UNIVERSITY OF
CAMBRIDGE

Computer Laboratory

Computer Science Tripos
Part 1B [P]

Part IT General [C]
Diploma in Computer Science [D]

Compiler Construction
(Part 1 of 2)

http://www.cl.cam.ac.uk/Teaching/2001/CompConstr

Alan Mycroft am@cl.cam.ac.uk

20012002 (Lent Term)

Summary

The first part of this course covers the design of the various parts of a fairly basic compiler.
The second part of the course considers various language features and concepts common to many
programming languages, together with an outline of the kind of run-time data structures and
operations they require.

The course is intended to study compilation of a range of languages and accordingly syntax for
example constructs will be taken from various languages (with the intention that the particular
choice of syntax is reasonably clear).

In terms of programming languages in which parts of compilers themselves are to be written,
the preference varies between pseudo-code (as per the ‘Data Structures and Algorithms’ course)
and language features (essentially) common to C/C++/Java. The language Standard ML (which
the Diploma and Part II (general) students will see as part of the ‘Functional Programming’
course) is used when it significantly simplifies the code compared to C.

The following books contain material relevant to the course.

Compilers—Principles, Techniques, and Tools
A.V.Aho, R.Sethi and J.D.Ullman
Addison-Wesley (1986)

Ellis Horwood (1982)

Compiler Design in Java/C/ML (3 editions)
A.Appel
Cambridge University Press (1996)

Compiler Design
R.Wilhelm and D.Maurer
Addison Wesley (1995)

Introduction to Compiling Techniques
J.P.Bennett
McGraw-Hill (1990)

A Retargetable C Compiler: Design and Implementation
C.Frazer and D.Hanson
Benjamin Cummings (1995)

Compiler Construction
W.M.Waite and G.Goos
Springer-Verlag (1984)

High-Level Languages and Their Compilers
D.Watson
Addison Wesley (1989)

Acknowledgments

Various parts of these notes are due to or based on material developed by Dr M. Richards of the
Computer Laboratory. Dr G. Bierman provided the call-by-value lambda-form for Y.

Teaching and Learning Guide

[This is a Computer Laboratory mandated section of all lecture courses.]

The lectures largely follow the syllabus for the course which is as follows.

Survey of execution mechanisms.
The spectrum of interpreters and compilers; compile-time and run-time.
Structure of a simple compiler. Java virtual machine.

Lexical analysis and syntax analysis.
Regular expressions and finite state machine implementations. Grammars,
Chomsky classification of phrase structured grammars. Parsing
algorithms: recursive descent, precedence and SLR(k). Syntax error
recovery.

Simple type-checking.
Type of an expression determined by type of subexpressions; inserting
coercions. Polymorphism.

Translation phase.
Intermediate code design. Translation of commands, expressions and
declarations. Translating variable references into access paths.

Code generation.
Typical machine codes. Code generation from the parse tree and from
intermediate code. Simple optimisation.

Compiler compilers.
Summary of Lex and Yacc.

Runtime.
Object modules and linkers. Resolving external references.
Static and dynamic linking. Debuggers, break points and
single step execution. Profiling, portability.

Survey of language constructs and their implementation.
Expressions, applicative structure, lambda expressions. Environments
and a simple lambda evaluator. Evaluation of function calls using
static and dynamic chains, Dijkstra displays. Situations where a simple
stack is inadequate. Objects and inheritance. Implementation of labels,
jumps, arrays and exceptions. L-value and r-value; choices for argument
passing and free-variable association. Dynamic and static binding.
Dynamic and static types, polymorphism.

A good source of exercises is the past 10 or 20 years’ (sic) Tripos questions in that most
of the basic concepts of block-structured languages and their compilation to stack-oriented code
were developed in the 1960s. The course ‘Optimising Compilation’ in CST (part II) considers
more sophisticated techniques for the later stages of compilation and the course ‘Comparative
Programming Languages’ considers programming language concepts in rather more details.

Note: these notes have this year been re-written to use Java and the JVM as the intermediate
code. I would be grateful for comments identifying errors or readability problems.

1 Introduction and Overview

A compiler is a program to translate the source form of a program into its equivalent machine
code or relocatable binary form. The number of compilers that exist is very large and considerable
human effort has been expended in constructing them. As a result most parts of the compilation
process have become well understood and the job of writing a compiler is no longer the difficult
task it once was. A compiler tends to be a large program (typically 10,000 to 50,000 machine
instructions for a simple compiler and more that a million for serious optimising compilers) and
it is wise to structure it in order to make its individual components small enough to think about
and handle conveniently.

If a language is sufficiently simple it and is designed suitably, it can be compiled by a one pass
compiler, that is, it can be compiled a small piece (often just a statement) at a time. During the
compilation process the data types and allocated locations of variables are remembered together
with any other information that may be needed later on during the compilation. The space
required for this is substantially less than the space needed to hold the entire program and there
is usually no limit on the size of the program than may be compiled in this way. Although such a
compiler can be simple and fast, such a route is generally avoided because (a) it is hard to optimise
the code and (b) the techniques developed for multi-pass compilation are better known.

Most languages have features that make compilation in a single pass either difficult or impos-
sible. For example, in Java the definition of names may occur many lines after they are first used,
as in:

class A {
public int g() { return £(); }
// ... many lines before we find ...
public int £() { ... }

}

Similarly in ML, consider programs like:

val g = 3;
fun f(x) - SRR
and g(x) el

For most current programming languages, it is normal to compile in a number of stages (or
phases, or passes) with the output of one pass being the input of the next. A compiler designed
in this way is called a multi-pass compiler.

1.1 The structure of a typical multi-pass compiler

We will take as an example a compiler with four passes.

[¢ token parse intermediate target
stream tree code code

haracter
stream

1.2 The lexical analyser

This reads the characters of the source program and recognises the basic syntactic components
that they represent. It will recognise identifiers, reserved words, numbers, string constants and all
other basic symbols (or tokens) and throw away all other ignorable text such as spaces, newlines
and comments. For example, the result of lexical analysis of the following program phrase:

{ let x = 1;
X:=x+y;

}
might be:

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y SEMIC RBRACE

Lexical tokens are often represented in a compiler by small integers; for composite tokens such as
identifiers, numbers, etc. additional information is passed by means of pointers into appropriate
tables; for example calling a routine lex () might return the next token while setting a global vari-
able lex_aux_string to the string form of an identifier when ID is returned, similarly lex_aux_int
might be set to the binary representation of an integer when NUM is returned.

1.3 The syntax analyser

This will recognise the syntactic structure of the sequence of tokens delivered by the lexical anal-
yser. The result of syntax analysis is often a tree representing the syntactic structure of the
program. This tree is sometime called an abstract syntax tree. The syntax analyser would recog-
nise that the above example parses as follows:

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y SEMIC RBRACE

‘ id exp ‘ exp ‘ exp exp‘
definition exp
declaration command

block

and it might be represented within the compiler by the following tree structure:

—| LET j EQDEF

— — 1 = | NUMB X

L 1
ASS

—_—t ID

y

where the tree operators (e.g. LET and EQDEF) are represented as small integers.

In order that the tree produced is not unnecessarily large it is usually constructed in a condensed
form as above with only essential syntactic features included. It is, for instance, unnecessary to
represent the expression x as a <sum> which is a <factor> which is a <primary> which is an
<identifier>. This would take more tree space space and would also make later processing
less convenient. Similarly, nodes representing identifiers are stored uniquely—this saves store
and reduces the problem of comparing whether identifiers are equal to simple pointer equality.
The phrase ‘abstract syntax tree’ refers to the fact the only semantically important items are
incorporated into the tree; thus a+b and ((a)+(((b))) might have the same representation, as
might while (e) C and for(;e;) C.

1.4 The translation phase

This pass flattens the tree into a linear sequence of intermediate object code. At the same time it
can deal with

1. the scopes of identifiers,
2. declaration and allocation of storage,

3. selection of overloaded operators and the insertion of automatic type transfers.

However, nowadays often a separate ‘type-checking’ phase is run on the syntax tree below trans-
lation. This phase at least conceptually modifies the syntax tree to indicate which version of an
overloaded operator is required. We will say a little more about this in section 6.5.

The intermediate object code for the statement:

y :=x<=37 -x : X

might be as follows (using for JVM as an example intermediate code):

iload_4 load x (4th load variable)

iconst_3 load 3

if _icmpgt L36 if greater (i.e. condition false) then jump to L36
iload_4 load x

ineg negate it

goto L37 jump to L37

label L36

iload_4 load x

label L37

istore_7 store y (7th local variable)

Alternatively, the intermediate object code could be represented within the compiler as a directed
graph! as follows:

iload 4} ineg

—iload 4} iconst_3 Hif_icmpgt]

1.5 The code generator

This pass converts the intermediate object code into machine instructions and outputs them in
either assembly language or relocatable binary form in so-called object files. The code generator
is mainly concerned with local optimisation, the allocation of target-machine registers and the
selection of machine instructions. Using the above intermediate code form of

y :=x$=3 7 -x : X
we can easily produce (simple if inefficient) ARM code of the form using the traditional downwards-
growing ARM stack:

LDR 0, [fp,#40-16] load x (4th local variable, out of 10 say)

MOV ri1,#3 load 3
CMP r0,rl
BGT L36 if greater then jump to L36
LDR 10, [sp,#40-16] load x
RSB r0,r0,#0 negate it
STMDB sp!,{r0} i.e. PUSH rO0 (to local stack)
B L37 jump to L37
L36: LDR r0,[sp,#40-16] load x
STMDB sp!,{r0} i.e. PUSH rO0 (to local stack)
L37: LDMIA sp!,{r0} i.e. POP rO (from local stack)

STR r0, [sp,#40-28] store y (7th local variable)

1The Part IT course on optimising compilers will take this approach but here it would merely add to the weight
of concepts for no clear gain.

This code has the property that it can simply be generated from the above JVM code on an
instruction-by-instruction basis (which explains why I have not hand-optimised the PUSHes and
POPs away).

When compilers produce textual output in a file (for example gcc) it is necessary to have a
separate program (usually called an assembler) to convert this into an object file. An assembler
is effectively a simple compiler which reads an instruction at a time from the input stream and
writes the binary representation of these into the object file output. One might well argue that
this is a separate pass, which separates the formatting of the binary file from the issue of deciding
which code to generate.

1.6 Compiler Summary

The four passes just described form a clear-cut logical division of a compiler, but are not necessarily
applied in sequence. It is, for instance, common for the lexical analyser to be a subroutine of the
syntax analyser and for it to be called whenever the syntax analyser requires another lexical token.
In simple compilers It is also quite common for the translation phase and the code generator to be
merged into one pass. Some compilers have additional passes, particularly for complex language
features or if a high degree of optimisation is required. Examples might be separating the type-
checking phase from the translation phase (for example as code which replaces source-level types in
the syntax tree with more machine-oriented type information), or by adding additional phases to
optimise the intermediate code structures (e.g. common sub-expression elimination which reworks
code to avoid re-calculating common subexpressions).
The advantages of the multi-pass approach can be summarised as.

