
Satisfiability of Boolean Expressions

In the previous section, we have analysed in great detail one particular problem—reachability
in directed graphs. The reason for the attention devoted to this one problem is that studying
algorithms for it provides insight into nondeterministic space complexity classes in general.
The problem Reachability can be solved by a nondeterministic machine using logarithmic
space and, as we have seen, the computation of any nondeterministic machine M on a given
input x can be represented by an instance of the reachability problem, by considering the
configuration graph of M on x. These facts allow Reachability to stand in for all problems
in NL.
In this section, we examine a specific algorithmic problem that captures nondeterministic

time-bounded computation in the same sense that Reachability space-bounded computations.
The problem is the satisfiability of Boolean expressions. We can take an arbitrary nondeter-
ministic machineM , an input string x, and a time bound, and produce a Boolean expression
whose satisfiability represents exactly the computation of M on x. Moreover, the Satisfiabil-
ity problem is in NP, and as we shall see, it can be made to stand, in a precise sense, for all
problems in NP.

Boolean Expressions

To start to make these notions precise, we define the collection of Boolean expressions to be
the set of expressions formed from a given infinite set X = {x1, x2, . . .} of variables and the
two constants true and false by means of the following rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ) and (φ ∨ ψ).

If an expression contains no variables (that is, it is built up from just true and false using
∧, ∨, and ¬), then it can be evaluated to either true or false. If an expression φ contains
variables, then φ is not by itself true or false, Rather, we say that it is true or false for a given
assignment of truth values. A truth assignment is just a function T : X → {true, false}.
We say that T makes φ true or T satisfies φ if, when we substitute T (x) for each variable x
in φ, we get an expression that evaluates to true. Conversely, if substituting T (x) for each
x in φ results in an expression that evaluates to false, we say that T makes φ false or T
does not satisfy φ.
Examples

1. (true ∨ false) ∧ (¬false)
evaluates to true.

2. (x1 ∨ false) ∧ ((¬x1) ∨ x2)
is satisfied by some truth assignments, but not by all.

3. (x1 ∨ false) ∧ (¬x1)
is not satisfied by any truth assignment.

17

4. (x1 ∨ (¬x1)) ∧ true

is satisfied by both possible truth assignments.

Evaluation With the definition of Boolean expressions established, we can begin to look
at some algorithms for manipulating them. The first problem we look at is the evaluation
problem. That is, given a Boolean expression which does not contain any variables, determine
whether it evaluates to true or false. There is a deterministic Turing machine which can
decide this, and which runs in time O(n2) on expressions of length n. The algorithm works
by scanning the input, looking for subexpressions that match the left hand side of one of the
rules below, and replacing it by the corresponding right hand side.

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true

Each scan of the input, taking O(n) steps must find at least one subexpression matching
one of the rules. This can be formally proved by an induction on the structure of expressions,
but should be intuitively clear. Since the application of a rule always removes at least one
symbol from the expression, we can conclude that we cannot have more than n successive
rule applications, as otherwise we would be left with no symbols at all. Thus, the algorithm
takes O(n2) steps overall.

Satisfiability

While a Boolean expression without variables can simply be evaluated, for an expression
that contains variables, we can ask different questions. One question is whether such an
expression is satisfiable. That is, is there a truth assignment that makes it true?
We define SAT to be the set of all satisfiable Boolean expressions. This language can be

decided by a deterministic Turing machine which runs in time O(n22n). The straightforward
algorithm is to try all possible truth assignments. There are at most 2n possible assignments,
since there are at most n variables in the expression. For each one in turn, we can use the
O(n2) algorithm described above to see if the resulting expression without variables is true.
A related problem is checking the validity of a Boolean expression. An expression is said

to be valid if every possible assignment of truth values to its variables makes it true. We

18

write VAL for the set of valid expressions. By an algorithm completely analogous to the one
outlined for SAT above, we see that VAL is in time O(n22n).

