done on the component, named by strings

e AccessibleComponent - represents the current visual
appearance of the component. Allows colours, fonts,
focus settings to be over-ridden

e AccessibleSelection —e.g. items in a menu, table
or tabbed pane

e AccessibleRole —in terms of generic roles such as
SCROLLPANEor SLIDER

e AccessibleState —e.g. CHECKEPFOCUSED
VERTICAL

e AccessibleText - represents textual information

e AccessibleValue - represents numerical values (e.g.

scroll bar positions)

Design patterns

Design patterns

A number of common idioms frequently emerge in

object-oriented programming. Studying these design patterns
provides

e common terminology for describing program
organization in terms of inter-related classes

e examples of how to structure programs for flexibility and
re-use

refers to

extends

D

operationl()
operation2()

aggregated from

Factory Client I

u1d)jed Aio)oey Joeasqy

--J1 AScrollBar BScrollBar K -

CreateWindow()
CreateScrollbar()
Window
| |

-~ A AWindow BWindow I<7

BFactory AFactory ScrollBar |

CreateWindow() - CreateWindow() - 75 |

CreateScrollbar() CreateScrollbar() | | | |

,,,

Abstract factory pattern (2)

e The Client invokes operations on an instance of abstract
class Factory

e Code for these methods is provided by one of a number
of sub-classes, e.g. AFactory or BFactory

e The factory class instantiates objects on behalf of the
client from one of a family of related classes, e.g.
AFactory instantiates AWindow and AScrollBar

New families can be introduced by providing the client
with an instance of a new sub-class of Factory

The factory can ensure classes are instantiated
consistently; e.g. AWindow always with AScrollBar

[1 Adding a new operation involves co-ordinated change to
the Factory class and all its sub-classes

Singleton pattern

Singleton

: if (thelnstance == null) l
static getinstance() O -~ -~~~ t hel nstance = new Si ngl eton();
operationl()
operation2() return thel nstance;

static thel nstance

e The Singleton pattern solves the Highlander problem:
there can be only one instance of a particular class

— e.g. of a factory class in the previous Abstract Factory
pattern

e Clients invoke getinstance() to retrieve the unique
instance. The first invocation triggers instantiation of a
(private) constructor

More flexibile than a suite of static methods (allows
sub-classing)

Constraint can be relaxed in a single place — e.g. if a pool
of instances are to be used

L1 We'll return to the multi-threaded case later

Adapter pattern

Client

Target

operation()

Adapter
operation()Q __

Adaptee

operation2()

[process operands] g

adaptee -> operation2();
[process result]

e The Client wishes t

o invoke operations on the Target

interface which the Adaptee does not implement

e The Adapter class i

mplements the Target interface, in

terms of operations the Adaptee supports

The adapter can be used with any sub-class of the
adaptee (unlike sub-classing adaptee directly)

Visitor pattern

The Visitor pattern is one way of structuring operations that
work on data structures comprising objects of different
classes

Client I Visitor

ViSitA(A a)
visitB(B b)

Visitorl Visitor2
ViSitA(A a) VisitA(A a)
visitB(B b) visitB(B b)

Element

accept(Visitor v)

ElementA © ElementB QO

accept(Visitor v) : accept(Visitor v) :

V->VisitA(this) Q!
v->VisitB(this) Q!

Visitor pattern (2)

e The data structure is built from instances of ElementA,
ElementB, etc., all sub-classes of Element

e These classes, or a separate object structure class, provide
some mechanism for traversing the data structure

e The abstract Visitor class defines operations
corresponding to each sub-class of Element

e A concrete sub-class of Visitor is constructed for each
kind of operation on the data structure

The methods implementing a particular operation are
kept together in a single sub-class of Visitor

Operations can be added and updated without changing
the data structure’s definition

[] As with the Abstract Factory pattern, changing the data
structure requires changes to many classes

Observer pattern

Subject

Observer

notify()

attach(Observer 0)
detach(Observer o)

O

update(Subject s)

for all o in observers
o->update();

N

ConcreteSubjectA I%

ConcreteSubjectB I

ConcreteObserverl I

In Java Observer can be an interface rather than a
concrete class

A many-to-many dynamically changing relationship can

exist between subjects and observers

[] The flexibility limits the extent of compile-time
type-checking

[If observers can change the subject then cascading or
cyclic updates may occur

Reflection and
serialization

Reflection

e Java provides facilities for reflection or introspection of
type information about objects at run time

e Given the name of a class, a program can...
— find the methods and fields defined on that class,
— instantiate the class to create new objects

e Given an object reference, a program can...

— determine the class of the object it refers to,
— invoke methods or update the values in fields.

e Itis notpossible to obtain or change the source code of
methods
— ...but at the end of the course we'll look at class
loaders that provide a mechanism for dynamically
loading new class definitions

e These facilities are often used ‘behind the scenes’ in the
Java libraries, e.g. RMI, and in visual program
developments environments — presenting a graphical
representation of the facilities provided by each class, or
showing the way in which classes are combined through
composition or inheritance

Reflection (2)

e Reflection is provided by a number of classes in the

java.lang and java.lang.reflect packages. Each
class models one aspect of the Java programming
language

e An instance of Class represents a Java class definition.
The Class associated with an object is obtained by the
getClass() method defined on it

e An instance of Field represents a field definition,
obtained from the Class object by getFields()

e Instances of Method and Constructor represent
method and constructor definitions, similarly obtained by
getMethods() and getConstructors()

e Similarly for getSuperclass() and
getinterfaces()

© &0 N o U A~ W N =

—_
(@)

Reflection (3)

e For example:

public class ReflExample

{

public static void main (String argsl])

{

ReflExample re = new ReflExample ();
Class reclass = re.getClass ();

String name = reclass.getName ();
System.out.printin (name);

e Line 5 creates a new instance of Ref[Example
e Line 6 obtains the Class object for that instance

e Line 7 obtains the name of that class

Reflection (4)

e We could do the same in reverse:

© ®© N O U A W N =

— e e o e e
o 1 A W N = O

public class ReflExample2

{
public static void main (String argsl])
{
try
{

Class ¢ = Class.forName (args[0]);
Object 0 = c.newlnstance ();
System.out.printin (0);

}
catch (Exception e)
{
System.out.printin (e);
}

Reflection (5)

e Here we're taking a class name supplied as a parameter
to the program and then instantiating it. For example

$ java ReflExample2 java.lang.Object
java.lang.Object@80ch54d

e We could have named any class on the command line

e By default a 0-argument constructor is called (and must
exist)

e Specific constructors are also modelled by
Constructor objects and define a newlInstance
method

Fields and reflection

e We can invoke getFields() on a Class object to
obtain an array of the fields defined on that class

e As a shortcut we can also use getField(...) , passing
the name required, to obtain information about an

individual field

e If there is a security manager then its
checkMemberAccess method must permit general
access for Member.PUBLIC and
checkPackageAccess must permit reflection within
the package

e Only public fields are returned by getFields()

o A general getDeclaredFields() method provides
full access (subject to a checkMemberAccess test for
member.DECLARED

e Given an instance of Field we can use...
— Class getDeclaringClass ()
— String getName ()
— int getModifiers ()
— Class getType ()