1. It breaks a large and complicated task into smaller, more manageable pieces. [Anyone can
juggle with one ball at a time, but juggling four balls at once is much harder.]

2. Modifications to the compiler (e.g. the addition of a synonym for a reserved word, or a minor
improvement in compiler code) often require changes to one pass only and are thus simple
to make.

3. A multi-pass compiler tends to be easier to describe and understand.

4. More of the design of the compiler is language independent. It is sometimes possible to
arrange that all language dependent parts are in the lexical and syntax analysis (and type-
checking) phases.

5. More of the design of the compiler is machine independent. It is sometimes possible to
arrange that all machine dependent parts are in the code generator.

6. The job of writing the compiler can be shared between a number of programmers each
working on separate passes. The interface between the passes is easy to specify precisely.

1.7 Reading compiler output

Reading assembly-level output is often useful to aid understanding of how language features are
implemented; if the compiler can produce assembly code directly then use this feature, for example

gcc -S foo.c

will write a file foo.s containing assembly instructions. Otherwise, use a disassembler to convert
the object file back into assembler level form, e.g. in Java

javac foo.java
javap —-c foo.java

Note that the ‘-c’ switch seems not to work on all versions of javap. It works at least on the
Linux PWF facility and also on the following variants of thor:

Solaris Release 8 [hammer] Linux Red Hat Release 7.1 [belt, gloves] (Thor)

1.8 The linker

Most programs written in high-level languages are not self-contained. In particular they may
be written in several modules which are separately compiled, or they may merely use library
routines which have been separately compiled. With the exception of Java (or at least the current
implementations of Java), the task of combining all these separate units is performed by a linker
(on Linux the linker is called 1d for ‘loader’ for rather historical reasons). A linker concatenates its
provided object files, determines which library object files are necessary to complete the program
and concatenates all these to form a single ezecutable output file. Thus classically there is a total
separation between the idea of compile-time (compiling and linking commands) and run-time
(actual execution of a program).

In Java, the tendency is to write out what is logically the intermediate language form (i.e.
JVM instructions) into a .class file. This is then dynamically loaded (i.e. read at run-time) into
the running application. Because (most) processors do not execute JVM code directly, the JVM
code must be interpreted (i.e. simulated by a program implementing the JVM virtual machine).
An alternative approach is to use a so-called just in time (JIT) compiler in which the above code-
generator phase of the compiler is invoked to convert the loaded JVM code into native machine
instructions (selected to match the hardware on which the Java program is running). This idea
forms part of the “write once, compile once, run anywhere” model which propelled Java into
prominence when the internet enabled . class files (applets) to be down-loaded to execute under
an Internet browser

1.9 Compilers and Interpreters

The above discussion on Java execution mechanism highlights one final point. Traditionally user-
written code is translated to machine code appropriate to its execution environment where it
is executed directly by the hardware. The JVM wirtual machine above is an alternative of an
interpreter-based system. Other languages which are often interpreted are Basic, various scripting
languages (for shells, spreadsheets and the like), perl etc. The common thread of these languages
is that traditional compilation as above is not completed and some data structure analogous to the
input data-structure of one of the above compiler phases. For example, some Basic interpreters will
decode lexical items whenever a statement is executed (thus syntax errors will only be seen at run-
time); others will represent each Basic statement as a parse tree and refuse to accept syntactically
invalid programs (so that run-time never starts). What perhaps enables Java to claim to be a
compiled language is that compilation proceeds far enough that all erroneous programs are rejected
at compile-time. Remaining run-time problems (e.g. de-referencing a NULL pointer) are treated
as ezxceptions which can be handled within the language.

I will present a rather revisionist view on compilers and interpreters in the second part of the
course.

2 Lexical analysis

This is a critical part of a simple compiler since it can account for more than 50% of the compile
time. This is because:

1. character handling tends to be expensive,

2. there are a large number of characters in a program compared with the number of lexical
tokens, and

3. the lexical analyser usually constructs name tables and performs the binary conversion of
constants.

2.1 Regular expressions

The recognition of lexical tokens is straightforward and does not require a sophisticated analyser.
This results from the simple syntax of lexical tokens. It is usually the case that all the lexical tokens
of a language can be described by regular expressions, which then implies that the recognition can
be performed by a finite state algorithm.

A regular expression is composed of characters, operators for concatenation (juxtaposition), al-
ternation (|) and repetition *, and parentheses are used for grouping. For example, (a b | ¢c)* d
is a regular expression. It can be regarded as a specification of a potentially infinite set of strings,
in this case:

d

abd cd

ababd abcd cabd ccd
etc.

This is best derived by constructing the corresponding transition diagram by repeated application

of the following rules.
52

f@ - - e

This can be regarded as a generator of strings by applying the following algorithm:
1. Follow any path from the starting point to any accessible box.
2. Output the character in the box.

3. Follow any path from that box to another box (possibly the same) and continue from step
(2). The process stops when the exit point is reached.

We can also use the transition diagram as the basis of a recogniser algorithm. For example, an
analyser to recognise :=, :, <numb> and <id> might have the following transition diagram:

ASS
COLON

iDp

Optimisation is possible (and needed) in the organisation of the tests. This method is only
satisfactory if one can arrange that only one point in the diagram is active at any one time.

It is sometimes convenient to draw the transition diagram as a directed graph with labelled
edges. For example, the graph for the expression “(a b | c)* d” can be represented as follows:

With state 3 designated an accepting state, this graph is a finite state acceptor for the given
regular expression. The acceptor is easily implemented using a transition matriz to represent the

graph.

We will demonstrate the method by considering the following syntax of floating point numbers
(the ‘—’ notation is introduced below in section 3):

aHTmOoOg=2

where

s
e
p
d

— U | sU
— D | E | DE
— J | F | JF
— eI

— pJ

— J | s
— 4 | 43

is a sign

is the exponent symbol
is the decimal point
is a digit

The corresponding graph is:

The corresponding matrix is as follows:

Number

Unsigned number
Unsigned decimal number
Exponent part

Decimal fraction
Integer

Unsigned integer

+ or -
E

0-9

k!

10

s d p e other
S1|S2 S3 sS4 S6
S2 | . S3 S4 S6 .
S3 . S3 5S4 S6 acc
s4 | . S5 . . .
S5 . S5 . S6 acc
S6 | S7 S8
S7 | . S8 . . .
S8 . S8 . . acc

In a program that uses this technique each matrix entry would specify the address of some code to
deal with the transition? and note the next matrix row to be used. The entry acc would point to
the code that processes a complete floating point number. Blank entries correspond to syntactic
error conditions.

In general, this technique is fast and efficient, but if used on a large scale it requires skill and
cunning to reduce the size of the matrix and to reduce the number of separate transition routines.

3 Phrase structured grammars

A grammar consists of an alphabet of symbols (think of these as characters to lexing or tokens
resulting from lexing) and set of rules for generating a language (set of strings) of such symbols.
For example, if the alphabet were the set of all letters {a ... z} and the rule were “generate all
strings of length three” we would have a language whose strings are:

aaa, aab, ... zzy, zzz

A more useful form of grammar is the phrase structured grammar where the generation rule is
given as a set of productions. It is first necessary to break the alphabet into two sets of symbols:
terminal symbols like a, b, ¢ above which may occur in the input text and non-terminals like Term
or Declaration which do not occur in input text but summarise the structure of a sequence of
symbols. The most general form of a production is:

A1 A2 Am—)Bl B2 Bn

where the A; and B; are symbols and A; A,--- A, contains at least one non-terminal. This
rule specifies that if A; Ay--- Ay, occurs in a string belonging to the grammar then the string
formed by replacing Ay Ay --- A, by By Ba--- By, also belongs to the grammar (note that the
symbol ‘: :=’ is sometimes used as an alternative to ‘—’). There must be a unique non-terminal
S, say, called the sentence symbol that occurs by itself on the left hand side of just one production.
Any string that can be formed by the application of productions is called a sentential form. A
sentential form containing no non-terminals is called a sentence. The problem of syntax analysis
is to discover which series of applications of productions that will convert the sentence symbol into
the given sentence.

It is useful to impose certain restrictions on A; As--- A, and By B> --- B, and this has been
done by Chomsky to form four different types of grammar. The most important of these in the
Chomsky Type 2 grammar.

3.1 Type 2 grammar

In the Chomsky type 2 grammar the left hand side of every production is restricted to just a single
non-terminal symbol. Such symbols are often called syntactic categories. Type 2 grammars are
known as context free grammars and have been used frequently in the specification of the syntax of
programming languages, most notably Algol 60 where it was first used. The notation is sometime
called Backus Naur Form or BNF after two of the designers of Algol 60. A simple example of a
type 2 grammar is as follows:

2E.g. multiply the current total by 10 and add on the current digit

11

S — AB

A — a

A — ABbD
B — bec

B — Ba

A slightly more convenient way of writing the above grammar is:

S — AB
A — a | ABD
B — bc | Ba

The alphabet for this grammar is {S, A, B, a, b, c, d}. The non-terminals are S, A, B being
the symbols occurring on the left-hand-side of productions, with S being identified as the start
symbol. The terminal symbols are a, b, c, d, these being the characters that only appear on
the right hand side. Sentences that this grammar generates include, for instance:

abc

abcbbc
abcbca
abcbbcaabca

Where the last sentence, for instance, is generated from the sentence symbol by means of the
following productions:

S

I

A B

I I
A-—————- B-———- b B-—-a
I I [I
A-B-—-b B---a | b-c |
[I [I
ab-—c|lbcl|l |||
L
abcbbcabbca

A grammar is ambiguous if there are two or more ways of generating the same sentence. Convince
yourself that the follow three grammars are ambiguous:

a) S — AB
A — a | ac
B — b | cb
b) S — aTb | TT
T — ab | ba
c) C — if Ethen C else C | if E then C

Clearly every type 2 grammar is either ambiguous or it is not. However, it turns out that it is not
possible to write a program which, when given an arbitrary type 2 grammar, will terminate with
a result stating whether the grammar is ambiguous or not. It is surprisingly difficult for humans
to tell whether a grammar in ambiguous. One example of this is that the productions in (¢) above
appeared in the original Algol 60 published specification. As an exercise, determine whether the
example grammar given above is ambiguous.

For completeness, the other grammars in the Chomsky classification are as follows.

