1. Given a graph \(G = (V, E) \), a set \(U \subseteq V \) of vertices is called a vertex cover of \(G \) if, for each edge \((u, v) \in E\), either \(u \in U \) or \(v \in U \). That is, each edge has at least one end point in \(U \). The decision problem \(\text{V-COVER} \) is defined as:

 given a graph \(G = (V, E) \), and an integer \(K \), does \(G \) contain a vertex cover with \(K \) or fewer elements?

 (a) Show a reduction from \(\text{IND} \) to \(\text{V-COVER} \).
 (b) Use (a) to argue that \(\text{V-COVER} \) is \(\text{NP} \)-complete.

2. The problem of four dimensional matching, \(4\text{DM} \), is defined analogously with \(3\text{DM} \):

 Given four sets, \(W; X; Y \) and \(Z \), each with \(n \) elements, and a set of quadruples \(M \subseteq W \times X \times Y \times Z \), is there a subset \(M' \subseteq M \), such that each element of \(W; X; Y \) and \(Z \) appears in exactly one triple in \(M' \).

 Show that \(4\text{DM} \) is \(\text{NP} \)-complete.

3. Define a strong nondeterministic Turing machine as one where each computation has three possible outcomes: accept, reject or maybe. If \(M \) is such a machine, we say that it accepts \(L \), if for every \(x \in L \), every computation path of \(M \) on \(x \) ends in either accept or maybe, with at least one accept \(\text{and} \) for \(\text{not} \in L \), every computation path of \(M \) on \(x \) ends in reject or maybe, with at least one reject.

 Show that if \(L \) is decided by a strong nondeterministic Turing machine running in polynomial time, then \(L \in \text{NP} \cap \text{co-NP} \).
4. We use $x; 0^n$ to denote the string that is obtained by concatenating the string x with a separator $;$ followed by n occurrences of 0. If $[M]$ represents the string encoding of a non-deterministic Turing machine M, show that the following language is \textbf{NP}-complete:

$$\{ [M]; x; 0^n \mid M \text{ accepts } x \text{ within } n \text{ steps} \}.$$

\textit{Hint:} rather than attempting a reduction from a particular \textbf{NP}-complete problem, it is easier to show this from first principles, i.e. construct a reduction for any NDTM M, and polynomial bound p.

Similarly, if $[M]$ represents the encoding of a deterministic Turing machine M, then

$$\{ [M]; x; 0^n \mid M \text{ accepts } x \text{ within } n \text{ steps} \}.$$

is \textbf{P}-complete.

5. Define a \textit{linear time reduction} to be a reduction which can be computed in time $O(n)$.

(a) Show that there are no problems complete for \textbf{P} under linear time reductions (hint: use the Time Hierarchy Theorem).

(b) Show that for any fixed k, there is a polynomial time decidable language L, such that every language in $\text{TIME}(n^k)$ is reducible to L (hint: construct a language similar to the one in (4) above).