VAL and SAT are dual problems in the sense that a Boolean expression φ is valid if, and
only if, the expression ¬φ is not satisfiable. This shows that an algorithm for deciding one
language can easily be converted into an algorithm for deciding the other. No polynomial
time algorithm is known for either problem, and it is widely believed that no such algorithm
exists.
However, it is not difficult to establish that there is a nondeterministic algorithm that

decides SAT in polynomial time. Indeed, time O(n2) suffices. The algorithm, in n nonde-
terministic steps, guesses a truth value for each variable. That is, for each variable in the
expression, it makes a nondeterministic branch, where along one branch the variable is set
to true and along the other it is set to false. Since the number of variables is no more than
the length of the expression, n steps are sufficient for this process. Now, we have a Boolean
expression φ and a truth assignment T for all its variables, so we can use the O(n2) deter-
ministic algorithm described above to determine whether T satisfies φ. If there is any T that
satisfies φ, some path through this nondeterministic computation will result in acceptance,
so φ will be accepted.
Unfortunately, this approach does not yield an algorithm for VAL. To decide VAL, we

have to determine, given φ, whether every possible truth assignment to the variables of φ
will satisfy it. This universal, rather than existential requirement on computation paths
does not sit well with the definition of acceptance by a nondeterministic machine. What we
can establish is that VAL is in co-NP. There is a nondeterministic machine, running in O(n2)
time, which can decide whether φ is falsifiable, that is to say, it is in the complement of VAL.
This machine is just like the nondeterministic machine for SAT described above, accept it
rejects whenever the latter accepts and vice versa.

SAT is typical of problems in NP. In general, a language in NP is characterised by a
solution space which can be searched. For each possible input string x, there is a space of
possible solutions to be searched. The number of such candidate solutions may be exponential
in the length of x, but each solution can be represented by a string whose length is bounded
by a polynomial p in the length of x. In particular, this means that the space can be
searched by a backtracking search algorithm, where the depth of nesting of choice points is
never greater than p(|x|).
Another way of viewing the same class of problems is the generate and test paradigm. A

language L in NP is one that can be solved by an algorithm with two components: a Prover
and a Verifier. Given an input x, the Prover generates a proof Vx which demonstrates
that x is in L. The Verifier then checks that the proof Vx is correct. As long as the
length of Vx is bounded by a polynomial in the length of x and the Verifier runs in time
polynomial in its input, the algorithm establishes that L is in NP (Fig. 3).

yes

no

generatex Vx verify

Figure 3: Generate and Test

19

SAT is typical of the problems in NP in the sense that the independent choices of truth
assignments that can be made to the variables in a Boolean expression can encode the
choices of any nondeterministic computation. It is in this sense that SAT “captures” nonde-
terministic time bounded computation, just as Reachability captures nondeterministic space
bounded computation. In the following, we make this notion of encoding nondeterministic
choices precise.

Reductions

The idea of a reduction is central to the study of computability. It is used to establish
undecidability of languages. Formally, given two languages L1 ⊆ Σ

|star
1 , and L2 ⊆ Σ?2, a

reduction of L1 to L2 is a computable function f : Σ?
1 → Σ?2, such that for every string

x ∈ Σ?1, f(x) ∈ L2 if, and only if, x ∈ L1.

Σ?1 Σ?2

L1 L2

x

y f

f(x)

f(y)

Figure 4: Reduction

In other words, every string in L1 is mapped by f to a string in L2, and every string that
is not in L1 is mapped to a string that is not in L2. Note that there is no requirement for f
to be surjective. In general, the range of f may be a small part of L1, and a small part of
its complement.
Reductions are useful in showing decidability (or, more usually, undecidability). If there

is a reduction from a language L1 to a language L2, and L2 is decidable, then we also know
that L1 is decidable. An algorithm to decide L1 is obtained by computing, on any input
x, f(x) and then using the decision procedure for L2 to determine a yes or no answer. If
f(x) ∈ L2, we know that x ∈ L1 and if f(x) 6∈ L2, we know that x 6∈ L1. This argument is
most useful in its contrapositive form: if there is a reduction from L1 to L2, and L1 is known
to be undecidable, then L2 is undecidable as well. So, once we have proved one language
(such as the Halting problem) to be undecidable, we can use reductions from it to prove
other problems undecidable as well.

Resource Bounded Reductions When we are concerned about polynomial time com-
putability rather than questions of decidability, we consider reductions that can be computed

20

within bounded resources. To be precise, if f is a reduction from L1 to L2 and f is com-
putable by an algorithm running in polynomial time, we say that L1 is polynomial time
reducible to L2, which we write as

L1 ≤P L2.

If L1 ≤P L2, we can say that L2 is at least as hard as L1, at least in the sense of being
polynomial time computable. In short, if L1 ≤P L2 and L2 ∈ P, then L1 ∈ P. This is for
reasons analogous to those for decidability. We can compose the algorithm computing the
reduction with the decision procedure for L2 to get a polynomial time decision procedure
for L1. One point to be noted is that the string f(x) produced by the reduction on f on
input x must be bounded in length by a polynomial in the length of x, since it is computed
by a polynomial time algorithm. This is why the decision procedure for L2 which runs in
polynomial time on its input f(x) is still running in time polynomial in the length of x.

NP-Completeness

The usefulness of reductions is in allowing us to make statements about the relative com-

plexity of problems, even when we are not able to prove absolute lower bounds. So, even if
we do not know whether or not there is a polynomial time algorithm for L2, if L1 ≤P L2, we
can say if there were one, there would also be one for L1. In this sense of relative complexity,
Stephen Cook first showed that there are problems in NP that are maximally difficult.
Definition

A language L is said to be NP-hard if for every language A ∈ NP, A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

What Cook showed was that the language SAT of satisfiable Boolean reductions is NP-
complete. In this sense, it is as hard as any problem in NP. A polynomial time algorithm
for SAT would yield a polynomial time algorithm for every problem in NP.
We have already seen that SAT is in NP. To prove that it is NP-complete, we need to

show that for every language L in NP, there is a polynomial time reduction from L To SAT.
Since L is in NP, we know that there is a nondeterministic machine M = (K,Σ, s, δ) and a
polynomial p such that a string x is in L if, and only if, it is accepted by M within p(|x|)
steps. In what follows, we will assume, without loss of generality, that p is of the form nk,
where n is the length of x and k is a constant.
To establish the polynomial time reduction from L to SAT, we need to give, for each

x ∈ Σ?, a Boolean expression f(x) which is satisfiable if, and only if, there is an accepting
computation of M on x. We construct f(x) using the following variables:

Si,q for each i ≤ nk and q ∈ K
Ti,j,σ for each i, j ≤ nk and σ ∈ Σ
Hi,j for each i, j ≤ nk.

The total number of variables is |K|nk+|Σ|n2k+n2k. The intended reading of these variables
is that Si,q will be true if the machine at time i is in state q; Ti,j,σ will be set to true if at

21

time i, the symbol at position j in the tape is σ; and Hi,j indicates that at time i, the head
is pointing at position j on the tape.
Of course, these meanings are not inherent in the symbols. We have to construct the

expression f(x) to enforce them. The intention is that the only way to consistently assign
truth values to these variables is to encode a possible computation of the machine M . The
expression f(x) is built up as the conjunction of the following expressions:

S1,s ∧H1,1 (1)

which asserts that at the beginning, the state is s and the head is at the beginning of the
tape.

∧

i

∧

j

(Hi,j →
∧

j′ 6=j

(¬Hi,j′)) (2)

which asserts that the head is never in two places at once. That is, if Hi,j is true for any i
and j, then Hi,j′ must be false for any other j

′.

∧

q

∧

i

(Si,q →
∧

q′ 6=q

(¬Si,q′)) (3)

which asserts that the machine is never in two states at once. That is, for each state q and
each state i, if Si,q is true, then Si,q′ must be false for all other q′.

∧

i

∧

j

∧

σ

(Ti,j,σ →
∧

σ′ 6=σ

(¬Ti,j,σ′)) (4)

which asserts that each tape cell contains only one symbol. In other words, if Ti,j,σ is true
for any i, j and σ, then Ti,j,σ′ must be false for all other σ′.

∧

j≤n

T1,j,xj
∧

∧

n<j

T1,j,t (5)

where xj denotes the jth symbol in the string x. This expression asserts that at time 1, the
tape contains the string x in its first n cells, and is blank after that.

∧

i

∧

j

∧

j′ 6=j

∧

σ

(Hi,j ∧ Ti,j′,σ)→ Ti+1,j′,σ (6)

which asserts that the tape only changes under the head. That is, if the head at time i is at
position j, and at the same time position j ′ on the tape (for some other j ′) contains σ, then
position j ′ still contains σ at time i+ 1.

∧

i

∧

j

∧

σ

∧

q

(Hi,j ∧ Si,q ∧ Ti,j,σ)→
∨

∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′) (7)

where ∆ is the set of all triples (q′, σ′, D) such that ((q, σ), (q′, σ′, D)) ∈ δ and

j′ =

j if D = S

j − 1 if D = L

j + 1 if D = R.

