
g g

Evaluation Strategy

Strict (or eager) evaluation.

Also known as call-by-value

Given an expression, which is a function

application

f(E1; : : : ; En)

evaluate E1; : : : ; En and then apply f to the

resulting values.

Call-by-name:

Substitute the expressions E1; : : : ; En into the

de�nition of f and then evaluate the resulting

expression.

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Lazy Evaluation

Also known as call-by-need.

Like call-by-name, but sub-expressions that

appear more than once are not copied. Pointers

are used instead.

Potentially more e�cient, but di�cult to

implement.

Standard ML uses strict evaluation.

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Lists

A list is an ordered collection (of any length) of

elements of the same type

- [1,2,4];

> val it = [1, 2, 4] : int list

- ["a" , "", "abc", "a"];

> val it = . . . : string list

- [[1],[],[2,3]];

> val it = . . . : int list list

- [];

> val it = [] : 'a list

- 1::[2,3];

> val it = [1, 2, 3] : int list

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Lists

There are two kinds of list:

nil or [] is the empty list

h::t is the list with head h and tail t

:: is an in�x operator of type

fn : 'a * 'a list -> 'a list

[x1; : : : ; xn] is shorthand for

x1::(� � � (xn::nil) � � �)

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Built-in Functions 1

null

fn : 'a list -> bool

determines if a list is empty

hd

fn : 'a list -> 'a

gives the �rst element of the list

tl

fn : 'a list -> 'a list

gives the tail of the list

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Built-in Functions 2

length

fn : 'a list -> int

gives the number of elements in a list

rev

fn : 'a list -> 'a list

gives the list in reverse order

@

appends two lists NB: in�x!

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

List Functions

fun null l =

if l = [] then true else false;

or, using pattern matching:

fun null [] = true

| null (_::_) = false;

fun hd (x::_) = x;

fun tl (_::l) = l;

NB: these functions are built-in and do not need

to be de�ned

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Recursive de�nitions

fun rlength [] = 0

| rlength (h::t) = 1 + rlength(t);

fun append ([], l) = l

| append (h::t, l) = h::append(t,l);

fun reverse [] = []

| reverse (h::t) = reverse(t)@[h];

Purely recursive de�nitions can be very ine�cient

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Iterative De�nitions

fun addlen ([],n) = n

| addlen (h::t, n) = addlen (t, n+1);

fn : 'a list * int -> int

fun ilength l = addlen(l,0);

fun revto ([],l) = l

| revto (h::t, l) = revto (t, h::l);

fn : 'a list * 'a list -> 'a list

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Library List Functions

load "List";

We can then use List.take, List.drop

fun take (k, []) = []

| take (k, h::t) =

if k > 0 then h::take(k-1,t)

else [];

fun drop (k, []) = []

| drop (k, h::t) =

if k > 0 then drop(k-1,l)

else h::t;

fn : int * 'a list -> 'a list

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000


