fun zip (], [1) = [I
| zip (hl::t1,h2::t2) =
(h1,h2)::zip(t1,t2);

| Warning: pattern matching is not

exhaustive

> val zip = fn :
’a 1list * ’b list -> (’a * ’b) 1list

Creates a list of pairs from a pair of lists.

What happens when the two lists are of different
length?
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Unzipping

fun unzip [] = (01,01

| unzip ((x,y)::pairs) =

let val (t,u) = unzip pairs in
(x::t, y::u)

end;

let D in E end

Compare this against applying functions first

and second to extract the components of the pair.
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Equality Types

We can test certain expressions for equality:

1+1;
val it = true : bool
1.414%1.414 = 2.0;

val it = false : bool
[1 = [1];

val it = false : bool

Equality testing can be used with the basic types,
and with tuples and lists,

- (fn x => x+2) = (fn x => 2+x);

! Type clash: match rule of type
! ’a => b

! cannot have equality type ’’c
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Testing for Membership

fun member (x, []) = false

| member (x, h::t) =

(x=h) orelse member (x,t);
val member = fn : ’’a *x ’’a list -> bool

>3 1S an

- op=;

> val it = fn : ’’a

fun inter ([1, 1) = []
| inter (h::t,1l) =
if member (h,l) then h::inter(t,l)

else inter(t,l);

fn : ’’a list *x ’’a list -> ’’a list
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Insertion Sort

insert(x:real, []) = [x]
insert(x, h::t) =
1f x<= h then x::h::t

else h::insert(x,t);

insort [] []

insort (h::t) insert (h, insort t);

fn : real list -> real list

Insertion sort takes O(n?) comparisons on average

and in the worst case.
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Merge Sort

merge ([], 1) =1 : real list

merge (1, []1) =1
merge (hl::t1,h2::t2)=
if hl <= h2
then hl::merge(tl, h2::t2)
else h2::merge(hl::tl, t2);

mergesort [] =[]
mergesort [x] = [x]
mergesort 1 =
let val k = length 1 div 2 in
merge (mergesort (List.take(l, k)),
mergesort (List.drop(1l, k)))

end;

Merge sort takes O(nlogn) comparisons on
average and in the worst case.

University of Cambridge Computer Lanboratory, January 27, 2000




fun quick [] []
| quick [x] [x] : real list

| quick (h::t)
let fun part (left, right, []) =
(quick left)@(h::quick right)
| part (left, right, x::1) =
1if x<=h
then part (x::left, right, 1)
else part (left, x::right, 1)
in
part( [1, [], t) end;
Quick sort takes O(nlogn) comparisons on

average and O(n?) in the worst case.
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QS without Append

fun quik ([], sorted) sorted

| quik ([x], sorted) (x:real)::sorted
| quik (h::t, sorted)
let
fun part (left, right, [1) =
quik(left, h::quik(right, sorted))
| part (left, right, x::1) =

if x<= h
then part (x::left, right, 1)
else part (left, x::right, 1)
in
part([], [1, t) end;
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