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Figure 1: This state-of-the-art report provides an overview of RGB-D scene reconstruction approaches. We discuss recent trends in the
geometric reconstruction of static (left) and dynamic scenes (middle) as well as the acquisition of corresponding color and reflectance (right).

Abstract

The advent of affordable consumer grade RGB-D cameras has brought about a profound advancement of visual scene recon-
struction methods. Both computer graphics and computer vision researchers spend significant effort to develop entirely new
algorithms to capture comprehensive shape models of static and dynamic scenes with RGB-D cameras. This led to significant
advances of the state of the art along several dimensions. Some methods achieve very high reconstruction detail, despite limited
sensor resolution. Others even achieve real-time performance, yet possibly at lower quality. New concepts were developed
to capture scenes at larger spatial and temporal extent. Other recent algorithms flank shape reconstruction with concurrent
material and lighting estimation, even in general scenes and unconstrained conditions. In this state-of-the-art report, we analyze
these recent developments in RGB-D scene reconstruction in detail and review essential related work. We explain, compare,
and critically analyze the common underlying algorithmic concepts that enabled these recent advancements. Furthermore, we
show how algorithms are designed to best exploit the benefits of RGB-D data while suppressing their often non-trivial data
distortions. In addition, this report identifies and discusses important open research questions and suggests relevant directions
for future work.
CCS Concepts
•Computing methodologies , . . ., Reconstruction; