
Topics in Concurrency

Glynn Winskel

16 January 2020

Concurrency and distribution

Computation has become increasingly distributed, concurrent and
interactive

boundaries of computation becoming increasingly unclear,
behaviour of systems increasingly difficult to reproduce

 problems such as how to structure and understand distributed
computation, how to ensure correctness (e.g. security) of processes
in an uncontrolled environment

Concurrency theory is a broad and active field for research, but

Present ideas of process and logics for distributed computation are
unsettled . . .

However there are attempts:

topics in concurrency

Theories of processes, logics & model checking, security

Unification through strategies in concurrent/distributed games (new)

Concurrency and distribution

Computation has become increasingly distributed, concurrent and
interactive

boundaries of computation becoming increasingly unclear,
behaviour of systems increasingly difficult to reproduce

 problems such as how to structure and understand distributed
computation, how to ensure correctness (e.g. security) of processes
in an uncontrolled environment

Concurrency theory is a broad and active field for research, but

Present ideas of process and logics for distributed computation are
unsettled . . . However there are attempts:

topics in concurrency

Theories of processes, logics & model checking, security

Unification through strategies in concurrent/distributed games (new)

Topics in Concurrency

Simple parallelism and non-determinism

Communicating processes

Milner’s CCS (Calculus of Communicating Systems)
Bisimulation

Specification logics for processes

modal µ-calculus
CTL
model checking [Concurrency workbench]

Petri nets

events, causal dependence, independence

Security protocols

SPL (Security Protocol Language)
Petri net semantics
Proofs of secrecy and authentication

Event structures

Concurrent games - processes as strategies

Chapter 1 in the lecture notes revises relevant topics from Discrete
Mathematics (well-founded induction and Tarski’s fixed point theorem).

While programs

Similar to L1 from Semantics of Programming Languages:

c :: = skip | X := a | if b then c1 else c2 | c0; c1 | while b do c

States σ ∈ Σ are functions from locations to values

Configurations: 〈c , σ〉 and σ

Rules describe a single step of execution:

〈c0, σ〉 −→ 〈c ′0, σ′〉
〈c0; c1, σ〉 −→ 〈c ′0; c1, σ

′〉
〈c0, σ〉 −→ σ′

〈c0; c1, σ〉 −→ 〈c1, σ′〉

〈b, σ〉 −→ true 〈c , σ〉 −→ 〈c ′, σ′〉
〈while b do c , σ〉 −→ 〈c ′; while b do c , σ′〉

...

Parallel commands

Syntax extended with parallel composition:

c :: = . . . | c0 ‖ c1

Rules:

〈c0, σ〉 −→ 〈c ′0, σ′〉
〈c0 ‖ c1, σ〉 −→ 〈c ′0 ‖ c1, σ′〉

〈c1, σ〉 −→ 〈c ′1, σ′〉
〈c0 ‖ c1, σ〉 −→ 〈c0 ‖ c ′1, σ′〉

(+rules for termination of c0, c1)

Parallelism Non-determinism

Behaviour of ‖-commands not a partial function from states to
states; when are two ‖-commands equivalent? [Congruence?]

Parallelism by non-deterministic interleaving

“communication by shared variables”

Parallel commands

Syntax extended with parallel composition:

c :: = . . . | c0 ‖ c1

Rules:

〈c0, σ〉 −→ 〈c ′0, σ′〉
〈c0 ‖ c1, σ〉 −→ 〈c ′0 ‖ c1, σ′〉

〈c1, σ〉 −→ 〈c ′1, σ′〉
〈c0 ‖ c1, σ〉 −→ 〈c0 ‖ c ′1, σ′〉

(+rules for termination of c0, c1)

Parallelism Non-determinism

Behaviour of ‖-commands not a partial function from states to
states; when are two ‖-commands equivalent? [Congruence?]

Parallelism by non-deterministic interleaving

“communication by shared variables”

Study of parallelism (or concurrency)
includes

study of non-determinism

What about the converse?

Can we explain parallelism (or concurrency)
in terms of non-determinism?

Study of parallelism (or concurrency)
includes

study of non-determinism

What about the converse?

Can we explain parallelism (or concurrency)
in terms of non-determinism?

The language of Guarded Commands (Dijkstra)

Boolean expressions: b

Arithmetic expressions: a

Commands:

c :: = skip | abort | X := a | c0; c1 | if gc fi | do gc od

Guarded commands:

gc :: = b → c guard
| gc0 8 gc1 alternative

Operational semantics

Assume given rules for evaluating Booleans and assignments.

Guarded commands:
〈b, σ〉 −→ true

〈b → c , σ〉 −→ 〈c , σ〉

〈gc0, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

〈gc1, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

introduces non-determinism

〈b, σ〉 −→ false

〈b → c , σ〉 −→ fail

fail is a new configuration

〈gc0, σ〉 −→ fail 〈gc1, σ〉 −→ fail

〈gc0 8 gc1, σ〉 −→ fail

Operational semantics

Assume given rules for evaluating Booleans and assignments.

Guarded commands:
〈b, σ〉 −→ true

〈b → c , σ〉 −→ 〈c , σ〉

〈gc0, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

〈gc1, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

introduces non-determinism

〈b, σ〉 −→ false

〈b → c , σ〉 −→ fail

fail is a new configuration

〈gc0, σ〉 −→ fail 〈gc1, σ〉 −→ fail

〈gc0 8 gc1, σ〉 −→ fail

Operational semantics

Assume given rules for evaluating Booleans and assignments.

