Lecture 8

Recall:

Simply-Typed Lambda Calculus (STLC)

Types: $A, B, C, \ldots::=$

$G, G^{\prime}, G^{\prime \prime} \ldots$	"ground" types
unit	unit type
$A \times B$	product type
$\boldsymbol{A \rightarrow B}$	function type

Terms: $s, t, r, \ldots::=$

c^{A}	constants (of given type A)
x	variable (countably many)
()	unit value
(s, t)	pair
fit t sud t	projections
$\lambda x: A . t$	function abstraction
$s t$	function application

Semantics of STLC terms in a ac

Given a cartesian closed category C,
given any function M mapping

- ground types G to C-objects $M(G)$
- constants c^{A} to C-morphisms $M\left(c^{A}\right): 1 \rightarrow M \llbracket A \rrbracket$
we get a function mapping provable instances of the typing relation $\Gamma \vdash t: A$ to \mathbf{C}-morphisms

$$
M \llbracket \Gamma \vdash t: A \rrbracket: M \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket
$$

defined by recursing over the proof of $\Gamma \vdash t: A$ from the typing rules (which follows the structure of t):

Semantics of STLC terms in a ccc

Variables:

$$
\begin{aligned}
& M \llbracket \Gamma, x: A \vdash x: A \rrbracket=M \llbracket \Gamma \rrbracket \times M \llbracket A \rrbracket \xrightarrow{\pi_{2}} M \llbracket A \rrbracket \\
& M \llbracket \Gamma, x^{\prime}: A^{\prime} \vdash x: A \rrbracket= \\
& \quad M \llbracket \Gamma \rrbracket \times M \llbracket A^{\prime} \rrbracket \xrightarrow{\pi_{1}} M \llbracket \Gamma \rrbracket \xrightarrow{M \llbracket \Gamma \vdash x: A \rrbracket} M \llbracket A \rrbracket
\end{aligned}
$$

Constants:

$$
M \llbracket \Gamma \vdash c^{A}: A \rrbracket=M \llbracket \Gamma \rrbracket \xrightarrow{\langle \rangle} 1 \xrightarrow{M\left(c^{A}\right)} M \llbracket A \rrbracket
$$

Unit value:

$$
M \llbracket \Gamma \vdash(): \text { unit } \rrbracket=M \llbracket \Gamma \rrbracket \xrightarrow{\langle \rangle} 1
$$

Semantics of STLC terms in a ccc

Pairing:

$$
\begin{aligned}
& M \llbracket \Gamma \vdash(s, t): A \times B \rrbracket= \\
& \quad M \llbracket \Gamma \rrbracket \xrightarrow{\langle M \llbracket \vdash \vdash: A], M \llbracket \vdash \vdash t: B]\rangle} M \llbracket A \rrbracket \times M \llbracket B \rrbracket
\end{aligned}
$$

Projections:

$$
M \llbracket \Gamma \vdash \mathrm{fst} t: A \rrbracket=
$$

$$
M \llbracket \Gamma \rrbracket \xrightarrow{M \llbracket \Gamma \vdash t: A \times B \rrbracket} M \llbracket A \rrbracket \times M \llbracket B \rrbracket \xrightarrow{\pi_{1}} M \llbracket A \rrbracket
$$

Semantics of STLC terms in a ccc

Pairing:

$$
M \llbracket \Gamma \vdash(s, t): A \times B \rrbracket=
$$

$$
M \llbracket \Gamma \rrbracket \xrightarrow{\langle M[\Gamma \vdash s: A], M \llbracket\lceil\vdash t: B]\rangle} M \llbracket A \rrbracket \times M \llbracket B \rrbracket
$$

Projections:

Given that $\Gamma \vdash \mathrm{fst} t: A$ holds, there is a unique type \boldsymbol{B} such that $\boldsymbol{\Gamma} \vdash \boldsymbol{t}: \boldsymbol{A} \times \boldsymbol{B}$ already holds.

$$
M \llbracket \Gamma \rrbracket \xrightarrow{M \llbracket \Gamma \vdash t: A \times \dot{B}_{\rrbracket}} M \llbracket A \rrbracket \times M \llbracket B \rrbracket \xrightarrow{\pi_{1}} M \llbracket A \rrbracket
$$

Lemma. If $\Gamma \vdash t: A$ and $\Gamma \vdash t: B$ are provable, then $A=B$.

Semantics of STLC terms in a ccc

Pairing:

$$
\begin{aligned}
& M \llbracket \Gamma \vdash(s, t): A \times B \rrbracket= \\
& \quad M \llbracket \Gamma \rrbracket \stackrel{\langle\llbracket \llbracket \vdash \vdash s: A], M \llbracket \vdash \vdash t: B]\rangle}{ } M \llbracket A \rrbracket \times M \llbracket B \rrbracket
\end{aligned}
$$

Projections:

$$
M \llbracket \Gamma \vdash \operatorname{snd} t: B \rrbracket=
$$

$$
M \llbracket \Gamma \rrbracket \xrightarrow{M \llbracket \Gamma \vdash t: A \times B \rrbracket} M \llbracket A \rrbracket \times M \llbracket B \rrbracket \xrightarrow{\pi_{2}} M \llbracket B \rrbracket
$$

(As for the case of fst, if $\Gamma \vdash \operatorname{snd} t: B$, then $\Gamma \vdash t: A \times B$ already holds for a unique type A.)

Semantics of STLC terms in a ccc

Function abstraction:

$$
\begin{aligned}
& M \llbracket \Gamma \vdash \lambda x: \text { A.t }: A \rightarrow B \rrbracket= \\
& \quad \operatorname{cur} f: M \llbracket \Gamma \rrbracket \rightarrow(M \llbracket A \rrbracket \rightarrow M \llbracket B \rrbracket)
\end{aligned}
$$

where

$$
f=M \llbracket \Gamma, x: A \vdash t: B \rrbracket: M \llbracket \Gamma \rrbracket \times M \llbracket A \rrbracket \rightarrow M \llbracket B \rrbracket
$$

Semantics of STLC terms in a ccc

Function application:

$$
\begin{aligned}
& M \llbracket \Gamma \vdash s t: B \rrbracket= \\
& M \llbracket \Gamma \rrbracket \xrightarrow{\langle f, g\rangle}(M \llbracket A \rrbracket \rightarrow M \llbracket B \rrbracket) \times M \llbracket A \rrbracket \xrightarrow{\text { app }} M \llbracket B \rrbracket
\end{aligned}
$$

where

$$
\begin{aligned}
A= & \text { unique type such that } \Gamma \vdash s: A \rightarrow B \text { and } \Gamma \vdash t: A \\
& \text { already holds (exists because } \Gamma \vdash s t: B \text { holds) } \\
f= & M \llbracket \Gamma \vdash s: A \rightarrow B \rrbracket: M \llbracket \Gamma \rrbracket \rightarrow(M \llbracket A \rrbracket \rightarrow M \llbracket B \rrbracket) \\
g= & M \llbracket \Gamma \vdash t: A \rrbracket: M \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket
\end{aligned}
$$

Example

Consider $t \triangleq \lambda x: A \cdot g(f x)$ so that $\Gamma \vdash t: A \rightarrow C$ when $\Gamma \triangleq \diamond, f: A \rightarrow B, g: B \rightarrow C$.
Suppose $M \llbracket A \rrbracket=X, M \llbracket B \rrbracket=Y$ and $M \llbracket C \rrbracket=Z$ in C. Then

$$
\begin{aligned}
M \llbracket \Gamma \rrbracket & =\left(1 \times Y^{X}\right) \times Z^{Y} \\
M \llbracket \Gamma, x: A \rrbracket & =\left(\left(1 \times Y^{X}\right) \times Z^{Y}\right) \times X
\end{aligned}
$$

$$
M \llbracket \Gamma, x: A \vdash x: A \rrbracket=\pi_{2}
$$

$$
M \llbracket \Gamma, x: A \vdash g: B \rightarrow C \rrbracket=\pi_{2} \circ \pi_{1}
$$