Fields and reflection (2)

1 public class ReflExample3

2 {

3 public static int fieldl = 17;

4 public static int field2 = 42;

5

6 public static void main (String args[])
7 A

8 try

9 {

10 Class ¢ = Class.forName (args[0]);
11 java.lang.reflect.Field f;

12 f = c.getField (args[1)]);

13 int value = f.getint (null);
14 System.out.println (value);

15 }

16 catch (Exception e)

17 {

18 System.out.println (e);

19 }

20 }

21 }

Fields and reflection (3)

e For example,

$ java ReflExample3 ReflExample3 fieldl
17

$ java ReflExample3 ReflExample3 field2
42

$ java ReflExample3 ReflExample3 incorrect
java.lang.NoSuchFieldException

e There are similar methods for setting the value of the field

Methods and reflection

e The reflection API represents Java methods as instances of
a Method class

e This has an invoke operation defined on it that calls the
underlying method, for example, given a reference mto
an instance of Method :

Object parameters[] = new Object [2];
parameters[0] = refl;

parameters[1l] = ref2;

m.invoke (target, parameters);

is equivalent to making the call
target.mth (refl, ref2);

where mth is the name of the method being called

Methods and reflection (2)

e The first value passed to invoke identifies the object on
which to make the invocation. It must be a reference to
an appropriate object (target in the example), or null
for a static method

e Note how the parameters are passed as an array of type
Object[] : this means that each element of the array
can refer to any kind of Java object

e If a primitive value (such as an int or a boolean) is to
be passed then this must be wrapped as an instance of
Integer , Boolean , etc For example new
Integer(42)

e The result is also returned as an object reference and may
need unwrapping — e.g. invoking intValue() on an
instance of Integer

Serialization

Reflection lets you inspect the definition of classes and
manipulate objects without knowing their structure at
compile-time

One use for this is automatically saving/loading data
structures

e starting from a particular object you could use
getClass() to find what it is, getFields() to find
the fields defined on that class and then use the resulting
Field objects to get the field values

e the data structure can be reconstructed by using
newlnstance() to instantiate classes and invocations
on Field objects to restore their values

The ObjectinputStream and ObjectOutputStream
classes automate this procedure

Beware: the term’s used with two distinct meanings. Here
it means taking objects and making a ‘serial” representation
for storage. We'll use it in a different sense when talking
about transactions.

Serialization (2)

In its simplest form the writeObject() method on
ObjectOutputStream and readObject() method on
ObjectinputStream transfer objects to/from an

underlying stream, e.g.

FileOutputStream s = new FileOutputStream (“file");
ObjectOutputStream o = new ObjectOutputStream (s);
o.writeObject (drawing);

o.close ();

or

FilelnputStream s = new FilelnputStream ("file");
ObjectlnputStream o = new ObjectinputStream (S);
Vector v = (Vector) o.readObject ();

o.close ();

e A real example must consider exceptions as well

e Fields with the transient ~ modifier applied to them are
not saved or restored

java.io.Serializable

These methods attempt to transfer the complete structure
reachable from the initial object

However, classes must implement the
java.io.Serializable interface to indicate that the
programmer believes this is a suitable way of loading or
saving instance state, e.g. considering

e whether field values make sense between invocations —
e.g. time stamps or sequence numbrs

e whether the complete structure should be saved/restored
—e.g. if it refers to a data structure used as a cache

e any impact on application-level access control — e.g. if
security checks were performed at instantiation time

The definition of Serializable is trivial:

public interface Serializable {

}

java.io.Serializable (2)

A 0-argument constructor must be accessible to the subclass
being serialized: it’s used to initialize fields of
non-serializable superclasses

More control can be achieved by implementing
Serializable and also two special methods to save and
restore that particular class’s aspect of the object’s state:

private void writeObject(
java.io.ObjectOutputStream out)
throws |IOException;

private void readObject(
java.io.ObjectinputStream in)
throws 10OException, ClassNotFoundException;

If present these are called to save/restore object state.

Further methods allow alternative objects to be introduced at
each step, e.g. to canonicalize data structures:

ANY-ACCESS-MODIFIER Object writeReplace()
throws ObjectStreamException;

ANY-ACCESS-MODIFIER Object readResolve()
throws ObjectStreamException;

java.io.Externalizable

writeObject and readObject are fiddly to use: they
may require careful co-ordination within the class hierarchy.
The documentation is unclear about the order in which
they’re called on difference classes.

The interface java.io.Externalizable is more useful
In practice

public interface Externalizable
extends java.io.Serializable

{
void writeExternal(ObjectOutput out)
throws |OException;
void readExternal(Objectinput in)
throws IOEXxception,
ClassNotFoundException;
}

It is invoked using the normal rules of method dispatch

It is responsible for transferring the complete state of the
object on which it is invoked

But note: readExternal is called after instantiating the
new object

Multi-threaded
programming

Threads and processes

Recall the two roles of an operating system:

e to securely multiplex resources, i.e.

— protect applications from each other, yet
— share physical resources between them

e to provide an abstract virtual machine, e.g.

— time-shareing CPU to provide virtual processors,

— allocating and protecting memory to provide
per-process virtual address spaces,

— present h/w independent virtual devices.

— divide up storage space by using filing systems.

In the introduction we talked about explicit concurrency in
applications — how does this relate to these tasks of the OS?

Threads and processes (2)

Most OS introduce a distinction between processes (as
discussed in Part TA) and threads

For each process have a process control block (PCB):
e Identification (e.g. PID, UID, GID)

e Memory management information

e Accounting information

e (Refs to) one or more TCB:s. ..

For each thread have a thread control block (TCB):

e Thread state
e Context slot (perhaps in h/w)
e Refs to user (and kernel?) stack

e Scheduling parameters (e.g. priority)

Concurrency

Previous examples have been implemented using a single
thread that runs the main method of a program

Java supports lightweight concurrency within an
application — multiple threads can be running at the same
time

Can simplify code structuring and aid interactive
response — e.g. one thread deals with user interaction,
another thread deals with computation

— FEasier to add additional tasks as new threads?

Can benefit from multi-processor hardware
— e.g. the hammer.thor machine has 4 processors

Implementation schemes vary substantially. We'll look at
how multiple threads are available to the Java
programmer, then at how they may be implemented and
managed by the OS

© o0 N O U b~ W N =

— — m— o e— —
g1 A W N = O

Creating threads

o There are two ways of creating a new thread. The
simplest is to define a sub-class of java.lang.Thread
and to override the run() method, e.g.

Thread

MyThreadI

class MyThread extends Thread {
public void run() {
while (true) {
System.out.printin ("Hello from " +
this);

Thread.yield ();

}
}

public static void main (String args[]) {
Thread t1 = new MyThread ();
Thread t2 = new MyThread ();
tl.start (); t2.start ();

}
}

Creating threads (2)

e The run method of the class MyThread defines the code
that the new thread(s) will execute. Just defining such a
class does not create any threads

e Lines 11-12 instantiate the class to create two objects
representing the two threads that will be executed

e Line 13 actually start the two threads executing

e The program continues to execute until all ordinary
threads have finished, even after the main method has
completed

Hello from Thread[Thread-5,5,main]
Hello from Thread[Thread-4,5,main]
Hello from Thread[Thread-5,5,main]

etc...