22

This asserts that the change from time step i to i+1, for each i is according to the transition
relation δ. That is, if at time i, the head position is j, the state is q, and the symbol at
position j is σ, then the state q′ and head position j ′ at time i+ 1, as well as the symbol at
position j at time i+ 1 are obtained by one of the possible transitions allowed by δ.

∨

i

Si,acc (8)

which asserts that at some time i, the accepting state is reached.

Conjunctive Normal Form

A Boolean expression is in conjunctive normal form (or CNF) if it is the conjunction of a
set of clauses, each of which is the disjunction of a set of literals, each of these being either
a variable or the negation of a variable. Every Boolean expression is equivalent to one in
CNF. In fact, any expression can be turned into an equivalent expression in CNFby repeated
application of DeMorgan’s laws, the laws of distributivity (of ∨ over ∧) and by the law of
double negation (which says that ¬¬φ is equivalent to φ. There is, therefore, an algorithm
for converting any Boolean expression into an equivalent expression in CNF. This is not,
however, a polynomial time algorithm. We can prove that it requires exponential time (a
rare example of a real lower bound result). This is because there are (for arbitrarily large n)
expressions φ of length n such that the shortest CNFexpression equivalent to φ has length
Ω(2n).
However, if we consider the reduction constructed above from any language L in NP

to SAT, and take the Boolean expressions that result from the reduction, then there is a
polynomial time algorithm that will convert them into equivalent CNFexpressions. This is
because the formulas are almost in CNFalready. In particular, the expression is a conjunction
of expressions, of which (1) is just a conjunction of literals (and is therefore in CNF). The
expressions in (2), (3) and (4) can be easily converted into CNFby distributing the implication
over the innermost conjunction. For example, (2) can be rewritten as

∧

i

∧

j

∧

j′ 6=j

(Hi,j → (¬Hi,j′)).

This is now in CNF(recall that φ → ψ is just shorthand for ¬φ ∨ ψ). Note also that while
(2) contains only one occurrence of the variable Hi,j for each i and j, the CNFversion above
has nk − 1 occurrences of each Hi,j . This is however, a fixed polynomial increase. Similarly,
(5) and (6) are already in CNF. The expression (7) requires a bit more work, but it is not
too difficult, and is left here as an exercise.
We can conclude that, for each language L in NP, there is, in fact, a polynomial time

computable function f such that f(x) is a CNFexpression for all x, and f(x) is satisfiable if,
and only if, x ∈ L. In other words, if we define CNF-SAT to be the collection of all satisfiable
CNFexpressions, then we can say that we have shown that CNF-SAT is NP-complete.
We define a further restriction on our expressions. A Boolean expression φ is said to be

in 3CNF if it is in CNF, i.e. φ ≡ C1 ∧ . . . ∧ Cm, and each clause Ci is the disjunction of no
more than 3 literals. We also define 3SAT to be the set of those expressions in 3CNF that
are satisfiable.

23

While it is not the case that every Boolean expression is equivalent to one in 3CNF, what
we can say is that for every CNFexpression φ, there is an expression φ′ in 3CNF so that φ′

is satisfiable if, and only if, φ is. Moreover, there is an algorithm, running in polynomial
time, which will convert φ to φ′. We will illustrate this with an example. Suppose we have
a clause C with four literals

C ≡ (l1 ∨ l2 ∨ l3 ∨ l4).

Introducing new variables n1 and n2, we can write down an expression ψ in 3CNF

ψ ≡ (l1 ∨ l2 ∨ n1) ∧ (¬n1 ∨ l3 ∨ n2) ∧ (¬n2 ∨ l4).

This expression is not equivalent to C because, for one thing, it contains variables that are
not in C. But, ψ is satisfiable if, and only if, C is. The idea can be easily generalised
to clauses with any number of variables. Moreover, we can verify that the number of new
variables and clauses introduced is no more than the number of literals in the clause being
replaced. This ensures that the conversion can be carried out in polynomial time.
What we can conclude from this is that there is a polynomial time computable reduction

from CNF-SAT to 3SAT. This can be combined with the fact that CNF-SAT is NP-complete
to show that 3SAT is also NP-complete.

24

