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The category of small categories

Recall definition of Cat:

! objects are all small categories
! morphisms in Cat(C, D) are all functors C→ D

! composition and identity morphisms as for functors
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Cat has a terminal object

The category

0 id0

one object, one morphism

is terminal in Cat
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Cat has binary products

Given small categories C, D ∈ Cat, their product

C
π1←− C×D

π2−→ D is:
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Cat has binary products

Given small categories C, D ∈ Cat, their product

C
π1←− C×D

π2−→ D is:

! objects of C×D are pairs (X, Y) where X ∈ C and Y ∈ D

! morphisms (X, Y)→ (X ′, Y ′) in C×D are pairs ( f , g)
where f ∈ C(X, X ′) and g ∈ D(Y , Y ′)

! composition and identity morphisms are given by those of C
(in the first component) and D (in the second component)

!

⎧

⎪

⎪

⎨

⎪

⎪

⎩

π1

(

(X, Y)
( f ,g)
−−→ (X ′, Y ′)

)

= X
f
−→ X ′

π2

(

(X, Y)
( f ,g)
−−→ (X ′, Y ′)

)

= Y
g
−→ Y ′
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Cat not only has finite products, it is also cartesian
closed.

Exponentials in Cat are called functor categories.

To define them we need to consider
natural transformations, which are the appropriate notion
of morphism between functors.

L11 122



Natural transformations
Motivating example: fix a set S ∈ Set and consider
the two functors F, G : Set→ Set given by

F

(

X
f
−→ Y

)

= S× X
idS× f
−−→ S× Y

G

(

X
f
−→ Y

)

= X× S
f×idS
−−→ Y × S
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Natural transformations
Motivating example: fix a set S ∈ Set and consider
the two functors F, G : Set→ Set given by

F

(

X
f
−→ Y

)

= S× X
idS× f
−−→ S× Y

G

(

X
f
−→ Y

)

= X× S
f×idS
−−→ Y × S

For each X ∈ Set there is an isomorphism (bijection)
θX : F X ∼= G X in Set given by ⟨π2 , π1⟩ : S× X → X × S.

These isomorphisms do not depend on the particular nature of each
set X (they are “polymorphic in X”). One way to make this precise
is. . .
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. . . if we change from X to Y along a function
f : X→ Y , then we get a commutative diagram in Set:

S× X
⟨π2,π1⟩

id× f

X× S

f×id

S× Y
⟨π2,π1⟩

Y × S

The square commutes because for all s ∈ S and x ∈ X

⟨π2 , π1⟩((id× f)(s, x)) = ⟨π2 , π1⟩(s, f x)

= ( f x, s)

= ( f × id)(x, s)

= ( f × id)(⟨π2 , π1⟩(s, x))
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. . . if we change from X to Y along a function
f : X→ Y , then we get a commutative diagram in Set:

F X
θX

F f

G X
G f

F Y
θY

G Y

We say that the family (θX | X ∈ Set) is natural in X.
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Natural transformations
Definition. Given categories and functors
F, G : C→ D, a natural transformation θ : F→ G is
a family of D-morphisms θX ∈ D(F X, G X), one for
each X ∈ C, such that for all C-morphisms f : X→ Y ,
the diagram

F X
θX

F f

G X
G f

F Y
θY

G Y

commutes in D, that is, θY ◦ F f = G f ◦ θX .
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Example

Recall forgetful (U) and free (F) functors:

Set
F

Mon
U

There is a natural transformation η : idSet→ U ◦ F,
where for each Σ ∈ Set

ηΣ : Σ→ U(F Σ) = List Σ

a ∈ Σ +→ [a] ∈ List Σ (one-element list)

(Easy to see that Σ
ηΣ

f

U(F Σ)

U(F f )

Σ′
η

Σ′
U(F Σ′)

commutes.)
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Example

The covariant powerset functor P : Set→ Set is

P X " {S | S ⊆ X}

P

(

X
f
−→ Y

)

" P X
P f
−→ PY

S +→ P f S " { f x | x ∈ S}
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Example

The covariant powerset functor P : Set→ Set is

P X " {S | S ⊆ X}

P

(

X
f
−→ Y

)

" P X
P f
−→ PY

S +→ P f S " { f x | x ∈ S}

There is a natural transformation ∪ : P ◦P→ P whose
component at X ∈ Set sends S ∈ P(P X) to

∪XS " {x ∈ X | ∃S ∈ S, x ∈ S} ∈ P X

(check that ∪X is natural in X)
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Non-example

The classic example of an “un-natural transformation”
(the one that caused Eilenburg and MacLane to invent
the concept of naturality) is the linear isomorphism
between a finite dimensional real vectorspace V and its
dual V∗ (= vectorspace of linear functions V → R).

Both V and V∗ have the same finite dimension, so are
isomorphic by choosing bases; but there is no choice of
basis for each V that makes the family of isomorphisms
natural in V .