A daemon thread will not prevent the application from
exiting:

t1.setDaemon(true);

© o0 N o U B~ W N =

_ e e e e e
g ~ W N = O

Creating threads (3)

e The second way of creating a new thread is to define a
class that implements the java.lang.Runnable
interface, e.g.

Runnable

void run()

| |

Thread I—MyCode I

class MyCode implements Runnable {
public void run() {
while (true) {
System.out.printin ("Hello from " +
Thread.currentThread());

Thread.yield ();

}
}

public static void main (String args[]) {
MyCode mt = new MyCode ();
Thread t a = new Thread (mt);
Thread t b = new Thread (mt);
t a.start (); t _b.start ();

}
}

Creating threads (4)

e As before, Lines 2—8 define the code that the new threads
will execute

e Lines 11-12 instantiate two Thread objects, passing a
reference to an instance of MyCodeto them as their target

e Line 13 starts these two threads executing

e Note that here the run methods of the two threads are
being executed on the same MyCode object, whereas
two separate MyThread objects were required

e The second way of creating threads is more complex, but
also more flexible

e Generally, fields in the class containing the run method
will hold per-thread state — e.g. which part of a problem a
particular thread is tackling

Creating threads (5)

e In some cases anonymous inner classes can be used to
simplify thread creation, e.g.

class Example {
public static void main (String args[]) {
Thread t = new Thread () {
public void run () {
System.out.printin ("Hello world!");
}
¥

t.start ();

}
}

e Recall that Lines 3—7 define and instantiate a new
anonymous class that extends Thread

e As before, line 9 actually starts the thread executing

Terminating a thread

e A thread can be forced to exit by invoking the stop
method on it. This method throws an exception into the
thread — the thread behaves as if the exception had
suddenly been thrown at the point at which it was
executing

— Usually, an instance of java.lang.ThreadDeath
is thrown. The programmer may pass some other
object as a parameter to stop

Thread t = new MyThread ();
t.start ();
t.stop ();

e Beware: when using stop the exception may be
delivered to the target thread when it is executing a
finally block

e stop is deprecated in newer version of Java: it should
not be used in new programs, in favour of the
interrupt() method on java.lang.Thread

e A thread is responsible for periodically calling
isInterrupted()

Terminating a thread (2)

e In some situations a thread is interrupted immediately if it

© o0 N O U b~ W N =

—_ e e e e e e e
co N o bk~ W N = O

is blocked — e.g. sleep may throw
InterruptedException . For example:

class Example {
public static void main (String args[])
{
Thread t = new Thread () {
public void run () {
try {
do {
Thread.sleep (1000); // sleep 1s
} while (true);
} catch (InterruptedException ie) {
/I Interrupted: exit

}
}
3
t.start (); // Start...
tinterrupt (); // ...interrupt

}
}

e If the thread didn’t block then line 9 could perhaps be

} while (lisInterrupted());

© o0 N O U b~ w N =

_ e e e
A W N = O

Join

e Thejoin method on java.lang.Thread causes the

currently running thread to wait until the target thread
dies

class Example {
public void startThread (void)
throws InterruptedException

{
Thread t = new Thread () {

public void run () {
System.out.printin ("Hello world!");
}
I3

t.start (); // Start thread...
tjoin (0); // ..wait for it to exit

}
}

Line 12 waits for the thread started at Line 11 to finish.
The parameter specifies a time in milliseconds (0 = wait
forever)

e Thethrows clause in line 3 is required: the call to join

may be interrupted

Priority controls

e Methods setPriority and getPriority on
java.lang.Thread allow the priority to be controlled

e A number of standard priority levels are defined:
MIN_PRIORITY, NORMPRIORITY, MAXPRIORITY

e The programmer can also try to influence thread
scheduling using the yield method on
java.lang.Thread . This is a hint to the system that it
should try switching to a different thread — note how it
was used in the previous examples

— In a non-preemptive system even low priority threads
may continue to run unless they periodically yield

e Selecting priorities becomes complex when there are
many threads or when multiple programmers are working
together

Although it may work on some systems, the variation in
behaviour between different JVMs means that it is never
correct to use thread priorities to control access to shared
data in portable code

Thread scheduling

e The choice of exactly which thread(s) execute at any
given time can depend both on the operating system and
on the JVM

e Some systems are preemptive — i.e. they switch between
the threads that are eligible to run. Typically these are
systems in which the OS supports threads directly, i.e.
maintaining separate PCBs and TCBs

e Other systems are non-preemptive — i.e. they only switch
when the running thread yields, becomes blocked or
exits. Typically these systems implement threads within
the JVM

e The Java language specification says that, in general,
threads with high priorities will run in preference to those
with lower priorities

To write correct portable code it’s therefore important to
think about what the JVM is guaranteed to do — not just
what it does on one system. Different behaviour may occur
at different nodes within a distributed system

Thread scheduling (2)

For now assume a five-state model with threads supported by
the OS:

dispatch

release

timeout
or yield

N ew event

e The operating system must:
— decide if a new thread should be admitted
— wake up blocked threads when appropriate
— clean up after threads terminate
— choose amongst runnable threads =- schedule

e Typical scheduling objectives:

— Maximise CPU utilisation
— Maximise throughput
— Minimise average response time

e Also want to minimise overhead (space + time).

Scheduler data structures

Ready Queue

admit dispatch release
E— P

timeout or yield

»
>

Blocked Queue 1

1 event (1) - . event-wait (1)

Blocked Queue 2

: event (2) . event-wait (2)

A

P = =

A

Blocked Queue N

event (n) - . event-wait (n)

Inside scheduler maintain TCBs according to state:

e Runnable = “current _thread ”
e Ready = on ready queue

e Blocked = on a blocked queue

Sometimes there will be multiple current threads (e.g. a
multi-processor system) or multiple ready queues (e.g. for
different thread priorities)

When do we schedule?

Can choose a new thread to run when:

1. arunning thread blocks (running — blocked)
2. atimer expires (running — ready)

3. a waiting thread unblocks (blocked — ready)

4. athread terminates (running — exit)

e A non-preemptive system schedules on 1, 4 only:
simple to implement
[] open to denial of service
L] poor priority concept
[l doesn’t extend cleanly to MP

e Most modern systems use preemptive scheduling:
solves above problems

[] introduces concurrency problems. ..

Static priority scheduling

o All threads are not equal = associate a priority with
each, e.g.

Highest | Interrupt handlers
Device handlers
Pager and swapper
Other OS daemons
Interactive jobs
Lowest | Batch jobs

e Scheduling decision simple: just select runnable thread
with highest priority. (Be careful when seeing any system
that refers to explicit priority numbers: lower numbers
often denote higher priority)

e Problem: how to resolve ties?
— round robin with time-slicing
— allocate quantum to each thread in turn.
— Problem: biased towards CPU intensive jobs.

« per-thread quantum based on usage?
* ignore?

e Problem: starvation. ..

Dynamic priority scheduling

e Use same scheduling algorithm, but allow priorities to
change over time

e e.g. simple aging:

threads have a (static) base priority and a dynamic
effective priority

if thread starved for k£ seconds, increment effective
priority

once thread runs, reset effective priority

e e.g. computed priority:

First used in Dijkstra’s THE

timeslots: ..., ¢, t+ 1, ...

in each time slot ¢, measure the CPU usage of thread
E u?

priority for thread j in slot t 4 1:

p‘ZH = f(uivpgv Ui_ppi_p)

eg. py = p;/2+ kuj

penalises CPU bound — supports I/O bound.

Example: 4.3BSD Unix

e Priorities O (high) — 127 (low), user processes > 50,
round robin within priorities, quantum 100ms.

e Priorities are based on usage and “nice” value:

CPU,(i — 1)

nticks

P;(i) = Basej + + 2 X nice;

gives the priority of process j at the beginning of interval
i, where nice; € [—20, 20]. i.e. penalizes (recently)
CPU bound processes in favour of 1/0 bound ones.

o CPU;(¢) is incremented every tick in which process j is
executing, and decayed each second using:

2 X load;
(2 X load;) + 1

CPU;(t) = CPU;(t — 1) 4+ nice,

e load;(i) is the sampled average length of the run queue
in which process j resides, over the last minute of
operation

e soife.g. loadis T = ~ 90% of 1 seconds CPU usage
“forgotten” within 5 seconds

Example: Windows 2000

e Hybrid static/dynamic priority scheduling:
— Priorities 16-31: “real-time” (static priority)
— Priorities 1-15: variable (dynamic priority)
— Priority 0: system (zero page thread)

e Default quantum 2 ticks (~20ms) on Professional, 12
ticks (~120ms) on Server.

e Threads have base and current (> base) priorities.

— On return from I/O, current priority is boosted by
driver-specific amount

— Subsequently, current priority decays by 1 after each
completed quantum

— Also get boost for GUI threads awaiting input

— Yes, this is true:
HKLM SYSTEM CurrentControlSet \
Control \Priority-Control

e On Professional also get quantum stretching:
— “...performance boost for the foreground application”
(window with focus)
— All threads in the foreground application get double or
triple quantum
— (More ad-hoc scheduler hacks to come)

Real-time systems

e Produce correct results and meet predefined deadlines.

e “Correctness” of output related to time delay it requires to
be produced, e.g.

— nuclear reactor safety system
— JIT manufacturing
— video on demand

o Typically distinguish hard (HRT) and soft real-time (SRT):

HRT: output utility = 100% before the deadline, 0 (or
less) after the deadline.

SRT output utility = 100% before the deadline, (100 -
kt)% if t seconds late.

e Building such systems is all about predictability.

e ltis not about speed.

Real-time scheduling

e Basic model:
— consider set of tasks T}, each of which requires s;
units of CPU time before a (real-time) deadline of d;
— often extended to cope with periodic tasks: require s;
units every p; units

e Best-effort techniques give no predictability
— in general priority specifies what to schedule but not
when or how much.
— i.e. CPU allocation for thread ¢;, priority p; depends
on all other threads at t; s.t. p; > p;.
— with dynamic priority adjustment becomes even more

difficult.
= need something different

e Three main approaches:
1. static off-line scheduling
2. static priority algorithms
3. dynamic priority algorithms

Static off-line scheduling

Advantages:

e Low run-time overhead

e Deterministic behavior

e System-wide optimization

e Resolve dependencies early
e Can prove system properties
Disadvantages:

e Inflexibility

e Low utilisation

e Potentially large schedule

e Computationally intensive

In general, off-line scheduling only used when determinism
is the overriding factor, e.g. MARS

Static priority algorithms

Most common is Rate Monotonic (RM)

e Assign static priorities to tasks at off-line (or at
‘connection setup’), high-frequency tasks receiving high
priorities

e the tasks processed with no further rearrangement of
priorities required (=- reduces scheduling overhead)

e optimal, static, priority-driven alg. for preemptive,
periodic jobs: i.e. no other static algorithm can schedule
a task set that RM cannot schedule

e Admission control: the schedule calculated by RM is
always feasible if the total utilisation of the processor is
less than [n2

e for many task sets RM produces a feasible schedule for
higher utilisation (up to ~ 88%); if periods harmonic,
can get 100%

o Predictable operation during transient overload

Dynamic priority algorithms

Most popular is Earliest Deadline First (EDF):

e Scheduling pretty simple:
— keep queue of tasks ordered by deadline
— dispatch the one at the head of the queue

e EDF is an optimal, dynamic algorithm:

— It may reschedule periodic tasks in each period
— If a task set can be scheduled by any priority
assignment, it can be scheduled by EDF

e Admission control: EDF produces a feasible schedule
whenever processor utilisation is < 100%

e Problem: scheduling overhead can be large

e Problem: if system overloaded, all bets are off

Multimedia scheduling

e Increasing interest in multimedia applications (e.g. video
conferencing, mp3 player, 3D games)

e Challenges OS since require presentation (or processing)
of data in a timely manner

e OS needs to provide sufficient control so that apps
behave well under contention

e Main technique: exploit soft real-time scheduling

e FEffective since:

— The value of multimedia data depends on the
timeliness with which it is presented or processed
= Real-time scheduling allows applications to receive
sufficient and timely resource allocation to handle
their needs even when the system is under heavy load
— Multimedia data streams are often somewhat tolerant
of information loss
= informing applications and providing soft guarantees
on resources are sufficient.

o Still ongoing research area

Example: Atropos (CUCL)

Deschedule

Allocate

Interrpt or
System Call :

e Task requirements described by (p, s,) triples
e System performs admission control

e Use a variant of EDF

e Expose CPU via activations

e Actual scheduling is easy (~200 lines C)

Multi-processors

Two main kinds of [shared-memory] multi-processor:

1. Uniform Memory Access (UMA), aka SMP

CPU CPU CPU CPU
[2 [[[
Cache Cache Cache Cache
L\ A v v

Main Memory

e all (main) memory takes the same time to access
e scales only to 4, 8 processors

2. Non-Uniform Memory Access (NUMA)

CPU CPU CPU CPU
[[[[
Cache Cache Cache Cache
v v v v
Mem Mem Mem Mem

e rarer and more expensive
e can have 16, 64, 256 CPUs ...

Multi-processor operating systems

Multi-processor OSes may be roughly classed as either
symmetric or asymmetric.

e Symmetric Operating Systems:
— identical system image on each processor
=> convenient abstraction
— all resources directly shared
= high synchronisation cost
— typical scheme on SMP (e.g. Linux, W2K).

e Asymmetric Operating Systems:
— partition functionality among processors
— better scalability (and fault tolerance?)
— partitioning can be static or dynamic
— common on NUMA (e.g. Hive, Hurricane)
— NB: asymmetric #- trivial “master-slave”

e Also get hybrid schemes, e.g. Disco:

— (re-)introduce virtual machine monitor
— can fake out SMP (but is this wise?)
— can run multiple OSes simultaneously. ..

Multi-processor scheduling

e Obijectives:

— Ensure all CPUs are kept busy
— Allow application-level parallelism

e Problems:

— Preemption within critical sections:
« thread A preempted while holding spinlock
= other threads can waste many CPU cycles
« similar situation with producer/consumer threads
(i.e. wasted schedule)

— Cache pollution:
+ if thread from different application runs on a given
CPU, lots of compulsory misses
« generally, scheduling a thread on a new processor is
expensive
*« (can get degradation of factor or 10 or more)

— Frequent context switching:
* if number of threads greatly exceeds the number of
processors, get poor performance

Multi-processor scheduling (2)

Consider basic ways in which one could adapt uniprocessor
scheduling techniques:

e Central queue:

simple extension of uniprocessor case
load-balancing performed automatically
[] n-way mutual exclusion on queue
[inefficient use of caches

[] no support for application-level parallelism

e Dedicated assignment:

contention reduced to thread creation/exit

better cache locality
L] lose strict priority semantics

[| can lead to load imbalance

Are there better ways?

Multi-processor scheduling (3)

e Processor affinity:

— modification of central queue

— threads have affinity for a certain processor
= can reduce cache problems

— but: load balance problem again

— make dynamic? (cache affinity?)

e ‘Take’ scheduling:
— pseudo-dedicated assignment: idle CPU “takes” task
from most loaded
— can be implemented cheaply
— nice trade-off: load high = no migration

e Co-scheduling / gang scheduling:
— Simultaneously schedule “related” threads.
= can reduce wasted context switches
— Q: how to choose members of gang?
— Q: what about cache performance?

Example: Mach

e Basic model: dynamic priority with central queue.

e Processors grouped into disjoint processor sets:
— Each processor set has 32 shared ready queues (one
for each priority level)
— Each processor has own local ready queue: absolute
priority over global threads

e Increase quantum when number of threads is small
— ‘small’ means #threads < (2x #CPUs)
— idea is to have a sensible effective quantum
— e.g. 10 processors, 11 threads
* if use default 100ms quantum, each thread spends
an expected 10ms on runqueue
* instead stretch quantum to 1s = effective quantum
Is now 100mes.

e Applications provide hints to improve scheduling:

1. discouragement hints: mild, strong and absolute
2. handoff hints (aka “yield to”) — can improve
producer-consumer synchronization

e Simple gang scheduling used for allocation.

MP thread architectures

Process 1 Process 2 Process 3 Process 4
383 5 55 22 3 8333 Wl
I \l/ \/

\/ | 2,349
O O O CI> CI> Cl) OO LwPs
$§ $§ 8¢ ¢ Throats

VNN /4

CbPU1 CPU2

Hybrid schemes combine user and kernel threads, e.g.
three-level scheduling in Solaris 2:

e 1 kernel thread <+ 1 LWP <+ n user threads
o user-level thread scheduler = lightweight & flexible

e LWPs allow potential multi-processor benefit:
— more LWPs = more scope for true parallelism
— LWPs can be bound to individual processors = could
in theory have user-level MP scheduler
— kernel scheduler is relatively cache agnostic (although
have processor sets (# Mach’s))

Overall: either first-class threads (Psyche) or scheduler
activations probably better for MP

$

Communication in
concurrent systems

Concurrency

The next section of the course concerns different ways of
structuring systems in which concurrency is present and, in
particular, co-ordinating multiple threads, processes and
machines accessing shared resources and data

Two main scenarios:

e Tasks operating with a shared address space — e.g.
multiple threads created within a Java application

e Tasks communicating between address spaces — e.g.

different processes, whether on the same or separate
machine

In each case we must consider

e How shared resources and data are named and referred
to by the participants

e Conventions for representing shared data
e How access to resources and data is controlled

e What kinds of system failure are possible

Safety

In each of these environments we must ensure that the
system remains safe — i.e. that ‘nothing bad happens’

e Unlike type-soundness, this cannot usually be checked
automatically by compilers or tools (although some exist
to help)

e It’s often useful to think of safety in terms of invariants —
things that must remain true, no matter how different
parts of the system evolve during execution
— e.g. a ‘transfer’ operation between bank accounts

preserves the total amount in them

e We can then identify consistent object states in which all
fields obey their invariants

e ...and aim that the system’s behaviour does not depend
on objects in inconsistent states

e Therefore many of the problems we’ll see come down to
deciding when different threads can be allowed access to
objects in various ways

Liveness

As well as safety, we'd also like liveness —i.e. ‘something
good eventually happens’. We often distinguish per-thread
and system-wide liveness

Standard problems include:

e Deadlock - a circular dependency between processes
holding resources and processes requiring them.
Typically the resources will be access to
mutual-exclusion locks

e Livelock — a thread keeps executing instructions, but
makes no useful progress, e.g. busy-waiting on a
condition that will never become true

e Missed wake-up (wake-up waiting) — a thread misses a
notification that it should continue with some operation

e Starvation — a thread is waiting for some resource but
never receives it — e.g. a thread with a very low
scheduling priority

e Distribution failures — of nodes or network connections in
a distributed system

Communication within
processes

Shared data

e Most useful multi-threaded applications will share data
between threads

e Sometimes this is straightforward e.g. data passed to a
thread through fields in the object containing the run
method

e More generally, threads may share state through...

— static fields in mutually-accessible classes, e.g.
System.out
— objects to which multiple threads have references

e What happens to field 0.x :

Thread A Thread B

ox = 17; 0.X = 42;

e Most fields accesses are atomic — the value read from
0.X after those updates will be either 17 or 42

e The only exceptions are numeric fields of type double
or type long — some third value may be read in that case

Locks in Java

e Simple shared data structures can be managed using
mutual exclusion locks (‘'mutexes’) and the
synchronized keyword to control access to critical
sections within an application

e The synchronized keyword can be used in two ways —
either applied to a method or applied to a block of code

e For example, suppose we want to maintain an invariant
between multiple fields:

class BankAccounts {
private int balanceA,;
private int balanceB;

synchronized void transferToB (int v) {
balanceA = balanceA - v;
balanceB = balanceB + v;

Locks in Java (2)

e When a synchronized method is called, the thread must
take out a mutual exclusion lock on the object

e If the lock is already held by another thread then the
caller is blocked until the lock becomes available

e Locks operate on a per-object basis — that is, only one
synchronized method can be called on a particular
object at any time
— ...similarly, it is OK for multiple threads to be calling

the same method, so long as they do so on different
objects

e Locks are re-entrant, meaning that a thread may call one
synchronized method from another

e If a static synchronized method is called then the
thread must acquire a lock on the class rather than on an
individual object

e The synchronized modifier cannot be used directly on
classes or on fields

© o0 N O U b~ w N =

10
11

Locks in Java (3)

e The second form of the synchronized keyword allows
it to be used within methods, e.g.

void methodA (Object x) {
synchronized (x) {
System.out.printin ("1");

}

synchronized (x) {
System.out.printin ("2");
}
}

e The synchronized region at line 2 acquires a lock on
the object referred to by x, performs the printin
operation at line 3 and then releases the lock at line 4

e The lock must be re-acquired at line 8

This kind of usage is good if an intervening operation, not
requiring mutual exclusion, may take a long time to execute:
other threads may acquire the lock

Priority inversion

o All priority-based schemes can potentially suffer from
priority inversion:

e e.g. consider low, medium and high priority threads

called P, P,, and Pj, respectively.

1. First P starts, and acquires a lock L.

2. Then other two processes start.

3. Pj runs since highest priority, tries to lock £ and
blocks.

4. Then P, gets to run, thus preventing P, from releasing
L, and hence P, from running.

e Usual solution is priority inheritence:
— associate with every lock £ the priority P of the
highest priority process waiting for it.
— then temporarily boost priority of holder of the lock up
to P.
— can use handoff scheduling to implement.

e Windows 2000 “solution”: priority boosts
— checks if 3 ready thread not run > 300 ticks.
— if so, doubles quantum & boosts priority to 15

e What happens in Java?

Deadlock

Suppose that a and b refer to two different shared objects,

Thread P Thread Q
synchronized (a) synchronized (b)
synchronized (b) synchronized (a)
{ {
} }

e If P locks both a and b then it can complete its operation
and release both locks, thereby allowing Q to acquire
them

e Similarly, Q may acquire both locks, then release them
and then allow P to continue

L] 1f P locks a and Q locks b then neither thread can
continue: they are deadlocked waiting for the resources
that the other has

Deadlock (2)

Whether this deadlock actually occurs depends on the

dynamic behaviour of the applications. We can show this
graphically in terms of the threads’ progress:

Progress

of O (1) _
A
unlock(b)
(2)
unlock(a)
lock(a)
>(3’)
lock(b)
Progress of P
>

lock(a) lock(b) unlock(b) unlock(a)

The shaded areas indicate (left and right) that one thread is

blocked by the other waiting to lock a and (above and
below) to lock b

Paths (1) and (2) show how these threads may be
scheduled without reaching deadlock

Deadlock is inevitable on path (3)

Deadlock (3)

If all of the following conditions are true then deadlock
exists:

1. A resource request can be refused — e.g. a thread cannot
acquire a mutual-exclusion lock because it is already
held by another thread

2. Resources are held while waiting — e.g. when a thread
blocks waiting for a lock it does not have to release any
others it holds

3. No preemption of resources — e.g. once a thread acquires
a lock then it’s up to that thread to choose when to
release it

4. Circular wait — a cylce of threads exist such that each
holds a lock requested by the next process in the cycle,
and that request has been refused

In the case of mutual exclusion locks in Java, 1-3 are always
true, and so the existence of a circular wait leads to deadlock

Object allocation graphs

An object allocation graph shows the various tasks in a
system and the resources that they have acquired and are
requesting. We'll use a simplified form in which resources
are considered to be individual objects

P has acquired object a and is requesting object b:

2l p) 2

P holds a and Q holds b:

E T T -
AN
\
\ \
\ \
\ \
\ \
\
\ b

Should r2 be allocated to S or T?

z

Deadlock detection

Deadlock can be detected by looking for cycles (as in the
second example on the previous slide)

Let A be the object allocation matrix, with one thread per
row and one column per object. A; ;) indicates whether
thread ¢ holds a lock on object j

Let R be the object request matrix. R; ;) indicates whether
thread 7 is waiting to lock object j

We proceed by marking rows of A indicating threads that are
not part of a deadlocked set. Initially no rows are marked. A
working vector W indicates which objects are available

1. Select an unmarked row 7 such that R; < W —i.e. a
thread whose requests can be met. Terminate if none

2. Set W =W 4+ A;, mark row ¢, and repeat

This identifies when deadlock has occurred — we may be
interested in other properties such as whether deadlock is

e inevitable (must happen in some possible execution path)

e possible (may happen in some path)

Deadlock detection (2)

O 0 1 0 O
O 1 0 O O
4= 1 0 0 0 O
O 0 0 O O
O 1 0 0 1
O 0 1 0 1
ko= O 0 0 O 1
1 0 0 0 1

1. W =(0,0,0,1,1)

2. Thread 3's requests can be met — it’s not deadlocked, so
can continue and may release object 1

3. W =(1,0,0,1,1)

4. Thread 4's requests can now be met — it’s not
deadlocked

5. W =(1,0,0,1,1)

[] Nothing more can be done: threads 1 and 2 are both
deadlocked

Deadlock avoidance

A conservative approach:

e Require that each process identifies the maxmium set of
resources that it may ever lock, C;

e When thread i requests a resource then construct a
hypothetical allocation matrix A" in which it has been
made and a hypothetical request matrix B’ in which
every other process makes its maximum request

e If A’ and B’ do not indicate deadlock then the allocation
is safe

It does avoid deadlock — may be preferable to deadlock
recovery

[] Need to know maximum requests

[| Run-time overhead
[] What if there are no safe states?

[] Objects are instantiated dynamically...

Deadlock avoidance (2)

It's often more practical to prevent deadlock by careful

design. How else can we tackle the four requirements for
deadlock?

e Use locking schemes that allow greater concurrency —
e.g. multiple-readers, single-writer in preference to
mutual exclusion

e Do not hold resources while waiting — e.g. acquire all
necessary locks at the same time (not possible as a
primitive operation in Java if > 1 lock)

o Allow preemption of locks and roll-back (again, not a
primitive in Java if using built-in locks)

e Enforce a lock acquisition order, making it impossible for
circular waits to arise, e.g. lock 2 ‘bank account’ objects
in account number order

Limitations of mutexes

e Suppose we want a one-cell buffer with a put operation
(store something if cell empty) and a remove operation
(read something if anything there):

class Cell {
private int value;
private boolean full;

public synchronized removeValue () {
if (full) {
full = false;
return value;
} else {
[* ?2°?7? *

}

e What can we put in line 10? We could just write code
that keeps testing full (a ‘spin lock’), but at best that
would be inefficient (also need to only hold the lock 6-9)

Limitations of mutexes (2)

e Another problem: what if we want to enforce some other
kind of concurrency control?

e e.g. if we identify read-only operations which can be
executed safely by multiple threads at once

e e.g. if we want to control which thread gets next access
to the shared data structure

— perhaps to give preference to threads performing
update operations

— or to enforce a first-come first-served regime
— or to choose on the basis of the threads’ scheduling

priority?¢

o All that mutexes are doing here is preventing more than
one thread from running the code on a particular object
at the same time

Suspending threads

e The suspend and resume methods on
java.lang.Thread allow one thread to temporarily
stop and start the execution of another

Thread t = new MyThread ();
t.suspend ();
t.resume ();

e As with stop , the suspend and resume methods are
deprecated

e This is because the use of suspend can lead to
deadlocks if the target thread is holding locks. It also risks
race conditions if multiple thread use them against the
same target

e They should be avoided even if the program does not
explicitly take out locks: many systems use additional
locks in their implementation

Condition variables

e Java provides condition variables for this kind of situation

e There is an individual condition variable associated with
each mutex

e Condition variables support two kinds of operation:

— a wait operation causes the current thread to block
— notify operations that cause blocked thread(s) to
continue

e In each case there are important details about when the
operation can be used and, in the case of notify, which
blocked thread(s) are woken. We'll first look at an
example and then at the details

Condition variables (2)
class Cell {

private int value;
private boolean full = false;

1
2
3
4
5 public synchronized int removeValue () {
6 while (Mfull) wait ();

7

8

9

full = false;
notifyAll ();

10 return value;

11 }

12

13 public synchronized void putValue (int v) {

14 while (full) wait ();

15

16 full = true;

17 value = v;

18 notifyAll ();

19 }

20 }

Condition variables (3)

e Line 2 causes a thread executing removeValue to block
on the condition variable until the cell is full

e Line 4 updates the object to mark it empty

e Line 5 notifies any threads currently blocked on the
condition variable

e Similarly, line 10 causes a thread executing PutValue to
block on the condition variable until the cell is empty

e Lines 12-13 update the fields to mark the cell full and
store the value in it

e Line 14 notifies any threads currently blocked on the
condition variable

Condition variables (4)

e wait , notify and notifyAll are operations defined
on java.lang.Object

e A thread can only perform a wait or notify operation on a
condition variable when it holds the associated mutex

e When a thread waits it atomically releases the mutex and
becomes blocked on the condition variable

e When a thread is notified it must re-acquire the mutex
before it continues
{ lock

Waiting for
notify the lock

Waiting to
be notified

Holding
the lock

Condition variables (5)

e There are two forms of notify operation:

— notifyAll() notifies every thread blocked on the
condition variable

— notify() notifies exactly one thread if any are
blocked

e Both require care to ensure correct use. With

notifyAll() the programmer must ensure that every
thread blocked on the condition variable can continue
safely

— e.g. line 2 in the example surrounds the wait()
operation with a while loop — if a ‘getting’ thread is
notified when there is no work for it, then it just waits
again

e notify() selects arbitrarily between the waiting
threads: the programmer must therefore be sure that they
do not mind which thread is chosen

notify() does not guarantee to wake the longest waiting
thread

Condition variables (6)

e The example shows a common way of using condition
variables

e notifyAll() is always used and the application
contains extra code (the while loop) so that threads
wait() again if they are woken prematurely

e Although only one thread is expected to continue,
notify() would be incorrect here because the choice
does matter: suppose there are some threads blocked in
removeValue() and some threads blocked in
putValue()

e When it is safe to use, some programmers prefer
notify() because it may be more efficient

e If using other programming languages then take care that
their versions of these operations behave in the same way

N-slot buffer

class NSlotBuffer {
int spacesFree = SIZE; int spacesUsed = O;
Object empty = new Object ();
Object full = new Object ();

void insert (int x) {
synchronized (full) {
while (spacesFree == 0) full.wait ();
spacesFree --;

}
synchronized (empty) {

spacesUsed ++; empty.notify ();

}
}

int remove () {
synchronized (empty) {
while (spacesUsed == 0) empty.wait ();
spacesUsed --;

}

synchronized (full) {
spacesFree ++; full.notify ();

}
}
}

N-slot buffer (2)

This example illustrates a couple of points,

e Firstly, it generalizes the previous one into allow up to
SIZE insert() operations to be performed without
intervening invocations of remove()

e Secondly, it shows how multiple objects can be used to
indicate different conditions

Each Java object has an associated mutex and condition
variable, so instances of java.lang.Object are often
used for this purpose

Remember that a thread must acquire a lock on the object
before invoking wait() , notify() or notifyAll()

Do insert(...) and remove(...) still need to be
synchronized ?

Design

Suppose that we wish to have a shared data structure on
which multiple threads may make read-only access, or a
single thread may make updates

e How can this be implemented using the facilities of Java,
— In terms of a well-designed OO structure?
— In terms of the concurrency-control features?

One option is based on delegation and the Adapter
pattern,

operation()

| |
MTImpl Basicimpl

operation()

operation()

e Basiclmpl provides the actual data structure
implementation, conforming to Interface . The class
MTImpl wraps each operation with appropriate code for

its use in a multi-threaded application, delegating calls to
an instance of Basiclmpl

Design (2)

e How does that compare with:

Sub-classes enforce encapsulation and mean that only

one instance is needed

operation()

Basiclmpl

operation()

MTImpl

operation()

Delegation may be easier, just use

super.operation()

[] Separate sub-classes are needed for e.g. MTImpI2

[] Composition of wrappers is fixed at compile time

Design (3)

In each of these cases the class MTImpl will define methods
that can be split into three sections:

1. An entry protocol responsible for concurrency control —
usually waiting until it is safe for the operation to
continue

2. Delegation to the underlying data structure
implementation (either by an ordinary method invocation
on an instance of Basiclmpl or a call using the super
keyword)

3. An exit protocol — generally selecting the next thread(s) to
perform operations on the structure

This common structure often motivates further separation of
concurrency control protocols from the data structure

Design (4)

operation()

| |
MTIimpl Basicimpl

CCinterface

enter()
exit()

CCimpl I

MTImpl now just deals with delegation, wrapping each
invocation on Interface with appropriate calls to
enter() andexit() on a general concurrency-control
interface (CClinterface).

operation() operation()

Sub-classes, e.g. CCImpl, provide specific entry/exit
protocols. A factory class may be used to instantiate and
assemble these objects

Concurrency-control protocols can be shared

Only a single MTImpl class is needed per data structure
interface

Multiple readers, single writer

We’'ll now look at implementing an example protocol,
MRSW

class MRSWIimpll implements MRSW {
int numReaders = 0;
int numWriters = 0;

A reader can enter when numWriters is zero. A writer can
enter when both fields are zero:

synchronized void enterRead ()
throws InterruptedException
{
while (numWriters > 0)
wait ();
numReaders ++;

synchronized void enterWrite ()
throws InterruptedException
{
while ((numWriters > 0) ||
(numReaders > 0))
wait ();
numWriters ++;

Multiple readers, single writer (2)

The exit protocols are more straightforward:

synchronized void exitRead () {
numReaders --;
notifyAll ();

}

synchronized void exitWrite () {
numWriters --;
notifyAll ();

}
}

Simple design: (1) create a class containing the necessary
fields (2) write entry protocols that keep checking these
fields and waiting (3) write exit protocols that cause any
waiting threads to assess whether they can continue.

L] notifyAll() may cause too many threads to be woken
— the code is safe but may be inefficient

Is that efficiency likely to be a problem?

Could notify() be used instead?

e 1999 Paper 4 Q3

$

Giving writers priority

We may want to ensure writes are made as soon as possible
— how can that be implemented?

class MRSWImpl2 implements MRSW {
int numReaders = 0;
int numWriters = 0;
int waitingWriters = 0;
synchronized void enterRead ()
throws InterruptedException

while ((numWriters > 0) || (waitingWriters > 0))
wait ();
numReaders ++;

synchronized void enterWrite ()
throws InterruptedException

waitingWriters ++;

while ((numWriters > 0) || (humReaders > 0))
wait ();

waitingWriters --;

numWriters ++;

First-come first-served ordering

Suppose now we want an ordinary lock that provides FCFS
semantics — the longest waiting thread is given access next

class FCFSImpl implements CCinterface {
int currentTurn = O;
int nextTicket = O;

Threads take a ticket and wait until it becomes their turn:

synchronized void enter ()
throws InterruptedException

{
int myTicket = nextTicket ++;
while (currentTurn < myTicket)

wait ();
}
synchronized void exit ()
{
currentTurn ++;
notifyAll ();
}

}

e 2007 Paper 4 Q3

First-come first-served ordering (2)

The implementation is simple

L] notifyAll() will wake all threads waiting in enter()
on this object — in this case we know that only one can
continue

[] What happens if the program runs for a long time and
nextTicket overflows?