12

3.2 Type 0 grammars

Here there are no restrictions on the sequences on either side of productions. Consider the following
example:

BC | aBC

L

0O oo me
0O 0 T T QW

This generates all strings of the form a™b"c™ for all n > 1.
To derive aaaaabbbbbccccc, first apply S —aSBC four times giving:

aaaaSBCBCBCBC

Then apply S —aBC giving:
aaaaaBCBCBCBCBC

Then apply CB —BC many times until all the Cs are at the right hand end.
aaaaaBBBBBCCCCC

Finally, use the last four productions to convert all the Bs and Cs to lower case giving the required
result. The resulting parse tree is as follows:

S

a-S-————— B-C
| a=§-——-mmmmmmm - B-C | |
[| a-S-———-—-———- B-C| | | |
[| | a=S-——--B-C | | | | |

[Il laB-C Il | [11111
| | | | a-b B-C B-C B-C B-C |
[I 1 1| b-bB-CB-CB-C | |
[11T 11 1bbB-CB-C/| ||
[T 1T 1T 11T 1bbBCIl| |||
I < < O A O B
Y O I Y A IO B
Frrr 111t ecl |l
Frrrr 11t ecll
Frrrrrr il ecl
O O Y B (Y2
O Y Y A B
aaaaabbbbbccccec

As a final remark on type 0 grammars, it should be clear that one can write a grammar
which essentially specifies the behaviour of a Turing machine, and syntax analysis in this case is
equivalent to deciding whether a given string is the answer to some program. This is undecidable
and syntax analysis of type 0 grammars is thus, in general, undecidable.

3.3 Type 1 grammars
A production in a type 1 grammar takes the following form:
—
Li--+I; A Ri---R.—ILy---L; By---B, Ri---R,
——— —_———— ——— ———

13

where A is a single non-terminal symbol, and the L; - - - L;, Ry - - - R, and By - - - B, are sequences of
terminal and non-terminal symbols. The sequence Bj - -+ B, may not be empty. These grammars
are called context sensitive since A can only be replaced by Bj --- B, if it occurs in a suitable
context (the L; are the left context and the R; the right context).

3.4 Type 3 grammars

This is the most restrictive of the phrase structured grammars. In it all productions are limited
to being one of the following two forms:

A — a
A — aB

That is, the right hand side must consist of a single terminal symbol possibly followed by a single
non-terminal. It is sometimes possible to convert a type 2 grammar into an equivalent type 3
grammar. Try this for the grammar for floating point constants given earlier.

Type 3 grammars can clearly be parsed using a finite state recogniser, and for this reason
they are often called regular grammars. [To get precise correspondence to regular languages it is
necessary also to allow the empty production S —e otherwise the regular language consisting of
the empty string (accepted by an automaton whose initial state is accepting, but any non-empty
input sequence causes it to move to a non-accepting state) cannot be represented as a type 3
grammar.]

Finally, note that clearly every Type 3 grammar is a Type 2 grammar and every Type 2
grammar is a Type 1 grammar etc. Moreover these inclusions are strict in that there are languages
which can be generated by (e.g.) a Type 2 grammar and which cannot be generated by any Type
3 grammar. However, just because a particular language can be described by (say) a Type 2
grammar does not automatically mean that there is no Type 3 grammar which describes the
language. An example would be the grammar G given by

S — a
S — S a

which is of Type 2 (and not Type 3) but the grammar G’ given by

S — a
S — as

clearly generates the same set of strings (is equivalent to G) and is Type 3.

4 Syntax analysis

The type 2 (or context free) grammar is the most useful for the description of programming
languages since it is powerful enough to describe the constructions one typically needs and yet
is sufficiently simple to be analysed by a small and generally efficient algorithm. Some compiler
writing systems use BNF (often with slight extensions) as the notation in which the syntax of the
language is defined. The parser is then automatically constructed from this description.

We will now look at three main parsing techniques, namely: recursive descent, precedence and
SLR(1).

4.1 Recursive descent

In this method the syntax is converted into transition diagrams for some or all of the syntac-
tic categories of the grammar and these are then implemented by means of recursive functions.
Consider, for example, the following syntax:

14

P — (T) | n
F — FxP | F/P | P
T — T+F | T-F | F

where the terminal symbol n represents name or number token from the lexer. The corresponding
transition diagrams are:

Notice that the original syntax has been modified to avoid left recursion® to avoid the possibility
of a recursive loop in the parser. The recursive descent parsing functions are outlined below
(implemented in C):

void RdAP()
{ switch (token)
{ case "(’: 1lex(); RATQ);
if (token != ’)’) error("expected ’)’);
lex(); return;
case ’n’: lex(); return;
default: error("unexpected token");
}
}

void RAF()
{ RAP();
for (;;) switch (token)
{ case ’*’: lex(); RAP(); continue;
case ’/’: lex(); RAP(); continue;
default: return;

}
X

void RAT()
{ RAFQ);
for (;;) switch (token)
{ case ’+’: lex(); RAF(); continue;
case ’-’: lex(); RAF(); continue;
default: return;

}
¥

3By replacing the production F —3F * P | F /P | P withF —P * F | P / F | P which has no effect on
the strings accepted, although it does affect their parse tree—see later.

15

4.2 Data structures for parse trees

It is usually best to use a data structure for a parse tree which corresponds closely to the abstract
syntazx for the language in question rather than the concrete syntaz. The abstract syntax for the
above language is

E — E+E | E-E | ExE | E/E | (E) |n

This is clearly ambiguous seen as a grammar on strings, but it specifies parse trees precisely and
corresponds directly to ML’s

datatype E = Add of E* E | Sub of E x E |
Mult of E* E | Div of E *x E |
Paren of E | Num of int;

Indeed one can go further and ignore the (E) construct in the common case parentheses often
have no semantic import beyond specifying grouping. In C the construct tends to look like:

struct E {
enum { E_Add, E_Sub, E_Mult, E_Div, E_Paren, E_Numb } flavour;
union { struct { struct E *left, *right; } diad;
// selected by E_Add, E_Sub, E_Mult, E_Div.
struct { struct E *child; } monad;
// selected by E_Paren.
int num;
// selected by E_Numb.
} u;
};

It is not generally helpful to reliability and maintainability to make a single datatype which
can represent all sub-structures of a parse tree. For parsing C, for example, one might well expect
to have separate abstract parse trees for Expr, Cmd and Decl.

It is easy to augment a recursive descent parser so that it builds a parse tree while doing
syntax analysis. The ML datatype definition defines constructor functions, e.g. Mult which maps
two expression trees into one tree which represents multiplying their operands. In C one needs to
work a little by defining such functions by hand:

struct E *mkE_Mult(E *a, E *b)

{ struct E *result = malloc(sizeof (struct E));
result->flavour = E_Mult;
result->u.diad.left = a;
result->u.diad.right = b;
return result;

}

A recursive descent parser which builds a parse tree for the parsed expression is given in
Figure 1.

When there are many such operators like +, -, *, / with similar syntax it can often simplify the
code to associate a binding power with each operator and to define a single routine RAE(int n)
which will read an expression which binds at least as tightly as n. In this case RAT() might
correspond to RAE(0), RAT() to RAE(1) and RAP() to RAE(2).

This idea is can be pushed further to produce a table-driven parser to which topic we now
turn.

16

/*

* %

*/

/*
/%
/%
/*
/*

struct E *RdP()
{ struct E *a;
switch (token)
{ case ’(’: lex(); a = RAT();
if (token != ’)’) error("expected ’)’);
lex(); return a;
case ’n’: a = mkE_Numb(lex_aux_int); lex(); return a;
do names by
case ’i’: a = mkE_Name(lex_aux_string): lex(); return a;

default: error("unexpected token");

This example code includes a right associative ’~’ operator too...
’"? binds more tightly than %’ or ’/’. For this example, The rule
F::=P|F*xP|F/P
has been changed into the two rules
F::=G|FxG|F/G G::=P|P"~G

struct E *RdG()
{ struct E *a = RAP();
switch (token)
{ case ’"7: lex(); a = mkE_Mult(a, RAG()); return a;
default: return a;
}
}

struct E *RdF()
{ struct E *a = RAG();
for (;;) switch (token)
{ case ’%’: lex(); a = mkE_Mult(a, RAG()); continue;
case ’/’: lex(); a = mkE_Div(a, RAG()); continue;
default: return a;

}

struct E *RdT()
{ struct E *a = RAFQ);

for (;;) switch (token)

{ case ’+’: lex(); a = mkE_Add(a, RAF()); continue;
mkE_Sub(a, RAF()); continue;

case ’-’: lex(); a
default: return a;

Figure 1: Recursive descent parser yielding a parse tree

17

*/
*/
*/
*/
*/

4.3 Simple precedence

For simple arithmetic grammars a parser based on the precedence of the operators is possible.
Consider the token stream:

bof | X * Yy +a / t — c **k d |eof
y

(We use the special terminals and to represent respectively beginning and end of a file
(stream).) Let us define two relations <: and > which hold as follows:

+ - * / k% eof

bot | | < << <<
> > << >
- << >
x> 0> > > < >
fol> > > > < >
k| > > > > < D>

then we can parse the above expression by means of the following steps:

We start with: [votlx * y + @a / t = ¢ ** d eot

bof | < x> 4 => botf |[(x*y) + a / t — ¢ ** d|eot
+ < /> - => bot [(x*y) + (a/t) - ¢ ** d|eot
bof | < + > - => bot |((x*y)+(a/t)) - c ** d|eot
- < k% > |eotf => bot [((xxy)+(a/t)) = (c**d)|eot
bof | < — > |eof => bot [(((x*y)+(a/t))=(c**d))| eot

It is worth noting that this method allows both the precedence and associativity of operators to
be specified. For example a-b-c parses as (a-b)-c, but ax*bx*xc as a** (b**c).

4.4 General precedence

For some grammars it is possible to define relations =, <- and -> between alphabet characters
(terminal or non-terminal) of the grammar in such a way that, if

U A B C D V
is a sentential form, and
U< A=B=C=D>V
then there must be a production X —A B C D and so
U X V

is a simpler sentential form. A matrix defining these relations then forms the basis of a very simple
parser.
The definitions of =, <: and > are as follows:

1) A =B <=> P — ... AB ... is a production

2) A<B <=> P — ... AU... is a production
and U i) B ... (using one or more

productions)

32) A>B <=> P — ... UB ... is a production
and U H ..

3b) A>B <=> P — ... UV ... is a production
and U —5 ... A

and V 25 B ...

18

The grammar is a precedence grammar if for all pairs of alphabet characters at most one of the
relations holds. The following grammar is not a precedence grammar.

S — [oet] E [oot]
E — T | E+T
T — P | TxP
P — (E) | I

since, for instance [vof |=E and [voz |<E. It can, however, be modified into the following equivalent
grammar which is a precedence grammar.

