Lecture 14

Dependent Types

A brief look at some category theory for modelling type theories with dependent types.
Will restrict attention to the case of Set, rather than in full generality.

Further reading:
M. Hofmann, Syntax and Semantics of Dependent Types. In: A.M. Pitts and P. Dybjer (eds), Semantics and Logics of Computation (CUP, 1997).

Simple types

$$
\diamond, x_{1}: T_{1}, \ldots, x_{n}: T_{n} \vdash t\left(x_{1}, \ldots, x_{n}\right): T
$$

Dependent types

$$
\diamond, x_{1}: T_{1}, \ldots, x_{n}: T_{n} \vdash t\left(x_{1}, \ldots, x_{n}\right): T\left(x_{1}, \ldots, x_{n}\right)
$$

and more generally

$$
\begin{aligned}
\diamond, x_{1}: T_{1}, x_{2}: & T_{2}\left(x_{1}\right), x_{3}: T_{3}\left(x_{1}, x_{2}\right), \ldots \vdash \\
& t\left(x_{1}, x_{2}, x_{3}, \ldots\right): T\left(x_{1}, x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

If type expressions denote sets, then

$$
\text { a type } T(x) \text { dependent upon } x: I
$$

should denote
an indexed family of sets $(E i \mid i \in I)$
i.e. $E: I \rightarrow$ Set is a set-valued function on a set I.

For each $I \in$ Set, let Set I be the category with
$-\operatorname{obj}\left(\right.$ Set $\left.^{I}\right) \triangleq(\text { obj Set })^{I}$, so objects are I-indexed families of sets, $X=\left(X_{i} \mid i \in I\right)$

- morphisms $f: X \rightarrow Y$ in Set ${ }^{I}$ are I-indexed families of functions $f=\left(f_{i} \in \operatorname{Set}\left(X_{i}, Y_{i}\right) \mid i \in I\right)$
- composition: $(g \circ f) \triangleq\left(g_{i} \circ f_{i} \mid i \in I\right)$
(i.e. use composition of functions in Set at each index $i \in I$)
- identity: $\mathrm{id}_{X} \triangleq\left(\mathrm{id}_{X_{i}} \mid i \in I\right)$
(i.e. use identity functions in Set at each index $i \in I$)

For each $p: I \rightarrow J$ in Set, let $p^{*}:$ Set $^{J} \rightarrow \mathbf{S e t}^{I}$ be the functor defined by:

$$
p^{*}\left(\left.\begin{array}{c|}
\Upsilon_{j} \\
\mid f_{j} \\
\mid \\
\Upsilon_{j}^{\prime}
\end{array} \right\rvert\, j \in J\right) \triangleq\left(\begin{array}{c|c}
\Upsilon_{p i} & \\
\mid{ }^{v} \\
{ }_{p i} & i \in I) \\
\Upsilon_{p i}^{\prime} &
\end{array}\right)
$$

i.e. p^{*} takes J-indexed families of sets/functions to I-indexed ones by precomposing with p

Dependent products of families of sets

For $I, j \in$ Set, consider the functor $\pi_{1}^{*}: \operatorname{Set}^{I} \rightarrow$ Set $^{I \times J}$ induced by precomposition with the first projection function $\pi_{1}: I \times J \rightarrow I$.

Theorem. π_{1}^{*} has a left adjoint $\Sigma: \operatorname{Set}^{I \times J} \rightarrow \operatorname{Set}^{I}$.

Proof. We apply the Theorem from Lecture 13: for each $E \in$ Set $^{I \times J}$ we define $\Sigma E \in \operatorname{Set}^{I}$ and $\eta_{E}: E \rightarrow \pi_{1}^{*}(\Sigma E)$ in $\operatorname{Set}^{I \times J}$ with the required universal property...

Recall:
$G: \mathbf{C} \leftarrow \mathbf{D}$ has a left adjoint iff for all $X \in \mathbf{C}$ there are $F X \in \mathbf{D}$ and $\eta_{X} \in \mathbf{C}(X, G(F X))$ with the universal property:

$$
\begin{aligned}
& \text { for all } \boldsymbol{Y} \in \mathbf{D} \text { and } f \in \mathbf{C}(\boldsymbol{X}, G \boldsymbol{Y}) \\
& \text { there is a unique } \bar{f} \in \mathbf{D}(F X, Y) \\
& \text { satisfying } G \bar{f} \circ \boldsymbol{\eta}_{X}=f
\end{aligned}
$$

Theorem. π_{1}^{*} has a left adjoint $\Sigma:$ Set $^{I \times I} \rightarrow$ Set I.

For each $E \in \operatorname{Set}^{I \times J}$, define $\Sigma E \in \operatorname{Set}^{I}$ to be the function mapping each $i \in I$ to the set

$$
(\Sigma E)_{i} \triangleq \sum_{j \in J} E_{(i, j)}=\left\{(j, e) \mid j \in J \wedge e \in E_{(i, j)}\right\}
$$

Theorem. π_{1}^{*} has a left adjoint $\Sigma: \operatorname{Set}^{I \times I} \rightarrow \operatorname{Set}^{I}$.

For each $E \in \operatorname{Set}^{I \times J}$, define $\Sigma E \in \operatorname{Set}^{I}$ to be the function mapping each $i \in I$ to the set

$$
(\Sigma E)_{i} \triangleq \sum_{j \in J} E_{(i, j)}=\left\{(j, e) \mid j \in J \wedge e \in E_{(i, j)}\right\}
$$

and define $\eta_{E}: E \rightarrow \pi_{1}^{*}(\Sigma E)$ in Set ${ }^{I \times J}$ to be the function mapping each $(i, j) \in I \times J$ to the function $\left(\eta_{E}\right)_{(i . j)}: E_{(i, j)} \rightarrow(\Sigma E)_{i}$ given by $e \mapsto(j, e)$. Universal property-

Theorem. π_{1}^{*} has a left adjoint $\Sigma:$ Set $^{I \times J} \rightarrow$ Set I.

For each $E \in \operatorname{Set}^{I \times J}$, define $\Sigma E \in \operatorname{Set}^{I}$ to be the function mapping each $i \in I$ to the set

$$
(\Sigma E)_{i} \triangleq \sum_{j \in J} E_{(i, j)}=\left\{(j, e) \mid j \in J \wedge e \in E_{(i, j)}\right\}
$$

and define $\eta_{E}: E \rightarrow \pi_{1}^{*}(\Sigma E)$ in Set ${ }^{I \times J}$ to be the function mapping each $(i, j) \in I \times J$ to the function $\left(\eta_{E}\right)_{(i . j)}: E_{(i, j)} \rightarrow(\Sigma E)_{i}$ given by $e \mapsto(j, e)$.

Universal property-existence part: given any $X \in \operatorname{Set}^{I}$ and $f: E \rightarrow \pi_{1}^{*}(X)$ in Set ${ }^{I \times J}$, we have

where for all $i \in I, j \in J$ and $e \in E_{(i, j)} \quad \bar{f}_{i}(j, e) \triangleq f_{(i, j)}(e)$

Theorem. π_{1}^{*} has a left adjoint $\Sigma: \operatorname{Set}^{I \times J} \rightarrow \operatorname{Set}^{I}$.

For each $E \in \operatorname{Set}^{I \times J}$, define $\Sigma E \in \operatorname{Set}^{I}$ to be the function mapping each $i \in I$ to the set

$$
(\Sigma E)_{i} \triangleq \sum_{j \in J} E_{(i, j)}=\left\{(j, e) \mid j \in J \wedge e \in E_{(i, j)}\right\}
$$

and define $\eta_{E}: E \rightarrow \pi_{1}^{*}(\Sigma E)$ in Set ${ }^{I \times J}$ to be the function mapping each $(i, j) \in I \times J$ to the function $\left(\eta_{E}\right)_{(i . j)}: E_{(i, j)} \rightarrow(\Sigma E)_{i}$ given by $e \mapsto(j, e)$.

Universal property-uniqueness part: given $g: \Sigma E \rightarrow X$ in Set ${ }^{I}$ making

then for all $i \in I$, and $(j, e) \in(\Sigma E)_{i}$ we have

$$
\begin{aligned}
& \bar{f}_{i}(j, e) \triangleq f_{(i, j)}(e)=\left(\pi_{1}^{*} g \circ \eta_{E}\right)_{(i, j)} e=\left(\pi_{1}^{*} g\right)_{(i, j)}\left(\left(\eta_{E}\right)_{(i, j)} e\right) \triangleq g_{i}(j, e) \\
& \text { so } g=\bar{f} . \square
\end{aligned}
$$

Dependent functions
 of families of sets

We have seen that the left adjoint to $\pi_{1}^{*}:$ Set $^{I} \rightarrow$ Set $^{I \times J}$ is given by dependent products of sets.

Dually, dependent function sets give:
Theorem. π_{1}^{*} has a right adjoint $\Pi:$ Set $^{I \times J} \rightarrow$ Set I.

Proof. We apply the Theorem from Lecture 13: for each $E \in$ Set $^{I \times J}$ we define $\Pi E \in \operatorname{Set}^{I}$ and $\varepsilon_{E}: \pi_{1}^{*}(\Pi E) \rightarrow E$ in Set ${ }^{I \times J}$ with the required universal property...

Theorem. A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ has a right adjoint iff for all D-objects $Y \in \mathrm{D}$, there is a \mathbf{C}-object $G Y \in \mathbf{C}$ and a C-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ with the following "universal property":

(UP) | for all $\boldsymbol{X} \in \mathbf{C}$ and $g \in \mathbf{D}(\boldsymbol{F} \boldsymbol{X}, \boldsymbol{Y})$ |
| :--- |
| there is a unique $\bar{g} \in \mathbf{C}(\boldsymbol{X}, G \boldsymbol{Y})$ |
| satisfying $\varepsilon_{Y} \circ \boldsymbol{F}(\bar{g})=\boldsymbol{g}$ |

Theorem. π_{1}^{*} has a right adjoint $\Pi:$ Set $^{I \times J} \rightarrow$ Set I.

For each $E \in$ Set $^{I \times J}$, define $\Pi E \in$ Set I to be the function mapping each $i \in I$ to the set

$$
(\Pi E)_{i} \triangleq \prod_{j \in J} E_{(i, j)}=\left\{f \subseteq(\Sigma E)_{i} \mid f \text { is single-value and total }\right\}
$$

where $f \subseteq(\Sigma E)_{i}$ is
single-valued if $\forall j \in J, \forall e, e^{\prime} \in E_{(i, j)},(j, e) \in f \wedge\left(j, e^{\prime}\right) \in f \Rightarrow e=e^{\prime}$
total if $\forall j \in J, \exists e \in E_{(i, j)}(j, e) \in f$
Thus each $f \in(\Pi E)_{i}$ is a dependently typed function mapping elements $j \in J$ to elements of $E_{(i, j)}$ (result set depends on the argument j).

Theorem. π_{1}^{*} has a right adjoint $\Pi:$ Set $^{I \times J} \rightarrow$ Set I.

For each $E \in$ Set $^{I \times J}$, define $\Pi E \in$ Set I to be the function mapping each $i \in I$ to the set

$$
(\Pi E)_{i} \triangleq \prod_{j \in J} E_{(i, j)}=\left\{f \subseteq(\Sigma E)_{i} \mid f \text { is single-value and total }\right\}
$$

and define $\varepsilon_{E}: \pi_{1}^{*}(\Pi E) \rightarrow E$ in Set ${ }^{I \times J}$ to be the function mapping each $(i, j) \in I \times J$ to the function $\left(\varepsilon_{E}\right)_{(i, j)}:(\Pi E)_{i} \rightarrow E_{(i, j)}$ given by $f \mapsto f j=$ unique $e \in E_{(i, j)}$ such that $(j, e) \in f$.
Universal property-

Theorem. π_{1}^{*} has a right adjoint $\Pi: \operatorname{Set}^{I \times J} \rightarrow$ Set I.

For each $E \in$ Set $^{I \times J}$, define $\Pi E \in$ Set I to be the function mapping each $i \in I$ to the set

$$
(\Pi E)_{i} \triangleq \prod_{j \in J} E_{(i, j)}=\left\{f \subseteq(\Sigma E)_{i} \mid f \text { is single-value and total }\right\}
$$

and define $\varepsilon_{E}: \pi_{1}^{*}(\Pi E) \rightarrow E$ in Set ${ }^{I \times J}$ to be the function mapping each $(i, j) \in I \times J$ to the function $\left(\varepsilon_{E}\right)_{(i, j)}:(\Pi E)_{i} \rightarrow E_{(i, j)}$ given by $f \mapsto f j=$ unique $e \in E_{(i, j)}$ such that $(j, e) \in f$.
Universal property-existence part: given any $X \in \operatorname{Set}^{I}$ and $f: \pi_{1}^{*}(X) \rightarrow E$ in Set ${ }^{I \times J}$, we have

where for all $i \in I$ and $x \in X_{i} \overline{\bar{f}_{i} x \triangleq\left\{\left(j, f_{(i, j)} x\right) \mid j \in J\right\}}$

Theorem. π_{1}^{*} has a right adjoint $\Pi:$ Set $^{I \times J} \rightarrow$ Set I.

For each $E \in$ Set $^{I \times J}$, define $\Pi E \in$ Set I to be the function mapping each $i \in I$ to the set

$$
(\Pi E)_{i} \triangleq \prod_{j \in J} E_{(i, j)}=\left\{f \subseteq(\Sigma E)_{i} \mid f \text { is single-value and total }\right\}
$$

and define $\varepsilon_{E}: \pi_{1}^{*}(\Pi E) \rightarrow E$ in Set ${ }^{I \times J}$ to be the function mapping each $(i, j) \in I \times J$ to the function $\left(\varepsilon_{E}\right)_{(i, j)}:(\Pi E)_{i} \rightarrow E_{(i, j)}$ given by $f \mapsto f j=$ unique $e \in E_{(i, j)}$ such that $(j, e) \in f$.

Universal property-uniqueness part: given $g: X \rightarrow \Pi E$ in Set ${ }^{I}$ making

then for all $i \in I, j \in J$ and $x \in X_{i}$ we have

$$
\bar{f}_{i} x j \triangleq f_{(i, j)} x=\left(\varepsilon_{E} \circ \pi_{1}^{*} g\right)_{(i, j)} x=\left(\varepsilon_{E}\right)_{(i, j)}\left(g_{i} x\right) \triangleq g_{i} x j
$$

so $g=\bar{f} . \square$

Equivalence
Two categories $\mathbb{C} \& \mathbb{D}$ are isomorphic if they are isomorphic objects in the category of categories (of some size), that is, there are
functors

$$
\mathbb{C} \underset{G}{\underset{G}{F}}
$$

(in G
satisfying

$$
\begin{aligned}
& I d_{\mathbb{C}}=G \circ F \\
& F \circ G=I d_{\mathbb{D}}
\end{aligned}
$$

(in which ass, as usual, we write $\mathbb{C} \cong \mathbb{D}$)

Equivalence
Two categories $\mathbb{C} \& \mathbb{D}$ are equivalent if there are
functors \& natural isomorphisms

$$
\mathbb{C} \underset{G}{\underset{G}{F}}
$$

$$
\begin{aligned}
& \eta: I d_{\mathbb{C}} \cong G \circ f \\
& \varepsilon: F \circ G \cong I d_{\mathbb{D}}
\end{aligned}
$$

in which case one writes

$$
\mathbb{C} \simeq \mathbb{D}
$$

Some deep results in mathematics take the form of equivalences:
Egg.

Gelfand duality: $\binom{\text { abelian }}{C^{*} \text { algebras }}^{\text {op }} \simeq \begin{gathered}\text { Compact } \\ \text { Hansortt } \\ \text { Spaces }\end{gathered}$

Example: Set $^{I} \simeq \operatorname{Set} / I$
Set/I is a slice category [ExCh. 4, qu. 6]

- objects are (x, f) where $f \in \operatorname{Set}(x, I)$
- morphisms $g:(x, f) \rightarrow\left(x^{\prime}: f^{\prime}\right)$ are $g \in \operatorname{set}\left(x, x^{\prime}\right)$ satisfying $f^{\prime} \circ g=f$ in Set
- composition \& identities - as for Set

Example: $\operatorname{Set}^{I} \simeq \operatorname{Set} / I$ functor $F: \operatorname{Set}^{I} \rightarrow \operatorname{Set} / I$ on objects: $F(X) \triangleq\binom{\left\{(i n) \mid i \in I z r e x_{i}\right\}}{\frac{1}{I}+t}$
on monhaisms:

$$
\begin{aligned}
& \nu_{ \pm} \swarrow \\
& (i, x) \longmapsto \xrightarrow{\longrightarrow}(i, f i x)
\end{aligned}
$$

Example: $S^{I}{ }^{I} \simeq \operatorname{Set} \mid I$ functor $G: \operatorname{Set} / I \rightarrow \operatorname{set}^{I}$ on objects: $G\binom{E}{\frac{\downarrow}{I} p} \triangleq(\{e \in E \mid p e=i\} \mid i \in I)$ on morphisms:

$$
G\binom{E \xrightarrow{f} \underset{I}{f} E^{\prime}}{\underset{I}{ } \Sigma p^{\prime}} \triangleq \underset{\text { each } \overrightarrow{i \in I} G E^{\prime} \text { where for }}{ } \begin{aligned}
& G f)_{i} e \triangleq f(e)
\end{aligned}
$$

Example: $\operatorname{Set}^{I} \simeq \operatorname{Set} / I$ There are natural isomorphisms

$$
\begin{aligned}
& \eta: I d_{\operatorname{set} I} \cong G 0 F \\
& \varepsilon: F \circ G \cong I d_{\operatorname{set} / I}
\end{aligned}
$$

defined by ... [exercise]

FACT Given $p: I \rightarrow J$ in Set,

$$
\operatorname{set} / J \simeq \operatorname{set}^{J} \xrightarrow{p^{*}} \operatorname{set}^{I} \simeq \operatorname{set} / I
$$

is the functor "pullback along p" Can generalize from set to any category \mathbb{C} with pullbacks \& model
$\sum 1 \Pi$ types by left/right adjoint to pullback functor - see locally cartesian closed categories in literature.

