
g g

List of Pairs

fun zip ([], []) = []

| zip (h1::t1,h2::t2) =

(h1,h2)::zip(t1,t2);

! Warning: pattern matching is not

exhaustive

> val zip = fn :

'a list * 'b list -> ('a * 'b) list

Creates a list of pairs from a pair of lists.

What happens when the two lists are of di�erent

length?

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

g g

Unzipping

fun unzip [] = ([],[])

| unzip ((x,y)::pairs) =

let val (t,u) = unzip pairs in

(x::t, y::u)

end;

Note the local declaration

let D in E end

Compare this against applying functions first

and second to extract the components of the pair.

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

g g

Equality Types

We can test certain expressions for equality:

- 2 = 1+1;

> val it = true : bool

- 1.414*1.414 = 2.0;

> val it = false : bool

- [] = [1];

> val it = false : bool

Equality testing can be used with the basic types,

and with tuples and lists, but not with functions.

- (fn x => x+2) = (fn x => 2+x);

! Type clash: match rule of type

! 'a -> 'b

! cannot have equality type ''c

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

g g

Testing for Membership

fun member (x, []) = false

| member (x, h::t) =

(x=h) orelse member (x,t);

val member = fn : ''a * ''a list -> bool

''a is an equality type variable.

- op=;

> val it = fn : ''a * ''a -> bool

fun inter ([], l) = []

| inter (h::t,l) =

if member (h,l) then h::inter(t,l)

else inter(t,l);

fn : ''a list * ''a list -> ''a list

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

g g

Insertion Sort

fun insert(x:real, []) = [x]

| insert(x, h::t) =

if x<= h then x::h::t

else h::insert(x,t);

fun insort [] = []

| insort (h::t) = insert (h, insort t);

fn : real list -> real list

Insertion sort takes O(n2) comparisons on average

and in the worst case.

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

g g

Merge Sort

fun merge ([], l) = l : real list

| merge (l, []) = l

| merge (h1::t1,h2::t2)=

if h1 <= h2

then h1::merge(t1, h2::t2)

else h2::merge(h1::t1, t2);

fun mergesort [] = []

| mergesort [x] = [x]

| mergesort l =

let val k = length l div 2 in

merge(mergesort (List.take(l, k)),

mergesort (List.drop(l, k)))

end;

Merge sort takes O(n log n) comparisons on

average and in the worst case.

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

g g

Quick Sort

fun quick [] = []

| quick [x] = [x] : real list

| quick (h::t) =

let fun part (left, right, []) =

(quick left)@(h::quick right)

| part (left, right, x::l) =

if x<=h

then part (x::left, right, l)

else part (left, x::right, l)

in

part([], [], t) end;

Quick sort takes O(n log n) comparisons on

average and O(n2) in the worst case.

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

g g

QS without Append

fun quik ([], sorted) = sorted

| quik ([x], sorted) = (x:real)::sorted

| quik (h::t, sorted) =

let

fun part (left, right, []) =

quik(left, h::quik(right, sorted))

| part (left, right, x::l) =

if x<= h

then part (x::left, right, l)

else part (left, x::right, l)

in

part([], [], t) end;

Anuj Dawar University of Cambridge Computer Lanboratory, January 27, 2000