4.4.

s — [E

E? — E

E — T | E+T

T — T

T — P | TxP

P — (E) | I

1 Construction of the precedence matrix

Before we construct the matrix it is convenient to form, for each non-terminal U in the grammar,

two

sets Left(U) and Right(U) of symbols that can start and end strings derived from U. If

U Y% By --- B, then B, is in Left(U) and B, is in Right(U).
Left(U) can be derived for all non-terminals in the grammar by the following algorithm:

1

2.

3.

4.

. Initialise all sets Left(U) to empty.
For each production U — By -- - B,, enter By into Left(U).

For each production U — Bj -- - B, where B is also a non-terminal enter all the elements
of Left(B;) into Left(U)

Repeat 3. until no further change.

Right(U) can be derived similarly. For the example grammar the sets are as follows:

U Left(U) Right(U)
E’|ET° TP (I|ET TP) I
E |ET° TP (I T TP)I
T TP (I TP) I
T TP (I P)HI
P (1) I

The following algorithm constructs the precedence matrix. For each pair A B occurring con-
secutively in a production (i.e. P — --- AB--- is a production) do the following:

1

2

3a

3b
For

and

. Enter A = B into the matrix

. Enter A <X into the matrix for all X in Left(B)

. Enter X> B into the matrix for all X in Right(A)

. Enter X> Y into the matrix for all X in Right(A4) and all Y in Left(B)

the example grammar, there are 8 pairs to consider:

[bor] E’ |E’ [eof] |E> + |+ T |T *|* P|(E |E)

the resulting matrix is:

19

EE E T T P (I * +)
E’ - - - - - = - - - = =
E >
T e R
T =T
P S>>
) S>>
I >
* - - - - =2 e - - - -
+ I I I
(= << <SS < - - - -
bof =l - - - -

For this grammar it is possible to find two functions £ and g with the property that:

A=B <+ f(A)=g(B)
A< B << f(A)<g(B)
A>B < f(A)>g(B)

Define such functions for this grammar and show that it is not possible in general. Why are such
functions useful?

The following program will perform the parse using the precedence matrix. P[k] is the kth
symbol of source text, and S[7] is the ith element of a stack (storing part-parsed input)

S[0] = P[0]; i =0, k = 1;
while (P[k] != [eof])
{ S[++i] = P[k++];
while (S[i] > P[k1)
{ int j = i;
while (S[j-11 = S[j1) j--;
S[j]1 = Leftpart(S[j] ,..., S[il);
i=73;
}
}

The function Leftpart finds the subject of the production whose right part is given as its argu-
ment(s). Syntactic errors are detected by either encountering a blank entry in the matrix or by a
failure in the function Leftpart.

NB. Note that the parsing program above is independent of the grammar to be used—all the
grammatical details are stored in the tables. One can say that here the grammar is coded as data
whereas in the recursive descent parser it was coded as program.

4.5 SLR parsing

Various parsing algorithms based on the so called LR (k) approach have become become popular.
These are specifically LR(0), SLR(1), LALR(1) and LR(1). These four methods can parse a source
text using a very simple program controlled by a table derived from the grammar. The methods
only differ in the size and content of the controlling table.

To exemplify this style of syntax analysis, consider the following grammar (here E, T, P ab-
breviate ‘expression’, ‘term’ and ‘primary’—an alternative notation would use names like <expr>,
<term> and <primary> instead):

#0 S —
#1 E —
#2 E —

eof

+ T

= M

20

#3 T — P *x T
#4 T — P
#5 P — i
#6 P — (E)

The form of production #0 is important. It defines the sentence symbol S and its RHS consists of
a single non-terminal followed by the special terminal symbol which must not occur anywhere
else in the grammar. (When you revisit this issue you will note that this ensures the value parsed
is an E and what would be a reduce transition using rule #0 is used for the acc accept marker.)
We first construct what is called the characteristic finite state machine or CFSM for the
grammar. Each state in the CFSM corresponds to a different set of items where an item consists
of a production together with a position marker (represented by .) marking some position on the
right hand side. There are, for instance, four possible items involving production #1, as follows:

E — E + T
E — E .+ T
E — E + .T
E — E + T.

If the marker in an item is at the beginning of the right hand side then the item is called an
initial item. If it is at the right hand end the the item is called a completed item. In forming item
sets a closure operation must be performed to ensure that whenever the marker in an item of a set
precedes a non-terminal, E say, then initial items must be included in the set for all productions
with E on the left hand side.

The first item set is formed by taking the initial item for the production defining the sentence
symbol (S —.E [eoz]) and then performing the closure operation, giving the item set:

1: { 8§ — .E eof
E — .E + T
E — .T
T — P *x T
T — .P
P — .i
P — .(E)
}

States have successor states formed by advancing the marker over the symbol it precedes. For
state 1 there are successor states reached by advancing the marker over the symbols E, T, P, i or
(. Consider, first, the E successor (state 2), it contains two items derived from state 1 and the
closure operation adds no more (since neither marker precedes a non terminal). State 2 is thus:

2: { S — E .[eof]

E — E .+ T
}

The other successor states are defined similarly, except that the successor of is always the
special state accept. If a new item set is identical to an already existing set then the existing set
is used. The successor of a completed item is a special state represented by $ and the transition
is labeled by the production number (#i) of the production involved. The process of forming the
complete collection of item sets continues until all successors of all item sets have been formed.
This necessarily terminates because there are only a finite number of different item sets.

For the example grammar the complete collection of item sets given in Figure 2. Note that for
completed items the successor state is reached via the application of a production (whose number
is given in the diagram).

21

eof

-> .E

1: { S

-> .E + T
-> .T
-> .P
-> .P

E
E
T
T

=>

* %

=>

i

->
->

=> 10

(

.C E)

P

eof => accept

.eof

-> E

2: { 8

=>

-> E .+ T

E

=>

-> E + .T
-> .P

3: { E

% %

T

=>

=> 10

(

#1 => §

-> E + T .

4: { E

#2 => $

T .

=->

5: { E

=>
#4 => $

% %

T

-> P

6: { T

=>

* %

-> P
-> .P
-> .P

->
->

7: { T

* %

T
T

=>

i

=> 10

(

.C E)

P

#3 => §$

* %

-> P

8: { P

#5 => ¢

i

9: { P

.E

(
-> .E + T
-> .T
-> .P

P

->

10:{ P

=> 11
=>

E

E
E

* %

T
T

=>

=> 10

(

=> 12
=>

)

(E
-> E .+ T

->

11:{ P

E

#6 => $

(

=->

12:{ P

Figure 2: CFSM item sets

22

The CFSM can be represented diagrammatically as follows:

E () eof {]
4@ 2 e accept

Before we can construct an SLR(1) parser we must define and compute the sets FOLLOW(A)
for all non-terminal symbols A. FOLLOW(A) is defined to be the set of all symbols (terminal and
non-terminal) that can immediately follow the non-terminal symbol A in a sentential form. They
can be formed iteratively by repeated application of the following rules.

1. If there is a production of the form X — ... Y Z... put Z and all symbols that can start
Z into FOLLOW(Y).

2. If there is a production of the form X — ...Y put all symbols in FOLLOW(X) into
FOLLOW(Y).

We are assuming here that no production in the grammar has an empty right hand side. For our
example grammar, the FOLLOW sets are as follows:

A | FOLLOW(A)
E |[eoz] +)
T |[eoz] +)
P |feof] +) =%

From the CFSM we can construct the two matrices action and goto:

1. If there is a transition from state ¢ to state j under the terminal symbol k, then set
action[i, k] to Sj.

2. If there is a transition under a non-terminal symbol A, say, from state ¢ to state j, set
gotoli, A] to Sj.

3. If state ¢ contains a transition under set action[i,[eof | to acc.

4. If there is a reduce transition #p from state i, set action[i, k] to #p for all terminals k
belonging to FOLLOW(A) where A is the subject of production #p.

If any entry is multiply defined then the grammar is not SLR(1). Blank entries are represented
by dash (-).

23

action goto
state | | eof (i) + *%%x | P T E
S1 - S10 S9 - - - | S6 S5 S2
S2 | acc - - - S3 - - - -
S3 - S10 S9 - - - | S6 5S4 -
S4 | #1 - - #1 #1 - - - -
S5 | #2 - - #2 #2 - - - -
S6 | #4 - - #4 #4 ST | - - -
S7 - S10 S9 - - - | S6 S8 -
S8 | #3 - - #3 #3 - - - -
S9 | #5 - - #5 #5 #5 | - - -
S10 - S10 S9 - - - | S6 S5 Si1
S11 - - - S12 83 - - - -
S12 | #6 - - #6 #6 #6 | - - -

The parsing algorithm used for all LR methods uses a stack that contains alternately state
numbers and symbols from the grammar, and a list of input terminal symbols terminated by [eoz |
A typical situation is represented below:

aAbBcCdDeEf | uvwzxyzeo
Here a ... f arestate numbers, A ... E are grammar symbols (either terminal or non-terminal)
and u ... z are the terminal symbols of the text still to be parsed. If the original text was

syntactically correct, then
ABCDEuvwxyz

will be a sentential form.
The parsing algorithm starts in state S1 with the whole program, i.e. configuration

1 | (the whole program upto [eot |)

and then repeatedly applies the following rules until either a syntactic error is found or the parse
is complete.

1. If action[f, u] = Si, then transform
aAbBcCdDeEf | uvwzxyz et
to
aAbBcCdDeEfui VWXY Z|eof

This is called a shift transition.

2. If action[f, ul = #p, and production #p is of length 3, say, then it will be of the form
P — C D E where C D E exactly matches the top three symbols on the stack, and P is some
non-terminal, then assuming gotol[c, P] = g

aAbBcCdDeETf | uvwzxyz|es
will transform to
aAbBcPg | uvwxyz|eo
Notice that the symbols in the stack corresponding to the right hand side of the production

have been replaced by the subject of the production and a new state chosen using the goto
table. This is called a reduce transition.

24

3. If action[f, u]l = acc then the situation will be as follows:

and the parse will be complete. (Here Q will necessarily be the single non-terminal in the
start symbol production (#0) and u will be the symbol [eoz |.)

4. If action[f, ul = - then the text being parsed is syntactically incorrect.

Note again that there is a single program for all grammars; the grammar is coded in the action
and goto matrices.
As an example, the following steps are used in the parsing of i+i:

Stack text production to use
1 i+ 1 |eof

119 + i |eof P— i

1P6 + i |eof T — P

1T5 + i |eof E—T

1E2 + i |eof

1E2+ 3 i |eof

1E2+3109 eof P — i
1E2+3PG6 eof T — P
1E2+3T4 eof E—E+T
1E2 eof acc (E is result)

In practice a tree will be produced and stored attached to terminals and non-terminals on the
stack. Thus the final E will in reality be a pair of values: the non-terminal E along with a tree
representing i+i.

4.5.1 Errors

A syntactic error is detected by encountering a blank entry in the action or goto tables. If this
happens the parser can recover by systematically inserting, deleting or replacing symbols near the
current point in the source text, and choosing the modification that yields the most satisfactory
recovery. A suitable error message can then be generated.

4.5.2 Table compaction

In a typical language we can expect there to be over 200 symbols in the grammar and perhaps
rather more states in the CFSM. The action and goto tables are thus likely to require over 40000
entries between them. There are good ways of compacting these by about a factor of ten.

5 Automated tools to write compilers

These tools are often known as compiler compilers (i.e. they compile a textual specification of part
of your compiler into regular, if sordid, source code instead of you having to write it yourself).

Lex and Yacc are programs that run on Unix and provide a convenient system for constructing
lexical and syntax analysers. JLex and CUP provide similar facilities in a Java environment.
There are also similar tools for ML.

5.1 Lex

Lex takes as input a file (e.g. calc.1) specifying the syntax of the lexical tokens to be recognised
and it outputs a C program (normally lex.yy.c) to perform the recognition. The syntax of
each token is specified by means of a regular expression and the corresponding action when that

25

hth
[\t] /* ignore blanks and tabs */ ;

[0-9]1+ { yylval = atoi(yytext); return NUMBER; }

"mod" return MOD;
"div" return DIV;
"sqr" return SQR;
\n|. return yytext[0]; /* return everything else */

Figure 3: calc.l

token is found is supplied as a fragment of C program that is incorporated into the resulting
lexical analyser. Consider the lex program calc.l in Figure 3. The regular expressions obey the
usual unix conventions allowing, for instance, [0-9] to match any digit, the character + to denote
repetition of one or more times, and dot (.) to match any character other than newline. Next to
each regular expression is the fragment of C program for the specified token. This may use some
predefined variables and constants such as yylval, yytext and NUMBER. yytext is a character
vector that holds the characters of the current token (its length is held in yyleng). The fragment
of code is placed in the body of an external function called lex, and thus a return statement
will cause a return from this function with a specified value. Compound tokens such as NUMBER
return auxiliary information in suitably declared variables. For example, the converted value of a
NUMBER is passed in the variable lexlval. If a code fragment does not explicitly return from lex
then after processing the current token the lexical analyser will start searching for the next token.
In more detail, a Lex program consists of three parts separated by %%s.

declarations
hh
translation rules
o
auxiliary C code
The declarations allows a fragment of C program to be placed near the start of the resulting lexical

analyser. This is a convenient place to declare constants and variables used be the lexical analyser.
One may also make regular expression definitions in this section, for instance:

ws [\t\n]+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

These named regular expressions may be used by enclosing them in braces ({ or }) in later
definitions or in the translations rules.

The translation rules are as above and the auxiliary C code is just treated as a text to be
copied into the resulting lexical analyser.

5.2 Yacc

Yacc (yet another compiler compiler) is like Lex in that it takes an input file (e.g. calc.y) speci-
fying the syntax and translation rule of a language and it output a C program (usually y.tab.c)
to perform the syntax analysis.

Like Lex, a Yacc program has three parts separated by %%s.

declarations

hh

26

translation rules
Wb
o/o

auxiliary C code

Within the declaration one can specify fragments of C code (enclosed within special brackets %{
and %}) that will be incorporated near the beginning of the resulting syntax analyser. One may
also declare token names and the precedence and associativity of operators in the declaration
section by means of statements such as:

%token NUMBER
%left ’*° DIV MOD

The translation rules consist of BNF-like productions that include fragments of C code for
execution when the production is invoked during syntax analysis. This C code is enclosed in
braces ({ and }) and may contain special symbols such as $$, $1 and $2 that provide a convenient
means of accessing the result of translating the terms on the right hand side of the corresponding
production.

The auxiliary C code section of a Yacc program is just treated as text to be included at the
end of the resulting syntax analyser. It could for instance be used to define the main program.

An example of a Yacc program (that makes use of the result of Lex applied to calc.l) is
calc.y listed in Figure 4.

Yacc parses using the LALR(1) technique. It has the interesting and convenient feature that
the grammar is allowed to be ambiguous resulting in numerous shift-reduce and reduce-reduce
conflicts that are resolved by means of the precedence and associativity declarations provided by
the user. This allows the grammar to be given using fewer syntactic categories with the result
that it is in general more readable.

The above example uses Lex and Yacc to construct a simple interactive calculator; the trans-
lation of each expression construct is just the integer result of evaluating the expression. Note
that in one sense it is not typical in that it does not construct a parse tree—instead the value of
the input expression is evaluated as the expression is parsed. The first two productions for ‘expr’
would more typically look like:

$2; }
mkbinop(’+’, $1, $3);

expr: ’(’ expr ’)’ { 3%
| expr '+’ expr { $$

where mkbinop () is a C function which takes two parse trees for operands and makes a new one
representing the addition of those operands.

6 Translation to intermediate code

The translation phase of a compiler normally converts the abstract syntax tree representation of
a program into intermediate object code which is usually either a linear sequence of statements or
an internal representation of a flowchart. We will assume that the translation phase deals with (1)
the scope and allocation of variables, (2) determining the type of all expressions, (3) the selection
of overloaded operators, and (4) generating of the intermediate code.

Before we can give algorithms to translate a parse-tree into linear intermediate code form, we
need to be a little more precise about the particular representation of the parse tree and also the
intermediate code used. We present a JVM-style* intermediate code, which consists of a linear
sequence of simple (virtual machine) instructions which act on a run-time stack. Note that the
explanation given here corresponds to a subset of the JVM (e.g. we will not explore exceptions or
non-static method invocation) and will prefer pedagogic simplicity over precision. Nevertheless,
you should be able to read disassembled (using ‘javap -c’) JVM .class files and I recommend
you do this to aid your understanding.

4The Microsoft language C# has a very close resemblance to Java and their .net virtual machine code a similar
relationship to JVM code. Their divergence owes more to commercial reasons that technological ones.

27

W
#include <stdio.h>

%}
%token NUMBER

Yleft 2+ 1=
%left ’*’ DIV MOD

/* gives higher precedence to ’*’, DIV and MOD */
%left SQR

hh
comm: comm ’\n’
| /* empty =/
| comm expr ’\n’ { printf("%d\n", $2); }
| comm error ’\n’ { yyerrok; printf("Try again\n"); }

I

expr: ’(’ expr ’)’ {3%$=292; }

| expr ’+’ expr { $$ = $1 + $3; }
| expr -’ expr { $$ = $1 - $3; }
| expr ’*’ expr { $$ = $1 * $3; }
| expr DIV expr { $$ = $1 / $3; }
| expr MOD expr { $$ = $1 % $3; }
| SQR expr {3 =92 % $2; }
| NUMBER

hh

#include "lex.yy.c"
yyerror(s)

char *s;

{ printf("%s\n", s);
}

main()

{ return yyparse();
}

Figure 4: calc.y

28

In these notes the stack is upwards growing, so that subsequent parameters and local variables
occupy increasing memory locations (this is not necessary for the JVM but makes the pictures
easier to understand). The version of the JVM we present has a stack-pointer SP register which
points to the first free location on the stack. In addition, it has a so-called frame-pointer FP
register which points to a constant place during the activation of a procedures. Although strictly
not necessary, this simplifies explanations and aids debuggers, since local variables will remain at
the same constant offset from FP but their offset from SP will vary during pushes and pops to
the stack. (N.B. on both the Pentium and the ARM, the convention instead is to have the stack
downward growing, and SP to hold the lowest currently used location on the stack.) Evaluation of
a procedure uses a stack frame which will be addressed from FP. A stack frame has the following
form:

T T

FP SP

Here FP points to (or rather into) the current stack frame. FP points to the so-called linkage
information which allows a function call to return. This consists of the previous value of FP, here
called FP’ and a pointer L (the return address) to the machine instruction to be next evaluated
after the function’s return. To the left (at lower addresses) of the linkage informations are stored
the functions parameters and (user-declared) local variables; on the right is the local stack (used
for evaluating temporaries and for storing arguments), SP is a pointer to first free cell of this (which
coincides with the first free cell of the whole stack). To clarify explanations of function call, we
will use the word parameters to refer to the identifiers holding arguments to the current procedure
and restrict the word arguments to refer to expressions are being, or have been, evaluated on the
stack in order to be passed to a further function. At the end of each Java statement we can expect
the local stack to be empty and hence SP to point exactly two words further along the stack from
FP. In general these notes will assume that the JVM stack is an array of (32-bit) words, and so
addresses of stack items will differ by one.

One more point is worthy of note. A Java routine has a fixed number of parameters (say n,)
and local variables (say n,) and similarly the maximum depth of its local stack can be determined
in advance. The latter means it is simple to check, at procedure invocation, that there is enough
space beyond SP for a new stack frame, thus avoiding over-writing issues. The JVM does not have
distinct instructions for addressing parameters and local variables, they are just accessed with the
instruction iload_i, using offsets 0..(n, + n, — 1).

Turning to the JVM instructions, variables and parameters are accessed by instructions iload ¢
and istore_i, with operand 0..(n, +n, —1). Thus “read the first parameter to a function” would
be written iload 0.

More formally, and showing the use of the local stack, these JVM instructions have the following
effects:

iload_i SP[0] = FP[i — (n, +mny)1; SP++
istore SP--; FP[i— (np +ny)] = SPLO];

Note that we have just written, following C, the name of a pointer as an array name, in particular
SP[0] means “the cell pointed to by SP”. Some of the other JVM instructions are as follows:

iadd SP[-2] = SP[-2] + SP[-1]; SP--;

isub SP[-2] = SP[-2] - SP[-1]; SP--;

ineg SP[-1] = - SP[-1];

if icmpgt L if (SP[-2] > SP[-1]) PC = L; SP-=2;
if_icmpeq L if (SP[-2] == SP[-1]) PC = L; SP-=2;
goto L PC = L;

Function calls and return are more tricky because they have to create or deallocate a stack frame
(the general principle is to avoid trampling on one’s own feet, especially in ireturn if n,+mn, = 0).

29

invokestatic L SP = SP + pgalledin 4 9. Sp[-2] = FP; SP[-1] = PC;
FP = SP - 2; PC = L;
ireturn tempSP = FP - (n, +mn,); FP = FP[-2]; PC = FP[-1];
tempSP[0] = SP[-1]; SP = tempSP+1;
The use of the JVM instructions can be illustrated by considering the following Java program

fragment;:

class fntest {
public static void main(String args[]) {
System.out.println("Hello World!" + £(£(1,2),£(3,4)));

¥
static int f(int a, int b) { int y = a+b; return y*a; }
}
The JVM function code generated for the function £ might be:
iload_0 ; load a
iload_1 ; load b
iadd
istore_2 ; store result to y
iload_2 ; re-load y
iload_0 ; re-load a
imul
ireturn ; return from fn with top-of-stack value as result

and the series of calls in the println in main as:

iconst_1
iconst_2
invokestatic f
iconst_3
iconst_4
invokestatic f
invokestatic f

Note how two-argument function calls just behave like binary operators in that they remove two
items from the stack and replace them with one; the instructions invokestatic and ireturn both
play their part in the conspiracy to make this happen. You really must work through the above
code step-by-step to understand the function call/return protocol.

Instuctions, such the first few instructions of £ above, will be generated by translation phase
of the compiler using a series of calls such as:

Gen2(0P_iload, 0);
Gen2(0P_iload, 1);
Gen1(0P_iadd);

Gen2(0P_istore, 2);

where OP_iload etc. will be represented by different values in an enumeration, for example (using
the barbarous Java syntax for this)

static final const OP_iload = 1;
2;

static final const OP_istore =
static final const OP_iadd = 3;
static final const OP_isub = 4;
static final const OP_itimes = 5;

The magic numbers can correspond directly to the bit patterns in a .class file, or can be decoded
in the Geni routines into readable strings. Alternatively successive instructions can be stored in
memory ready to be translated into native machine instructions in the CG phase.

30

6.1 Example tree form used in this section

In this section we will use a simple example language reflecting a subset of Java without types or
classes. It has the following abstract syntax tree structure (expressed in ML for conciseness):

type N = string; (* shorthand for ’name’ *)
datatype E = Var of N | Num of int | Apply of N * (E list) |

Neg of E | Pos of E | Not of E |

Add of ExE | Sub of E *x E |

Mult of E * E | Div of E * E |

EQof ExE | Ne of Ex E |

Lt of EXxE | Gt of Ex E |

Le of ExE | Ge of Ex E |

And of ExE | Or of Ex E | (x for & and || x)

Cond of E *x E x E |

and C = Seq of C * C | Assign of N * E
If3 of E*x C * C | While of E x C |
Block of D list * C list | Return of E
and D = Vardef of N * E | Fndef of N * (N list) * C;

type P = D list; (* shorthand for ’program’ *)

A program in this language essentially consists of an interleaved sequence of initialised variable
definitions let = = e and function definitions let f(x1,...,zg) c.

6.2 Dealing with names and scoping

To generate the appropriate instruction for a variable or function reference (e.g. iload_7 instead
of y) we require the compiler to maintain a table (often called a symbol table although beware
that this sometimes is used for for other things). This table keeps a record of which variables are
currently in scope and how the compiler may access them. For example, in Java

class A {

public static int g;

public int n,m;

public int f(int x) { int y = x+1; return foo(g,n,m,x,y); }
}

the variables x and y will be accessed via the iload and istore as above, but there will be another
pair of instructions to access a variable like g which is logically a global variable which can live in
a fixed position in memory and be addressed using absolute addressing. Accessing per-instance
variables, such as n above, is really beyond the scope of this part of the course which deals with
translation, but how a translation might work will be covered in the second part of the course.

Essentially, the routine trdecl will save the current state of the symbol table and add the
new declared names to the table. The routine trname consults the symbol table to determine the
access path for a given name. Finally, the compiler will arrange, when it has concluded treatment
a scope which has definitions, that the symbol table is restored to that which was extant at the
start of the scope (and saved by trdecl).

As an example for the above the table might contain

"g" static variable
"n" class variable O
"m" class variable 1
" method

"x" local variable O
"y local variable 1

31

when compiling the call to foo, but just the first four items when merely in the scope of A. In
more detail, the symbol table will be extended by the entry (x,loc,0) when f’s parameters (x) are
scanned, and then by (y,loc,1) when the local definition of y is encountered. The issue of how
environments (the abstract concept corresponding to our symbol table) behave will be given in
the second part of the course.

6.3 Translation of expressions

Some of the functions used during translation are as follows:

trexp(x) translate an expression
trexplist (x) translate an expression list
trname (op,x) translate a name, op is one of

OP_iload, OP_istore, OP_invokestatic
jumpcond(x,b,n) translate a conditional jump
tremd (x) translate a command
trdecl(x) translate a declaration

The argument to trexp is the tree for the expression being translated. An outline of its
definition is as follows:®

fun trexp(Num(k)) gen2(0P_iconst, k);

| trexp(Id(s)) = trname(0P_iload,s);
| trexp(Add(x,y)) = (trexp(x); trexp(y); genl(0P_iadd))
| trexp(Sub(x,y)) = (trexp(x); trexp(y); genl(0OP_isub))
| trexp(Mult(x,y)) = (trexp(x); trexp(y); genl(0P_imul))
| trexp(Div(x,y)) = (trexp(x); trexp(y); genl(0P_idiv))
| trexp(Neg(x)) = (trexp(x); genl(OP_ineg))
| trexp(Apply(f, el)) =

(trexplist(el); // translate args

trname (OP_Invokestatic, f)) // Compile call to f
| trexp(Cond(b,x,y)) =

let val p = ++label; // Allocate two labels
val q = ++label in
jumpcond (b,false,p); // (see below for jumpcond)
trexp(x); // code to put x on stack
gen2(0P_goto,q); // jump to common point
gen2(0P_Lab,p);
trexp(y); // code to put y on stack
gen2(0P_Lab,q) // common point; result on stack
end;

etc...

fun trexplist[] =)
| trexplist(e::es) = (trexp(e); trexplist(es));
6.4 Translation of short-circuit boolean expressions

In Java, the operators && and || are required not to evaluate their second operand if the result of
the expression is determined by the value of their first operand. For example, consider code like

if (i>=0 && A[i]l==42) { ... }

5We have adopted an ML-like syntax to describe this code since we can exploit pattern matching to make the
code more concise than C or Java would be. For ML experts there are still things left undone, like defining the ++
and -- operators of type int ref -> int.

32

If i>=0 is false then we are forbidden to evaluate A[i] as it may give rise to an exception. We will
use the function jumpcond to compile such expressions. Its first argument is the tree structure of
the expression, the second is a truth value stating whether a jump is to be made on true or on
false, and the third argument is the number of the label to jump to. We follow C and assume that
a boolean is represented as an int value with 0 corresponding to false and all other values being
treated as true. The definition of jumpcond is outlined below:

fun jumpcond(Num(c), true, n) = if (c!=0) gen2(0P_goto, n) else ();
| jumpcond(Num(c), false, n) = if (c==0) gen2(0P_goto, n) else ();
| jumpcond(Le(x,y), b, n) = (trexp(x); trexpr(y);
gen2((b ? OP_if_cmple:0P_if_cmpgt), n))
| jumpcond(Ne(x,y), b, n) = (trexp(x); trexpr(y);
gen2((b ? OP_if_cmpne:0P_if_cmpeq), n))
(x the cases Lt, Eq, Gt, Gt have been omitted here *)
| jumpcond(Not(x), b, n) = jumpcond(x, not b, n)
| jumpcond(And(x, y), true, n) =
let val m = ++label in
jumpcond(x, false, m);
jumpcond(y, true, n);
gen2(0P_Lab, m)
end

(jumpcond(x, false, n);
jumpcond(y, false, n))
| jumpcond(Or(x, y), true, n) = (jumpcond(x, true, n);
jumpcond(y, true, n))

| jumpcond(And(x, y), false, n)

| jumpcond(Or(x, y), false, n)
let val m = ++label in
jumpcond(x, true, m);
jumpcond(y, false, n);
gen2(0P_Lab, m);
end
| jumpcond(x, b, n) = (trexp(x);
gen2(0P_iconst, 0);
gen2((b ? OP_if_cmpne:0P_if_cmpeq), n))

6.5 Type checking

So far in this section we have ignored type information (or rather, just assumed every variable
and operator is of type int—hence the integer operators iadd, ineg, iload etc). In a language
like Java, every variable and function name is given an explicit type when it is declared. This
can be added to the symbol table along with other (location and name) attributes. The language
specification then gives a way of determining the type of each sub-expression of the program. For
example, the language would typically specify that e + ¢’ would have type float if e had type int
and €' had type float.

This is implemented as follows. Internally, we have a data type representing language types
(e.g. Java types), with elements like T_float and T_int (and more structured values representing
things like function and class types which we will not discuss further here). A function typeof
gives the type of an expression. It would be coded :

fun typeof (Num(k)) = T_int
| typeof (Float(£f)) = F_float
| typeof (Id(s)) = lookuptype(s) // looks in symbol table
| typeof (Add(x,y)) = arith(typeof (x), typeof(y));
| typeof (Sub(x,y)) = arith(typeof (x), typeof(y));

33

fun arith(T_int, T_int) = T_int

| arith(T_int, T_float) = T_float
| arith(T_float, T_int) = T_float
| arith(T_float, T_float) = T_float
|

arith(t, t’) = raise type_error("invalid types for arithmetic");

So, when presented with an expression like e + €', the compiler first determines (using typeof)
the type t of e and t' of ¢/. The function arith tells us the type of e + €'. Knowing this latter
type enables us to output either a iadd or a fadd JVM operation. Now consider an expression
x+y, say, with x of type int and y of type float. It can be seen that the type of x differs from the
type of x+y; hence a coercion, represented by a cast in Java, is applied to x. Thus the compiler
(typically in trexp or in an earlier phase which only does type analysis) effectively treats x+y as
((float)x)+y. These type coercions are also elementary instructions in intermediate code, for
example in Java, float f(int x, float y) { return x+y; } generates

iload_0
i2f
fload_1
fadd
freturn

Overloading (having two simultaneous active definitions for the same name, but distinguished
by type) of user defined names can require careful language design and specification. Consider the
C++ class definition

class A
{ int f(int, int) { ... }
float f(float, char) { ... }
void main() { ... £(1,’a’); ... }
}

The C++ rules say (roughly) that, because the call (with arguments of type char and int) does
not match any declaration of £ exactly, the closest in type variant of f is selected and appropriate
coercions are inserted, thus the definition of main() corresponds to one of the following:

void main() { ... £(1, (int)’a’); ... }
void main() { ... £((float)1, ’a’); ... }

Which is a matter of fine language explanation, and to avoid subtle errors I would suggest that
you do not make your programs depend on such fine details.

