fun zip (], [1) = [I
| zip (hl::t1,h2::t2) =
(h1,h2)::zip(t1,t2);

| Warning: pattern matching is not

exhaustive

> val zip = fn :
’a 1list * ’b list -> (’a * ’b) 1list

Creates a list of pairs from a pair of lists.

What happens when the two lists are of different
length?

University of Cambridge Computer Lanboratory, January 27, 2000

Unzipping

fun unzip [] = (01,01

| unzip ((x,y)::pairs) =

let val (t,u) = unzip pairs in
(x::t, y::u)

end;

let D in E end

Compare this against applying functions first

and second to extract the components of the pair.

University of Cambridge Computer Lanboratory, January 27, 2000

Equality Types

We can test certain expressions for equality:

1+1;
val it = true : bool
1.414%1.414 = 2.0;

val it = false : bool
[1 = [1];

val it = false : bool

Equality testing can be used with the basic types,
and with tuples and lists,

- (fn x => x+2) = (fn x => 2+x);

! Type clash: match rule of type
! ’a => b

! cannot have equality type ’’c

University of Cambridge Computer Lanboratory, January 27, 2000

Testing for Membership

fun member (x, []) = false

| member (x, h::t) =

(x=h) orelse member (x,t);
val member = fn : ’’a *x ’’a list -> bool

>3 1S an

- op=;

> val it = fn : ’’a

fun inter ([1, 1) = []
| inter (h::t,1l) =
if member (h,l) then h::inter(t,l)

else inter(t,l);

fn : ’’a list *x ’’a list -> ’’a list

University of Cambridge Computer Lanboratory, January 27, 2000

Insertion Sort

insert(x:real, []) = [x]
insert(x, h::t) =
1f x<= h then x::h::t

else h::insert(x,t);

insort [] []

insort (h::t) insert (h, insort t);

fn : real list -> real list

Insertion sort takes O(n?) comparisons on average

and in the worst case.

University of Cambridge Computer Lanboratory, January 27, 2000

Merge Sort

merge ([], 1) =1 : real list

merge (1, []1) =1
merge (hl::t1,h2::t2)=
if hl <= h2
then hl::merge(tl, h2::t2)
else h2::merge(hl::tl, t2);

mergesort [] =[]
mergesort [x] = [x]
mergesort 1 =
let val k = length 1 div 2 in
merge (mergesort (List.take(l, k)),
mergesort (List.drop(1l, k)))

end;

Merge sort takes O(nlogn) comparisons on
average and in the worst case.

University of Cambridge Computer Lanboratory, January 27, 2000

fun quick [] []
| quick [x] [x] : real list

| quick (h::t)
let fun part (left, right, []) =
(quick left)@(h::quick right)
| part (left, right, x::1) =
1if x<=h
then part (x::left, right, 1)
else part (left, x::right, 1)
in
part([1, [], t) end;
Quick sort takes O(nlogn) comparisons on

average and O(n?) in the worst case.

University of Cambridge Computer Lanboratory, January 27, 2000

QS without Append

fun quik ([], sorted) sorted

| quik ([x], sorted) (x:real)::sorted
| quik (h::t, sorted)
let
fun part (left, right, [1) =
quik(left, h::quik(right, sorted))
| part (left, right, x::1) =

if x<= h
then part (x::left, right, 1)
else part (left, x::right, 1)
in
part([], [1, t) end;

University of Cambridge Computer Lanboratory, January 27, 2000

