Lecture 9

STLC equations

take the form $\Gamma \vdash s=t: A$ where $\Gamma \vdash s: A$ and $\Gamma \vdash t: A$ are provable.
Such an equation is satisfied by the semantics in a ccc if $\boldsymbol{M} \llbracket \Gamma \vdash s: A \rrbracket$ and $\boldsymbol{M} \llbracket \Gamma \vdash t: A \rrbracket$ are equal C-morphisms $\boldsymbol{M} \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket$.

Qu: which equations are always satisfied in any ccc?
Ans: $\beta \eta$-equivalence. . .

STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s={ }_{\beta \eta} t: A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s={ }_{\beta \eta} t: A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- β-conversions

$$
\begin{aligned}
& \frac{\Gamma, x: A \vdash t: B \quad \Gamma \vdash s: A}{\Gamma \vdash(\lambda x: A . t) s={ }_{\beta \eta} t[s / x]: B} \\
& \hline \left.\frac{\Gamma \vdash s: A \quad \Gamma \vdash t: B}{\Gamma \vdash f \operatorname{st}(s, t)={ }_{\beta \eta} s: A} \right\rvert\, \frac{\Gamma \vdash s: A \quad \Gamma \vdash t: B}{\Gamma \vdash \operatorname{snd}(s, t)={ }_{\beta \eta} t: B}
\end{aligned}
$$

STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s={ }_{\beta \eta} t: A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- β-conversions
- η-conversions

$\frac{\Gamma \vdash t: A \rightarrow B \quad x \text { does not occur in } t}{\Gamma \vdash t={ }_{\beta \eta}(\lambda x: A . t x): A \rightarrow B}$
$\frac{\Gamma \vdash t: A \times B}{\Gamma \vdash t={ }_{\beta \eta}(\mathrm{fst} t, \operatorname{snd} t): A \times \boldsymbol{B}} \quad \frac{\Gamma \vdash t: \text { unit }}{\Gamma \vdash t={ }_{\beta \eta}(): \text { unit }}$

STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s={ }_{\beta \eta} t: A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- β-conversions
- η-conversions
- congruence rules

$$
\begin{array}{|c|}
\hline \Gamma, x: A \vdash t={ }_{\beta \eta} t^{\prime}: B \\
\hline \Gamma \vdash \lambda x: A \cdot t={ }_{\beta \eta} \lambda x: A \cdot t^{\prime}: A \rightarrow B \\
\hline \Gamma \vdash s={ }_{\beta \eta} s^{\prime}: A \rightarrow B \quad \Gamma \vdash t={ }_{\beta \eta} t^{\prime}: A \\
\Gamma \vdash s t={ }_{\beta \eta} s^{\prime} t^{\prime}: B
\end{array} \text { etc }
$$

STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s={ }_{\beta \eta} t: A$ (where Γ ranges over typing environments, s and t over terms and A over types) is inductively defined by the following rules:

- β-conversions
- η-conversions
- congruence rules
- $=\beta_{\eta}$ is reflexive, symmetric and transitive

$$
\begin{array}{|c|}
\hline \frac{\Gamma \vdash t: A}{\Gamma \vdash t={ }_{\beta \eta} t: A} \\
\hline \frac{\Gamma \vdash s={ }_{\beta \eta} t: A}{\Gamma \vdash t={ }_{\beta \eta} s: A} \\
\hline \hline \Gamma \vdash r={ }_{\beta \eta} s: A \\
\Gamma \vdash r={ }_{\beta \eta} t: A
\end{array}
$$

STLC $\beta \eta$-Equality

Soundness Theorem for semantics of STLC in a ccc. If $\Gamma \vdash s={ }_{\beta \eta} t: A$ is provable, then in any ccc

$$
M \llbracket \Gamma \vdash s: A \rrbracket=M \llbracket \Gamma \vdash t: A \rrbracket
$$

are equal C-morphisms $M \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket$.
Proof is by induction on the structure of the proof of $\Gamma \vdash s={ }_{\beta \eta} t: A$. Here we just check the case of β-conversion for functions.
So suppose we have $\Gamma, x: A \vdash t: B$ and $\Gamma \vdash s: A$. We have to see that

$$
M \llbracket \Gamma \vdash(\lambda x: A . t) s: B \rrbracket=M \llbracket \Gamma \vdash t[s / x]: B \rrbracket
$$

Suppose $\quad M \llbracket \Gamma \rrbracket=X$

$$
\begin{aligned}
M \llbracket A \rrbracket & =Y \\
M \llbracket B \rrbracket & =Z \\
M \llbracket \Gamma, x: A \vdash t: B \rrbracket & =f: X \times Y \rightarrow Z \\
M \llbracket \Gamma \vdash s: A \rrbracket & =g: X \rightarrow Z
\end{aligned}
$$

Then

$$
M \llbracket \Gamma \vdash \lambda x: A . t: A \rightarrow B \rrbracket=\operatorname{cur} f: X \rightarrow Z^{\gamma}
$$

and hence

$$
\begin{array}{ll}
M \llbracket \Gamma \vdash(\lambda x: A . t) s: B \rrbracket & \\
=\operatorname{app} \circ\langle\operatorname{cur} f, g\rangle & \\
=\operatorname{app} \circ\left(\operatorname{cur} f \times \operatorname{id} \gamma_{Y}\right) \circ\left\langle\operatorname{id}_{X}, g\right\rangle & \text { since }(a \times b) \circ\langle c, d\rangle=\langle a \circ c, b \circ d\rangle \\
=f \circ\left\langle i d_{X}, g\right\rangle & \\
=M \llbracket \vdash \vdash t[s / x]: B \rrbracket & \\
\text { by definition of cur } f \\
=M \text { by the Substitution Theorem }
\end{array}
$$

as required.