$$
M \llbracket \Gamma, x: A \vdash f: A \rightarrow B \rrbracket=\pi_{2} \circ \pi_{1} \circ \pi_{1}
$$

$$
M \llbracket \Gamma, x: A \vdash f x: B \rrbracket=\operatorname{app} \circ\left\langle\pi_{2} \circ \pi_{1} \circ \pi_{1}, \pi_{2}\right\rangle
$$

$$
M \llbracket \Gamma, x: A \vdash g(f x): C \rrbracket=\operatorname{app} \circ\left\langle\pi_{2} \circ \pi_{1}, \operatorname{app} \circ\left\langle\pi_{2} \circ \pi_{1} \circ \pi_{1}, \pi_{2}\right\rangle\right\rangle
$$

$$
M \llbracket \Gamma \vdash t: A \rightarrow C \rrbracket=\operatorname{cur}\left(\operatorname{app} \circ\left\langle\pi_{2} \circ \pi_{1}, \operatorname{app} \circ\left\langle\pi_{2} \circ \pi_{1} \circ \pi_{1}, \pi_{2}\right\rangle\right\rangle\right)
$$

STLC equations

take the form $\Gamma \vdash s=t: A$ where $\Gamma \vdash s: A$ and $\Gamma \vdash t: A$ are provable.
Such an equation is satisfied by the semantics in a ccc if $\boldsymbol{M} \llbracket \Gamma \vdash s: A \rrbracket$ and $\boldsymbol{M} \llbracket \Gamma \vdash \boldsymbol{t}: \boldsymbol{A} \rrbracket$ are equal C-morphisms $\boldsymbol{M} \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket$.

Qu: which equations are always satisfied in any ccc?

STLC equations

take the form $\Gamma \vdash s=t: A$ where $\Gamma \vdash s: A$ and $\Gamma \vdash t: A$ are provable.
Such an equation is satisfied by the semantics in a ccc if $\boldsymbol{M} \llbracket \Gamma \vdash s: A \rrbracket$ and $\boldsymbol{M} \llbracket \Gamma \vdash \boldsymbol{t}: \boldsymbol{A} \rrbracket$ are equal C-morphisms $\boldsymbol{M} \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket$.

Qu: which equations are always satisfied in any ccc?
Ans: $(\alpha) \beta \eta$-equivalence - to define this, first have to define alpha-equivalence, substitution and its semantics.

Alpha equivalence of STLC terms

The names of λ-bound variables should not affect meaning.
E.g. $\lambda f: A \rightarrow B . \lambda x: A . f x$ should have the same meaning as $\lambda x: A \rightarrow B . \lambda y: A . x y$

Alpha equivalence of STLC terms

The names of λ-bound variables should not affect meaning.
E.g. $\lambda f: A \rightarrow B . \lambda x: A$. $f x$ should have the same meaning as $\lambda x: A \rightarrow B . \lambda y: A . x y$
This issue is best dealt with at the level of syntax rather than semantics: from now on we re-define "STLC term" to mean not an abstract syntax tree (generated as described before), but rather an equivalence class of such trees with respect to alpha-equivalence $\boldsymbol{s}={ }_{\alpha} \boldsymbol{t}$, defined as follows. .
(Alternatively, one can use a "nameless" (de Bruijn) representation of terms.)