Resolving these issues must depend on the context the class
is being used in, e.g.

e Lots of waiting threads and frequent contention: have an
explicit queue of per-thread objects and use notify()
on the object at the head of the queue

e No undetected failures: would long s ever overflow here?

Primitives for concurrency

These examples have used the language-level mutexes and
condition variables exposed in Java.

Semaphores provide simpler operations on which the
language-level features could be based. In Java-style
pseudo-code:

class CountingSemaphore {
CountingSemaphore (int x) {
}
native void P();

native void V();

}

e P (sometimes called wait) decrements the value and then
blocks if it is less than zero

e V (sometimes called signal) increments the value and
then, if it is zero or less, selects a blocked thread and
unblocks it

Programming with semaphores

Typically the integer value is used to represent the number of
instances of some resource that are available, e.g.:

class Mutex {
CountingSemaphore sem,;

Mutex () {
sem = new CountingSemaphore (1);

}

acquire () {
sem.P();

}

release () {
sem.V();

}
}

e The mutex is considered unlocked when the value is 1 (it
is initialized un-lcoked)

e ...and locked when the value is 0 or less

e How does this mutex differ from a Java-style one?

Programming with semaphores (2)

class CondVar {
int numWaiters = O;
Mutex cv_lock = new Mutex();
CountingSemaphore cv_sleep =
new CountingSemaphore (0);

CVWait (Mutex m) {
cv_lock.acquire ();
numWaiters ++;
m.release ();
cv_lock.release ();
cv_sleep.P ();
m.acquire ();

}

CVNotify (Mutex m) {
cv_lock.acquire ();
if (numWaiters > 0) {
cv_sleep.V();
numWaiters --;

}

cv_lock.release ();

Programming with semaphores (3)

Why doesn’t Java just provide semaphores?

e They can be implemented using mutexes and condition
variables

e Using semaphores directly is intricate — the programmer
must ensure P() /V() are paired correctly

e Many OS provide mutexes and condition variables
directly

There are other general problems both with semaphores and
with the facilities in Java:

e wait() and notify() still need care from the
programmer

e The usual interfaces do not provide isLocked() ,
tryToLock() , tryToLockUntil(...) or
lockAny(...) operations

— how could these be implemented?

Implementing semaphores

Uni-processor only: disable thread switches during the
implementation of P() and V()

All systems: rely on atomic primitive operations provided by
the processor to implement simple spin-locks

P() sem.lock()
sem.val -=1
if sem.val<0 block thread
sem.unlock()

V() sem.lock()
sem.val +=1
if sem.val<=0 unblock a thread
sem.unlock()

Each semaphore has an assocaited value, boolean lock field
and blocked-thread queue. The block operation

—

. adds the current thread to the blocked-thread queue
2. updates the thread control block (TCB)

3. unlocks the semaphore

Implementing semaphores (2)

How are lock and unlock implemented?

Almost all processors have atomic operations such as tas
(test-and-set), cas (compare-and-swap) or ll/sc
(load-linked / store-conditional, not covered here)

\%

lock() tas lock.val, 0, 1
if failed
unlock() mov 0 -> lock.val

This spin lock is not a good solution in general:
L] uni-processor non-preemptive case...

[threads waiting to acquire the lock are continually
attempting tas operations — they do not block

Spin locks tend to be used when blocking is unlikely or for
only short durations, so the time spent spinning is much less
than the time taken to block and unblock a thread

Mutexes without hardware support

e What can we do if there isn’t a cas or tas instruction,
just atomic read and write? (e.g. the ARM7 only has a
swap operation)

e ‘Bakery’ algorithm due to Lamport (1974)

enter() taking([i] = true;
ticket[i]l=max(ticket[0],..., ticket[n-1])+1
taking]i] = false;
for (j=0; j<i; j++) { 1
while (taking[j]) { }
while ((ticket[j] = 0) &&
(ticket[j] <= ticket[i])) { }

}
for (=1, j<n; [++) { 2
while (taking[j]) {}
while ((ticket[j] != 0) &&

(ticket[j] < ticket[i])) { }

}

exit() ticket[i] = O:

e Threads enter the critical region in ticket order, using
their IDs as a tie-break

Event counts and sequencers

The bakery algorithm suffers the same efficiency concerns as
a spin-lock using tas .

What happens if n changes?

However, a similar algorithm can easily be built from event

count and sequencer primitives, proposed as an alternative
to semaphores

e An event count is represented by a positive integer,

initialized to zero, supporting the following atomic
operations:

— advance() - increment the value by one, returning
the new value

— read() - return the current value

— await(i) — wait until the value is greater than or
equal to |

e A sequencer is again represented by a positive number,
initialized to zero, supporting a single atomic operation:

— ticket() — increment the value by one, returning
the old value

Event counts and sequencers (2)

e Mutual exclusion is easy: a thread takes a ticket entering
a critical region and then invokes await to receive its
turn

e The values returned by await can be used directly in
implementing a single-producer single-consumer N-slot
buffer: they give the modulo-N indices to read/write

e A general N-slot buffer is more difficult. Two sequencers
are used to order producers and consumers to ensure
slots are read/written in order

e Note that many operations on event counts and
sequencers have a straightforward implementation using
cas — as before with semaphores, care is needed to avoid
missed wake-ups between await and advance

cas Xx,y,z atomically compares the contents of
location x against the value y: if they match then z is
written to X, otherwise X is unchanged. It's a primitive
operations on x86, IA-64 and SPARC processors

Monitors

A monitor is an abstract data type in which mutual exclusion
is enforced between invocations of its operations. Often

depicted graphically showing the internal state and external
interfaces, e.g. in pseudo-code

allocator: monitor

/: if busy wait(free);

busy: boolean

\ busy=true;

free: condition variable
/‘ busy = false;
\ notify(free),

When looking at a definition such as this, independent of a
specific language, it’s important to be clear on what
semantics are required of wait and notify

e Does notify wake at most one, exactly one or more
than one waiting thread?

e Does notify cause the resumed thread to continue
immediately (if so, must the notifier exit the monitor)?

Active objects

An active object achieves mutual exclusion between
operations by (at least conceptually) having a dedicated
thread that performs them on behalf of external callers, e.g.

loop
SELECT
when count < buffer-size
ACCEPT insert(param) do
[insert item into buffer]
end;
increment count;
[manage ref to next slot for insertion]
or when count > 0
ACCEPT remove(param) do
[remove item from buffer]
end;
decrement count;
[manage ref to next slot for removal]
end SELECT
end loop

e Guarded ACCEPTstatements provide operations and
pre-conditions that must hold for their execution

e Management code occurs outside the ACCEPTstatements

Recap

Application-specific
concurrency control
(e.g. MRSW)

Language-level features,
e.g. Mutexes, Condition
Variables

cuoddns
13|npayos

Semaphores or event-
counts & sequencers

Primitive atomic
operations

The details of exactly what is implemented where vary
greatly between systems, e.g.

e Whether the thread scheduler is implemented in
user-space or in the kernel

e Which synchronization primitives can be used between
address spaces

e Whether mutexes, condition variables are provided
directly as primitives