The internal language of a ccc, \mathbf{C}

- one ground type for each C-object X
- for each $X \in \mathbf{C}$, one constant f^{X} for each C-morphism $f: 1 \rightarrow X$ ("global element" of the object \boldsymbol{X})

The types and terms of STLC over this language usefully describe constructions on the objects and morphisms of \mathbf{C} using its cartesian closed structure, but in an "element-theoretic" way.

For example...

Example

In any ccc \mathbf{C}, for any $X, Y, Z \in \mathbf{C}$ there is an isomorphism $Z^{(X \times Y)} \cong\left(Z^{Y}\right)^{X}$

Example

In any ccc \mathbf{C}, for any $X, Y, Z \in \mathbf{C}$ there is an isomorphism $Z^{(X \times Y)} \cong\left(Z^{Y}\right)^{X}$
which in the internal language of \mathbf{C} is described by the terms

$$
\begin{aligned}
& \diamond \vdash s:((X \times Y) \rightarrow Z) \rightarrow(X \rightarrow(Y \rightarrow Z)) \\
& \diamond \vdash t:(X \rightarrow(Y \rightarrow Z)) \rightarrow((X \times Y) \rightarrow Z)
\end{aligned}
$$

where $\left\{\begin{array}{l}s \triangleq \lambda f:(X \times Y) \rightarrow Z . \lambda x: X \cdot \lambda y: \Upsilon . f(x, y) \\ t \triangleq \lambda g: X \rightarrow(Y \rightarrow Z) . \lambda z: X \times Y \cdot g(\text { fst } z)(\operatorname{snd} z)\end{array}\right.$
and which satisfy $\left\{\begin{array}{l}\diamond, f:(X \times Y) \rightarrow Z \vdash t(s f)={ }_{\beta \eta} f \\ \diamond, g: X \rightarrow(Y \rightarrow Z) \vdash s(t g)={ }_{\beta \eta} g\end{array}\right.$

Free cartesian closed categories

The Soundness Theorem has a converse-completeness.
In fact for a given set of ground types and typed constants there is a single ccc F (the free ccc for that language) with an interpretation function M so that $\Gamma \vdash s={ }_{\beta \eta} t: A$ is provable iff $M \llbracket \Gamma \vdash s: A \rrbracket=M \llbracket \Gamma \vdash t: A \rrbracket$ in F .

Free cartesian closed categories

The Soundness Theorem has a converse-completeness.
In fact for a given set of ground types and typed constants there is a single ccc
F (the free ccc for that language) with an interpretation function M so that
$\Gamma \vdash s={ }_{\beta \eta} t: A$ is provable iff $M \llbracket \Gamma \vdash s: A \rrbracket=M \llbracket \Gamma \vdash t: A \rrbracket$ in F .

- F-objects are the STLC types over the given set of ground types
- F-morphisms $A \rightarrow B$ are equivalence classes of STLC terms t satisfying $\diamond \vdash t: A \rightarrow B$ (so t is a closed term-it has no free variables) with respect to the equivalence relation equating s and t if $\diamond \vdash s={ }_{\beta \eta} t: A \rightarrow B$ is provable.
- identity morphism on A is the equivalence class of $\diamond \vdash \lambda x: A . x: A \rightarrow A$.
- composition of a morphism $A \rightarrow B$ represented by $\diamond \vdash s: A \rightarrow B$ and a morphism $B \rightarrow C$ represented by $\diamond \vdash t: B \rightarrow C$ is represented by $\diamond \vdash \lambda x: A . t(s x): A \rightarrow C$.

Curry-Howard correspondence

Logic		Type Theory
propositions	\leftrightarrow	types
proofs	\leftrightarrow	terms

E.g. IPL versus STLC.

Curry-Howard for IPL vs STLC

Proof of $\diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta \vdash \varphi \Rightarrow \theta$ in IPL

where $\Phi=\diamond, \quad \varphi \Rightarrow \psi, \quad \psi \Rightarrow \theta, \quad \varphi$

Curry-Howard for IPL vs STLC

and a corresponding STLC term

where $\Phi=\diamond, y: \varphi \Rightarrow \psi, z: \psi \Rightarrow \theta, x: \varphi$

Curry-Howard-Lawvere/Lambek correspondence

Logic		Type Theory		Category Theory
propositions	\leftrightarrow	types	\leftrightarrow	objects
proofs	\leftrightarrow	terms	\leftrightarrow	morphisms

E.g. IPL versus STLC versus CCCs

Curry-Howard-Lawvere/Lambek correspondence

Logic		Type Theory		Category Theory
propositions	\leftrightarrow	types	\leftrightarrow	objects
proofs	\leftrightarrow	terms	\leftrightarrow	morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences-we first need to define the notions of functor and natural transformation in order to define the notion of equivalence of categories.