34

7 Translation to machine code from intermediate code

The part IT course on ‘Optimising Compilation’ will cover this topic in an alternative manner, but
let us for now merely observe that each intermediate instruction listed above can be mapped into
a small number of ARM or Pentium instructions, essentially treating JVM instructions as a macro
for a sequence of Pentium instructions. Doing this naively will produce very unpleasant code, for
example recalling the

y :=x<=37 -x : X

example and its intermediate code with

iload_4 load x (4th load variable)

iconst_3 load 3

if_icmpgt L36 if greater (i.e. condition false) then jump to L36
iload_4 load x

ineg negate it

goto L37 jump to L37

label L36

iload_4 load x

label L37

istore_7 store y (7th local variable)

could expand to (assuming a descending stack and 10 stack locations used for parameters and
local variables):

movl %eax,40-16(%fp) ; iload 4

pushl Yeax ; iload 4

movl Yeax ,#3 ; iconst_3
pushl Y%eax ; iconst_3
popl %ebx ; if_icmpgt
popl Yeax ; if_icmpgt
cmpl Yeax,%ebx ; if_icmpgt
bgt L36 ; if_icmpgt

movl Y%eax,40-16(%fp) ; iload 4

However, delaying output of PUSHes to stack by caching values in registers and having the compiler
hold a table representing the state of the cache can improve the code significantly:

movl %eax,40-16 (%fp) ; iload 4 stackcache=[%eax]
movl Y%ebx,#3 ; iconst_3 stackcache=[eax, }%ebx]
cmpl Yeax,%ebx ; if_icmpgt stackcache=[]
bgt L36 ; if_icmpgt stackcache=[]
movl %eax,40-16(%fp) ; iload 4 stackcache=[%eax]
negl Yeax ; ineg stackcache=[}eax]
pushl Yeax ; (flush/goto) stackcache=[]
b L37 ; goto stackcache=[]
L36: movl Y%eax,40-16(%fp) ; iload 4 stackcache=[%eax]
pushl Yeax ; (flush/label) stackcache=[]
L37: popl ‘leax ; istore.7 stackcache=[]
movl 40-28(%fp),%eax ; istore.7 stackcache=[]

I would claim that this code is near enough to code one might write by hand, especially when
we are required to keep to the JVM allocation of local variables to %fp-address storage locations.
The generation process is sufficiently simple to be understandable in an introductory course such
as this one; and indeed we would not in general to seek to produce ‘optimised’ code by small

35

adjustments to the instruction-by-instruction algorithm we used as a basis. (For more powerful
techniques see the Part IT course “Optimising Compilers”).

However, were one to seek to improve this scheme a little, then the code could be extended to
include the concept that the top of stack cache can represent integer constants as well as registers.
This would mean that the movl #3 could fold into the cmpl. Another extension is to check jumps
and labels sufficiently to allow the cache to be preserved over a jump or label (this is quite an effort,
by the way). Register values could also be remembered until the register was used for something
else (we have to be careful about this for variables accessible by another thread or volatile in
C). These techniques would jointly give code like:

movl Yeax,40-16(%fp) ; iload 4 stackcache=[%eax], memo=[]

; iconst_3 stackcache=[%eax,3], memo=[%eax=local4]
cmpl %eax,#3 ; if_icmpgt stackcache=[], memo=[%eax=local4]
bgt L36 ; if_icmpgt stackcache=[], memo=[%eax=local4]
negl Yeax ; ineg stackcache=[%eax], memo=[]
b L37 ; goto stackcache=[%eax], memo=[]
L36: ; (label) stackcache=[], memo=[%eax=local4]
; iload 4 stackcache=[%eax], memo=[%eax=1local4]
L37: ; (label) stackcache=[%eax], memo=[]

movl 40-28(%fp),lkeax ; istore.7 stackcache=[], memo=[%eax=local7]

This is now about as good as one can do with this strategy.

7.1 Translation using tree matching and rewriting

This section gives an alternative method of generating code for CISC-like target architectures
directly from parse trees.%

A slightly simplified version of the algorithm is presented here. The algorithm uses a collection
of tree rewrite rules to define the resulting translation. Each rule has four components as follows:

replacement <- template cost code

where replacement is a single node, template is a tree, cost is the cost of using this rule, code
is a fragment of compiled code. For example:

Rule Cost Code
#1 Ri <- Kc 2 MOV #c,Ri
#2 Ri <- Ma MOV a,Ri
#3 C <- Ass(Ma, Ri) MOV Ri,a
#4 C <- Ass(Ind(Ri),Ma) MOV a,*Ri

#5 Ri <- Ind(Add(Kc,Rj))
#6 Ri <- Add(Ri, Ind(Add(Kc,Rj)))

MOV c(Rj),Ri
ADD c(Rj),Ri

= NNNDNDDN

#7 Ri <- Add(Ri, Rj) ADD Rj,Ri
#8 Ri <- Add(Ri, K1) INC Ri
The tree pattern could be drawn as in Figure 5. The tree for the assignment v[i] := x might be

as in Figure 6. A third representation of the same tree is
Ass(Ind (Add (Add (Kv,Rp) , Ind (Add(Ki,Rp))), Mx)

This tree can be ‘covered’ by the templates in several ways, but one that gives the least cost is
given in Figure 6. The total cost in this case is 7. Using this covering, the code and resulting trees
produced by a depth first left to right scan are as follows:

6Aho, A.V., Ganapathi, M. and Tjiang, S.W.K. Code Generation Using tree matching and Dynamic program-
ming”. ACM Transactions on Programming Languages and Systems, Vol 11, No 4, October 1989.

36

Figure 5: Tree version of rules

Figure 6: Tree for v[i] := x (left) and its minimum cost covering (right)

37

Ass(Ind (Add (Add (Kv,Rp), Ind(Add(Ki,Rp))), Mx)

MOV #v,RO Ass(Ind (Add (Add(RO,Rp), Ind(Add(Ki,Rp))), Mx)
ADD Rp,RO Ass (Ind (Add (RO, Ind (Add (Ki,Rp))), Mx)
ADD i(Rp),R0 Ass(Ind(RO), Mx)
MOV x,*RO C

Other coverings are possible but these would give different costs and different code sequences. The
algorithm given here is designed to find a least cost covering efficiently.

The template #6 Add(R?, Ind(Add(K?7,R?7))) contains paths from the root to its three leaf
nodes, namely:

Add.1--R7?
Add.2--Ind.1--Add.1--K?
Add.2--Ind.1--Add.2--R?

The integers specify which edge is being taken from an operator node. The length of a path is the
number of edges it contains. The path Add.1--R7? is of length 1 and occurs in template #6 (this is
denoted by #6/1). We can combine all the paths from all the templates to form a tree as follows:

Rule/Length

n00-Add.1-n01-R?--a00 #8/1,#7/1,#6/1
| .2-n02-Ind.1-n03-Add.1-n04-K1-a01 #6/3,#5/2,#1/0

| | *-K?7-a02 #6/3,#5/2,#1/0

I .2-n05-R?7-a03 #7/1,#6/3,#5/2

I

I

I *x-K1--a04 #8/1,#1/0
I *x-R?--a05 #7/1
*x-Ass.1-n06-Ind.1-n07-R?--a06 #4/2

| | *x-M?--a07 #3/1,#2/0
| .2-n08-M?--a08 #4/1,#2/0
I *x-R?7--a09 #3/1
x-Ind.1-n09-Add.1-n10-K1--a10 #5/2,#1/0
| | *-K?7--all #5/2,#1/0
| .2-n11-R?--al2 #7/1,#5/2
x-K1--al3 #1/0
x-K?7--al4 #1/0
*x-M?7--al5 #2/0

The internal nodes of the tree are labelled n00 to n11, and the leaf nodes are labelled a00 to a15.
Notice that the path Add.1--R7 is of length 1 and occurs in three different templates, namely #8,
#7 and #6 which accounts for why #8/1,#7/1,#6/1 is attached to node a00. The node a01 is
at the end of the path Add.2--Ind.1--Add.1--K1 which is a path of length three belonging to
template #6. However, a01 is also at the end of Ind.1--Add.1--K1 which is a path of length 2
belonging to template #5, and it also ends a path of length zero belonging to template #1. This
accounts for #6/3,#5/2,#1/0 being attached to a01.

This tree forms the basis of a finite state acceptor with the leaf nodes being the accepting
states. Extra transitions must be added, but the number of nodes remains unchanged. Consider
the path string: Ind.1--Add.2--Ind.1--Add.1--K1. Starting from n00, Ind.1 gets us to n09,
then add.2 gets us to n11, but from here the only transition in the tree is on R? to a12. This
tells us that there are no path strings starting with Ind.1--Add.2--Ind.1 belonging to any of
our set of templates. What we should do is delete the first item of our path string, giving us
Add.2--Ind.1--Add.1--K1 and see if this leads to an accepting state. Thus from state n11, a
transition on Ind.1 should lead to n03. One way of viewing this is if state n11 does not encounter
R? then it should behave like state n02. Looking carefully at the tree we see that:

38

State Not followed by Behaves like

n01 R? n00
n02 Ind.1, K1 or R? n00
n03 Add.1 or Add.2 n09
n04 K1 or K7 nl0
n05 R? nil
n06 Ind.1 or M7 n00
n07 R? n09
n08 M? or R? n00
n09 Add.1 or Add.2 n00
nl0 K1 or K? n01
nil R? n02

This easily leads to the resulting finite state acceptor described by the following table:

Add.1 Add.2 Ass.l1 Ass.2 1Ind.1 K1 K? R? M? | like

I

+
n00 | n0il*x n02* n06* n08* n09* al3* ald*x - albx| -
n01 | n01 n02 n06 n08 n09 al3 al4 a00x al5 | n00
n02 | n01 n02 n06 n08 n03x* a04* al4 a0b5x alb5 | n00
n03 | n04* n0O5% n06 n08 n09 al3 al4 - ail5 | n09
n04 | n01 n02 n06 n08 n09 a01*x a02* a00 ailb5 | ni10
n05 | n01 n02 n06 n08 n03 a04 al4 a03*x alb | niil
n06 | no01 n02 n06 n08 n07* al3 al4 - a07*| n00
n07 | ni10 nil n06 n08 n09 al3 al4 al06x alb5 | n09
n08 | no01 n02 n06 n08 n09 al3 al4 a09* a08x*| n00
n09 | ni10x nilix n06 n08 n09 al3 ail4 - ailb5 | n00
ni0 | n01 n02 n06 n08 n09 al0*x alilx a00 ail5 | nO1
nil | n01 n02 n06 n08 n03 a04 al4d al2x alb | n02

The asterisks (*) indicate transitions that are in the original tree. The non-asterisked entries of a
row are copied from the row it (otherwise) behaves like. Compare, for instance, row n11 with row
n02.

The rule/length information associated with accepting states are encoded as bit patterns, as
shown in the following table.