Guarded commands:
〈b, σ〉 −→ true

〈b → c , σ〉 −→ 〈c , σ〉

〈gc0, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

〈gc1, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

introduces non-determinism

〈b, σ〉 −→ false

〈b → c , σ〉 −→ fail
fail is a new configuration

〈gc0, σ〉 −→ fail 〈gc1, σ〉 −→ fail

〈gc0 8 gc1, σ〉 −→ fail

Operational semantics

Assume given rules for evaluating Booleans and assignments.

Guarded commands:
〈b, σ〉 −→ true

〈b → c , σ〉 −→ 〈c , σ〉

〈gc0, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

〈gc1, σ〉 −→ 〈c , σ′〉
〈gc0 8 gc1, σ〉 −→ 〈c , σ′〉

introduces non-determinism

〈b, σ〉 −→ false

〈b → c , σ〉 −→ fail

fail is a new configuration

〈gc0, σ〉 −→ fail 〈gc1, σ〉 −→ fail

〈gc0 8 gc1, σ〉 −→ fail

Commands:

abort has no rules

Conditional:
〈gc , σ〉 −→ 〈c , σ′〉

〈if gc fi, σ〉 −→ 〈c , σ′〉
no rule in case 〈gc , σ〉 −→ fail; then conditional behaves like abort

Loop:

〈gc , σ〉 −→ fail

〈do gc od, σ〉 −→ σ

〈gc , σ〉 −→ 〈c , σ′〉
〈do gc od, σ〉 −→ 〈c ; do gc od, σ′〉

in case 〈gc , σ〉 −→ fail, the loop behaves like skip:

〈skip, σ〉 −→ σ

The process
do b1 → c1 8 . . . 8 bn → cn od

is a form of (non-deterministically interleaved) parallel composition

b1 → c1 ‖ . . . ‖ bn → cn

in which each ci occurs atomically (i.e. uninterruptedly) provided bi
holds each time it starts

UNITY (Misra and Chandy)
Hardware languages (Staunstrup)

Examples

Computing maximum:

if

X ≥ Y → MAX = X
8
Y ≥ X → MAX = Y

fi

Euclid’s algorithm:

do

X > Y → X := X − Y
8
Y > X → Y := Y − X

od

Have

{X = m ∧ Y = n ∧m > 0 ∧ n > 0}
Euclid

{X = Y = gcd(m, n)}

. . . guarded commands support a
neat Hoare-style logic

Examples

Computing maximum:

if

X ≥ Y → MAX = X
8
Y ≥ X → MAX = Y

fi

Euclid’s algorithm:

do

X > Y → X := X − Y
8
Y > X → Y := Y − X

od

Have

{X = m ∧ Y = n ∧m > 0 ∧ n > 0}
Euclid

{X = Y = gcd(m, n)}

. . . guarded commands support a
neat Hoare-style logic

Recalling:
gcd(m, n) | m, n

and
` | m, n =⇒ ` | gcd(m, n)

Invariant:
gcd(m, n) = gcd(X ,Y)

On exiting loop, X = Y .

Key properties:

gcd(m, n) = gcd(m − n, n) if m > n
gcd(m, n) = gcd(m, n −m) if n > m
gcd(m,m) = m

Synchronized communication (Hoare, Milner)

Communication by “handshake”,
with possible exchange of value,

localised to process-process (CSP)
or to a channel (CCS, OCCAM)

[Abstracts away from the protocol underlying coordination/“handshake”
in the implementation]

Extending GCL with synchronization

Allow processes to send and receive values on channels

α!a evaluate expression a and send value on channel α
α?X receive value on channel α and store it in X

All interaction between parallel processes is by sending / receiving
values on channels

Communication is synchronized and only one process listening on
the channel may receive the message

Allow send and receive in commands c and in guards g :

do Y < 100 ∧ α?X︸ ︷︷ ︸
g

→α!(X ∗ X) ‖ Y := Y + 1︸ ︷︷ ︸
c

od is allowed

Language close to OCCAM and CSP

Extending GCL with synchronization

Transitions may now carry labels when possibility of interaction with
another process.

〈α?X , σ〉 α?n−−→ σ[n/X]

〈a, σ〉 −→ n

〈α!a, σ〉 α!n−−→ σ

〈c0, σ〉
λ−→ 〈c ′0, σ′〉

〈c0 ‖ c1, σ〉
λ−→ 〈c ′0 ‖ c1, σ′〉

(λ might be empty label) + symmetric

〈c0, σ〉
α?n−−→ 〈c ′0, σ′〉 〈c1, σ〉

α!n−−→ 〈c ′1, σ〉
〈c0 ‖ c1, σ〉 −→ 〈c ′0 ‖ c ′1, σ′〉

+symmetric

〈c , σ〉 λ−→ 〈c ′, σ′〉

〈c \ α, σ〉 λ−→ 〈c ′ \ α, σ′〉
λ 6≡ α?n or α!n

Examples

forwarder:

��
��ssα β

do α?X → β!Xod

buffer capacity 2:

��
��
��
��s s ssα γ

(do α?X → β!X od

‖ do β?X → γ!X od) \ β

Branching: internal vs external choice

Compare:

if (true ∧ α?X → c0) 8 (true ∧ β?X → c1) fi ·
α?n
��

β?m

��
· ·

if (true → (α?X ; c0)) 8 (true → (β?X ; c1)) fi ·
�� ��·

α?n

��
β?m

��

Not equivalent processes w.r.t. their deadlock capabilities.