For a similar, more elementary non-example, see
Ex. Sh. 5, question 4.
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Composing natural transformations

Given functors F, G, H : C→ D and natural
transformations θ : F→ G and ϕ : G→ H,

we get ϕ ◦ θ : F→ H with

(ϕ ◦ θ)X =
(

F X
θX−→ G X

ϕX
−→ H X

)
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Composing natural transformations

Given functors F, G, H : C→ D and natural
transformations θ : F→ G and ϕ : G→ H,

we get ϕ ◦ θ : F→ H with

(ϕ ◦ θ)X =
(

F X
θX−→ G X

ϕX
−→ H X

)

Check naturality:

H f ◦ (ϕ ◦ θ)X " H f ◦ϕX ◦ θX

= ϕY ◦G f ◦ θX naturality of ϕ

= ϕY ◦ θY ◦ F f naturality of θ

" (ϕ ◦ θ)Y ◦ F f
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Identity natural transformation

Given a functor F : C→ D, we get a natural
transformation idF : F→ F with

(idF)X = F X
idF X−−→ F X
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Identity natural transformation

Given a functor F : C→ D, we get a natural
transformation idF : F→ F with

(idF)X = F X
idF X−−→ F X

Check naturality:

F f ◦ (idF)X " F f ◦ idF X = F f = idF Y ◦ F f " (idF)Y ◦ F f
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Functor categories
It is easy to see that composition and identities for natural transformations
satisfy

(ψ ◦ϕ) ◦ θ = ψ ◦ (ϕ ◦ θ)

idG ◦ θ = θ ◦ idF

so that we get a category:

Definition. Given categories C and D, the functor

category DC has
! objects are all functors C→ D

! given F, G : C→ D, morphism from F to G in DC

are the natural transformations F→ G
! composition and identity morphisms as above

L11 131



If U is a Grothendieck universe, then for each X ∈ U and F ∈ UX

we have that their dependent product and dependent function sets

∑x∈X F x " {(x, y) | x ∈ X ∧ y ∈ F x}

∏x∈X F x " { f ⊆ ∑
x∈X

F x | f is single-valued and total}

are also in U.
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Grothendieck universes
A Grothendieck universe U is a set of sets satisfying

! X ∈ Y ∈ U⇒ X ∈ U

! X, Y ∈ U⇒ {X, Y} ∈ U

! X ∈ U⇒ P X " {Y | Y ⊆ X} ∈ U

! X ∈ U ∧ F ∈ UX ⇒
{y | ∃x ∈ X, y ∈ F x} ∈ U

(hence also X, Y ∈ U ⇒ X× Y ∈ U ∧ Y X ∈ U)

The above properties are satisfied by U = ∅, but we will always assume

! N ∈ U
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If U is a Grothendieck universe, then for each X ∈ U and F ∈ UX

we have that their dependent product and dependent function sets

∑x∈X F x " {(x, y) | x ∈ X ∧ y ∈ F x}

∏x∈X F x " { f ⊆ ∑
x∈X

F x | f is single-valued and total}

are also in U. Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆ ∑F∈(obj D)obj C ∏X ,Y∈obj C D(F X, F Y)

DC(F, G) ⊆ ∏X∈obj C D(F X, G X)
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If U is a Grothendieck universe, then for each X ∈ U and F ∈ UX

we have that their dependent product and dependent function sets

∑x∈X F x " {(x, y) | x ∈ X ∧ y ∈ F x}

∏x∈X F x " { f ⊆ ∑
x∈X

F x | f is single-valued and total}

are also in U. Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆ ∑F∈(obj D)obj C ∏X ,Y∈obj C D(F X, F Y)

DC(F, G) ⊆ ∏X∈obj C D(F X, G X)

Aim to show that functor category DC is the exponential of C and D in Cat. . .

L11 132



Cat is cartesian closed
Theorem. There is an application functor

app : DC×C→ D
that makes DC the exponential for C and D in Cat.

Given (F, X) ∈ DC×C, we define

app(F, X) " F X

and given (θ, f) : (F, X)→ (G, Y) in DC× C, we define

app

(

(F, X)
(θ, f )
−−→ (G, Y)

)

" F X
F f
−→ F Y

θY−→ G Y

= F X
θX−→ G X

G f
−→ G Y

Check:

{

app(idF , idX) = idF X

app(ϕ ◦ θ, g ◦ f) = app(ϕ, g) ◦ app(θ, f)

L11 133



Cat is cartesian closed
Theorem. There is an application functor

app : DC×C→ D
that makes DC the exponential for C and D in Cat.

Definition of currying: given functor F : E×C→ D, we get a functor
cur F : E→ DC as follows. For each Z ∈ E, cur F Z ∈ DC is the functor

cur F Z

⎛

⎜

⎜

⎝

X

f

X ′

⎞

⎟

⎟

⎠

"

F(Z, X)

F(idZ , f )

F(Z, X ′)

For each g : Z→ Z′ in E, cur F g : cur F Z→ cur F Z′ is the natural
transformation whose component at each X ∈ C is

(cur F g)X " F(g, idX) : F(Z, X)→ F(Z′, X)

(Check that this is natural in X; and that cur F preserves composition and
identities in E.)
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Cat is cartesian closed
Theorem. There is an application functor

app : DC×C→ D
that makes DC the exponential for C and D in Cat.

Have to check that cur F is the unique functor G : E→ DC that makes

E× C
F

G×idC

D

DC×C

app

commute in Cat (exercise).
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