Evaluation Strategy

Strict (or eager) evaluation.

Also known as call-by-value

Given an expression, which is a function

application

f(Eq,...,Ey,)

evaluate F1, ..., F, and then apply f to the

resulting values.

Call-by-name:
Substitute the expressions F1, ..., F, into the

definition of f and then evaluate the resulting

expression.

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000




Lazy Evaluation

Also known as call-by-need.

Like call-by-name, but sub-expressions that
appear more than once are not copied. Pointers

are used instead.

Potentially more efficient, but difficult to

implement.

Standard ML uses strict evaluation.

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000




A list is an ordered collection (of any length) of

elements of the same type

[1,2,4];

val it = [1, 2, 4] : int list
["a" , "", "abc", "a"];

val it = . . . : string list
[[1]1,01,[2,3]1];

val it = . . . : int list list
15

val it = [] : ’a list
1::[2,3];

val it = [1, 2, 3] : int 1list

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000




There are two kinds of list:
nil or [] is the empty list

h::t is the list with head h and tail t

: : is an infix operator of type

fn : ’a x ’a list -> ’a list

[x1,...,T,] is shorthand for

(Tp:inil)---

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000




Built-in Functions 1

fn : ’a list -> bool

determines if a list is empty

hd
fn : ’a list -> ’a

gives the first element of the list

t1l
fn : ’a list -> ’a list

gives the tail of the list

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000




Built-in Functions 2

length
fn : ’a list -> int

gives the number of elements in a list

fn : ’a list -> ’a list

gives the list in reverse order

©

appends two lists

University of Cambridge Computer Lanboratory, January 25, 2000




List Functions

fun null 1 =
if 1 = [] then true else false;

or, using pattern matching:

fun null []
| null (_::_)

fun hd (x::_)

fun t1 (_::1) 1;

NB: these functions are built-in and do not need

to be defined

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000




Recursive definitions

rlength [] 0
rlength (h::t) = 1 + rlength(t);

append ([], 1) 1
append (h::t, 1) = h::append(t,1);

reverse [] []

reverse (h::t) reverse(t)@[h];

Purely recursive definitions can be very ineflicient

University of Cambridge Computer Lanboratory, January 25, 2000




Iterative Definitions

addlen ([],n) = n
addlen (h::t, n) = addlen (t, n+1);

’a list * int -> int

ilength 1 = addlen(1,0);

revto ([],1) 1
revto (h::t, 1) revto (t, h::1);

>a list * ’a list -> ’a 1list

University of Cambridge Computer Lanboratory, January 25, 2000




Library List Functions

load '"List";

We can then use List.take, List.drop

fun take (k, [1) = []
| take (k, h::t) =
if k¥ > O then h::take(k-1,t)
else [];

fun drop (k, [1) = []
| drop (k, h::t) =
if k¥ > 0 then drop(k-1,1)
else h::t;

fn : int * ’a list -> ’a list

University of Cambridge Computer Lanboratory, January 25, 2000