Alpha equivalence of STLC terms

$$
\begin{aligned}
& \overline{\frac{c^{A}={ }_{\alpha} c^{A}}{}} \overline{x={ }_{\alpha} x} \overline{()={ }_{\alpha}()} \sqrt{\frac{s={ }_{\alpha} s^{\prime} \quad t={ }_{\alpha} t^{\prime}}{(s, t)={ }_{\alpha}\left(s^{\prime}, t^{\prime}\right)}} \\
& \left.\frac{t={ }_{\alpha} t^{\prime}}{\text { fst } t={ }_{\alpha} \text { fst } t^{\prime}} \frac{t={ }_{\alpha} t^{\prime}}{\operatorname{snd} t={ }_{\alpha} \operatorname{snd} t^{\prime}} \right\rvert\, \frac{s={ }_{\alpha} s^{\prime} \quad t={ }_{\alpha} t^{\prime}}{s t={ }_{\alpha} s^{\prime} t^{\prime}} \\
& \frac{(y x) \cdot t={ }_{\alpha}\left(y x^{\prime}\right) \cdot t^{\prime} \quad y \text { does not occur in }\left\{x, x^{\prime}, t, t^{\prime}\right\}}{\lambda x: A . t={ }_{\alpha} \lambda x^{\prime}: A . t^{\prime}}
\end{aligned}
$$

Alpha equivalence of STLC terms

Alpha equivalence of STLC terms

$$
\begin{aligned}
& \frac{(y x) \cdot t={ }_{\alpha}\left(y x^{\prime}\right) \cdot t^{\prime} \quad y \text { does not occur in }\left\{x, x^{\prime}, t, t^{\prime}\right\}}{\lambda x: A . t={ }_{\alpha} \lambda x^{\prime}: A . t^{\prime}}
\end{aligned}
$$

E.g.
$\lambda x: A . x x={ }_{\alpha} \lambda y: A . y y \neq{ }_{\alpha} \lambda x: A . x y$
$(\lambda y: A . y) x={ }_{\alpha}(\lambda x: A . x) x \neq \alpha(\lambda x: A . x) y$

Substitution

$t[s / x]=$ result of replacing all free occurrences of variable x in term t (i.e. those not occurring within the scope of a $\lambda x: A$._ binder) by the term s, alpha-converting λ-bound variables in t to avoid them "capturing" any free variables of t.
E.g. $(\lambda y: A .(y, x))[y / x]$ is $\lambda z: A .(z, y)$ and is not $\lambda y: A .(y, y)$

Substitution

$t[s / x]=$ result of replacing all free occurrences of variable x in term t (i.e. those not occurring within the scope of a $\lambda x: A$._ binder) by the term s, alpha-converting λ-bound variables in t to avoid them "capturing" any free variables of t.
E.g. $(\lambda y: A .(y, x))[y / x]$ is $\lambda z: A .(z, y)$ and is not $\lambda y: A .(y, y)$

The relation $t[s / x]=t^{\prime}$ can be inductively defined by the following rules...

Substitution

$\frac{\overline{c^{A}[s / x]=c^{A}}}{\bar{x}[s / x]=s} \overline{\frac{y \neq x}{y[s / x]=y} \overline{()[s / x]=()}}$
$\frac{t_{1}[s / x]=t_{1}^{\prime} \quad t_{2}[s / x]=t_{2}^{\prime}}{\left(t_{1}, t_{2}\right)[s / x]=\left(t_{1}^{\prime}, t_{2}^{\prime}\right)} \frac{t[s / x]=t^{\prime}}{(\text { fst } t)[s / x]=\text { fst } t^{\prime}}$
$\frac{t[s / x]=t^{\prime}}{(\operatorname{snd} t)[s / x]=\operatorname{snd} t^{\prime}} \frac{t_{1}[s / x]=t_{1}^{\prime} \quad t_{2}[s / x]=t_{2}^{\prime}}{\left(t_{1} t_{2}\right)[s / x]=t_{1}^{\prime} t_{2}^{\prime}}$
$\frac{t[s / x]=t^{\prime}}{y \neq x \text { and } y \text { does not occur in } s}$
$(\lambda y: A . t)[s / x]=\lambda y: A . t^{\prime}$

Semantics of substitution in a ccc

Substitution Lemma If $\Gamma \vdash s: A$ and $\Gamma, x: A \vdash t: B$ are provable, then so is $\Gamma \vdash t[s / x]: B$.

Substitution Theorem If $\Gamma \vdash s: A$ and
$\Gamma, x: A \vdash t: B$ are provable, then in any ccc the following diagram commutes:

