Evaluation Strategy

Strict (or eager) evaluation.

Also known as call-by-value

Given an expression, which is a function

application

f(Eq,...,Ey,)

evaluate F1, ..., F, and then apply f to the

resulting values.

Call-by-name:
Substitute the expressions F1, ..., F, into the

definition of f and then evaluate the resulting

expression.
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Lazy Evaluation

Also known as call-by-need.

Like call-by-name, but sub-expressions that
appear more than once are not copied. Pointers

are used instead.

Potentially more efficient, but difficult to

implement.

Standard ML uses strict evaluation.
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A list is an ordered collection (of any length) of

elements of the same type

[1,2,4];

val it = [1, 2, 4] : int list
["a" , "", "abc", "a"];

val it = . . . : string list
[[1]1,01,[2,3]1];

val it = . . . : int list list
15

val it = [] : ’a list
1::[2,3];

val it = [1, 2, 3] : int 1list
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There are two kinds of list:
nil or [] is the empty list

h::t is the list with head h and tail t

: : is an infix operator of type

fn : ’a x ’a list -> ’a list

[x1,...,T,] is shorthand for

(Tp:inil)---
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Built-in Functions 1

fn : ’a list -> bool

determines if a list is empty

hd
fn : ’a list -> ’a

gives the first element of the list

t1l
fn : ’a list -> ’a list

gives the tail of the list
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Built-in Functions 2

length
fn : ’a list -> int

gives the number of elements in a list

fn : ’a list -> ’a list

gives the list in reverse order

©

appends two lists
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List Functions

fun null 1 =
if 1 = [] then true else false;

or, using pattern matching:

fun null []
| null (_::_)

fun hd (x::_)

fun t1 (_::1) 1;

NB: these functions are built-in and do not need

to be defined

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000




Recursive definitions

rlength [] 0
rlength (h::t) = 1 + rlength(t);

append ([], 1) 1
append (h::t, 1) = h::append(t,1);

reverse [] []

reverse (h::t) reverse(t)@[h];

Purely recursive definitions can be very ineflicient
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Iterative Definitions

addlen ([],n) = n
addlen (h::t, n) = addlen (t, n+1);

’a list * int -> int

ilength 1 = addlen(1,0);

revto ([],1) 1
revto (h::t, 1) revto (t, h::1);

>a list * ’a list -> ’a 1list
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Library List Functions

load '"List";

We can then use List.take, List.drop

fun take (k, [1) = []
| take (k, h::t) =
if k¥ > O then h::take(k-1,t)
else [];

fun drop (k, [1) = []
| drop (k, h::t) =
if k¥ > 0 then drop(k-1,1)
else h::t;

fn : int * ’a list -> ’a list
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