#8 #7 #6 #5 #4 #3 #2 #1 Path Rule/Length
a00 10 10 0010 000 000 00 O O Add.1-R? #8/1,#7/1,#6/1
a01 00 00 1000 100 000 00 O 1 Add.2-Ind.1-Add.1-K1 #6/3,#5/2,#1/0
a02 00 00 1000 100 000 00 O 1 Add.2-Ind.1-Add.1-K? #6/3,#5/2,#1/0
a03 00 10 1000 100 000 00 O O Add.2-Ind.1-Add.2-R? #7/1,#6/3,#5/2
a04 10 00 0000 000 000 00 O 1 Add.2-Ki #8/1,#1/0
a05 00 10 0000 000 000 00 O O Add.2-R? #7/1
a06 00 00 0000 000 100 00 O O Ass.1-Ind.1-R? #4/2
a07 00 00 0000 000 000 10 1 O Ass.1-M? #3/1,#2/0
a08 00 00 0000 000 010 00 1 O Ass.2-M? #4/1,#2/0
a09 00 00 0000 000 000 10 O O Ass.2-R7 #3/1
al0 00 00 0000 100 000 00 O 1 Ind.1-Add.1-K1 #5/2,#1/0
all 00 00 0000 100 000 00 O 1 1Ind.1-Add.1-K? #5/2,#1/0
al2 00 10 0000 100 000 00 O O Ind.1-Add.2-R? #7/1,#5/2
al3 00 00 0000 000 000 00O O 1 Ki #1/0
al4 00 00 0000 000 000 00O O 1 K7 #1/0
al5 00 00 0000 000 000 00 1 O M? #2/0

39

The number of bits allocated for a template is one greater than the length of the longest path
in the template. The position of a one indicates the length of an accepted path string. Bit strings
allow overlapping matches to the same tree template to be recorded.

7.1.1 The Algorithm

Perform a left to right depth first scan over the subject tree attaching (context) states of the
acceptor to each node. For the given example this gives:

Replacement Ri Ri Ri Ri C CRiRi

Rule number #8 #7 #6 #5 #4 #3 #2 #1

Ass n00 00 00 0000 000 001 00 O O #4/0

(#4->C) 00 00 0000 000 000 OO O O

*-Ind n06 00 00 0000 000 010 00 O O #4/1

| *-Add n01 00 01 0001 000 000 OO O O #6/0, #7/0

| (#6->Ri) 00 00 0000 000 100 00 O O #4/2

| *-Add n01 00 01 0000 000 000 00O O O #7/0

| | (#7->Ri) 10 10 0010 000 000 00 O O #8/1,#7/1,#6/1

| | *-Kv n01 00 00 0000 000 000 00 O 1 #1/0

| | | (#1->Ri) 10 10 0010 000 000 00 O O #8/1,#7/1,#6/1

| | *-Rp n02 00 10 0000 000 000 00 O O #7/1

| *-Ind n02 00 00 0010 001 000 00 O O #6/1,5/0

| (#5->Ri) 00 10 0000 100 000 00 O O #7/1,#5/2

| *-Add n03 00 01 0100 010 000 00 O O #7/0,#6/2,#5/1

| (#7->R1i) 00 00 0000 000 000 OO O O

| *-Ki n04 00 00 1000 100 000 00 O 1 #6/3,#5/2,#1/0

| | (#1->Ri) 10 10 0010 000 000 00 O O #8/1,#7/1,#6/1

| *-Rp n05 00 10 1000 100 000 00 O O #7/1,#6/3,#5/2

*-Mx n08 00 00 0000 000 010 00 1 O #4/1,#2/0
(#2->R1i) 00 00 0000 000 000 10 O O #3/1

An item of the form (#i->0p) indicates that the current branch of the parse tree can be
matched by rule #i, and if it is, the branch would be replaced by a leaf node with operator Op.

The bit patterns indicate for each position in the parse tree which rules are matched and
to what depths. When the least significant bit is a one then that point in the tree, it can be
matched by the corresponding rule. For instance, the bit pattern indicates that the root node can
be matched by rule #4. The value obtained for a node is computed by ANDing together the bit
patterns for its children and shifting the result right by one position. When a template matches
that position in the tree can be replaced by a leaf node. This may lead to another accepting
state whose bit pattern should be regarded as being ORed with the bit pattern for the node itself.
Careful study of the above table should make the mechanism clear.

As each possible replacement is found its cost is computed and, if found to be lower than the
cost of a previously discovered replacement (yielding the same leaf node), the new cost and the
number of the rule that made it possible is recorded in the tree.

When the depth first scan is complete the root node will contain a list of possible leaf nodes that
it can be replaced by, together with the minimum cost for each replacement and the corresponding
rule that was used. A second pass over the tree can generate the code corresponding to this
minimum cost covering,.

40

8 Object Modules and Linkers

We have shown how to generate assembly-style code for a typical programming language using
relatively simple techniques. What we have still omitted is how this code might be got into a
state suitable for execution. Usually a compiler (or an assembler, which after all is only the word
used to describe the direct translation of each assembler instruction into machine code) takes a
source language and produces an object file or object module (.o on Unix and .0BJ on MS-DOS).
These object files are linked (together with other object files from program libraries) to produce an
executable file (.EXE on MS-DOS) which can then be loaded directly into memory for execution.
Here we sketch briefly how this process works.
Consider the C source file:

int m = 37;

extern int h(void);

int f(int x) { return x+1; }
int g(int x) { return x+m+h(); }

Such a file will produce a code segment (often called a text segment on Unix) here containing code
for the functions f and g and a data segment containing static data (here m only).

The data segment will contain 4 bytes probably [0x25 00 00 00].

The code for £ will be fairly straightforward containing a few bytes containing bit-patterns for
the instruction to add one to the argument (maybe passed in a register like %eax)) and return
the value as result (maybe also passed in %eax). The code for g is more problematic. Firstly it
invokes the procedure h() whose final location in memory is not known to g so how can we compile
the call? The answer is that we compile a ‘branch subroutine’ instruction with a dummy 32-bit
address as its target; we also output a relocation entry in a relocation table noting that before the
module can be executed, it must be linked with another module which gives a definition to h().

Of course this means that the compilation of £() (and g()) cannot simply output the code
corresponding to f; it must also register that £ has been defined by placing an entry to the effect
that £ was defined at (say) offset 0 in the code segment for this module.

It turns out that even though the reference to m within g() is defined locally we will still need
the linker to assist by filling in its final location. Hence a relocation entry will be made for the
‘add m’ instruction within g() like that for ‘call h’ but for ‘offset 0 of the current data segment’
instead of ‘undefined symbol h’.

A typical format of an object module is shown in Figure 7 for the format ELF often used on
Linux (we only summarise the essential features of ELF).

8.1 The linker

Having got a sensible object module format as above, the job of the linker is relatively straight-
forward. All code segments from all input modules are concatenated as are all data segments.
These form the code and data segments of the executable file.

Now the relocation entries for the input files are scanned and any symbols required, but not
yet defined, are searched for in (the symbol tables of) the library modules. (If they still cannot
be found an error is reported and linking fails.) Object files for such modules are concatenated as
above and the process repeated until all unresolved names have been found a definition.

Now we have simply to update all the dummy locations inserted in the code and data segments
to reflect their position of their definitions in the concatenated code or data segment. This is
achieved by scanning all the relocation entries and using their definitions of ‘offset-within-segment’
together with the (now know) absolute positioning of the segment in the resultant image to replace
the dummy value references with the address specified by the relocation entry.

(On some systems exact locations for code and data are selected now by simply concatenating
code and data, possibly aligning to page boundaries to fit in with virtual memory; we want code
to be read-only but data can be read-write.)

41

Header information; positions and sizes of sections
.text segment (code segment): binary data

.data segment: binary data

.rela.text code segment relocation table:

list of (offset,symbol) pairs showing which offset within
.text is to be relocated by which symbol (described
as an offset in .symtab)

.rela.data data segment relocation table:

list of (offset,symbol) pairs showing which offset within
.data is to be relocated by which symbol (described
as an offset in .symtab)

.symtab symbol table:

List of external symbols used by the module:

each is listed together with attribute

1. undef: externally defined;

2. defined in code segment (with offset of definition);
3. defined in data segment (with offset of definition).
Symbol names are given as offsets within .strtab

to keep table entries of the same size.

.strtab string table:

the string form of all external names used in the module

Figure 7: Summary of ELF

The result is a file which can be immediately executed by program fetch; this is the process by
which the code and data segments are read into virtual memory at their predetermined locations
and branching to the entry point which will also have been marked in the executable module.

8.2 Dynamic linking

Consider a situation in which a user has many small programs (maybe 50k bytes each in terms of
object files) each of which uses a graphics library which is several megabytes big. The classical idea
of linking (static linking) presented above would lead to each executable file being megabytes big
too. In the end the user’s disc space would fill up essentially because multiple copies of library code
rather than because of his/her programs. Another disadvantage of static linking is the following.
Suppose a bug is found in a graphics library. Fixing it in the library (.0BJ) file will only fix it in
my program when I re-link it, so the bug will linger in the system in all programs which have not
been re-linked—possibly for years.

An alternative to static linking is dynamic linking. We create a library which defines stub
procedures for every name in the full library. The procedures have forms like the following for
(say) sin():

static double (*realsin) (double) = 0; /* pointer to fn */
double sin(double x)
{ if (realsin == 0)

{ FILE *f = fopen("SIN.DLL"); /* find object file */

int n = readword(f); /* size of code to load */
char *p = malloc(n); /* get new program space */
fread(p, n, 1, f); /* read code */

realsin = (double (*)(double))p; /* remember code address */

X

return (*realsin) (x);

42

Essentially, the first time the sin stub is called, it allocates space and loads the current version
of the object file (SIN.DLL here) into memory. The loaded code is then called. Subsequent calls
essentially are only delayed by two or three instructions.

In this scheme we need to distinguish the stub file (SIN.0BJ) which is small and statically linked
to the user’s code and the dynamically loaded file (SIN.DLL) which is loaded in and referenced
at run-time. (Some systems try to hide these issues by using different parts of the same file or
generating stubs automatically, but it is important to understand the principle that (a) the linker
does some work resolving external symbols and (b) the actual code for the library is loaded (or
possibly shared with another application on a sensible virtual memory system!) at run-time.)

Dynamic libraries have extension .DLL (dynamic link library) on Microsoft Windows and
.so (shared object file) on Linux. Note that they should incorporate a version number so that an
out-of-date DLL file cannot be picked up accidentally by a program which relies on the features
of a later version.

The principal disadvantage of dynamic libraries is the management problem of ensuring that a
program has access to acceptable versions of all DLL’s which it uses. It is sadly not rare to try to
run a Windows .EXE file only to be told that given DLL’s are missing or out-of-date because the
distributor forgot to provide them or assumed that you kept your system up to date by loading
newer versions of DLL’s from web sites! Probably static linking is more reliable for executables
which you wish still to work in 10 years’ time—even if you cannot find the a hardware form of the
processor you may be able to find an emulator.

43

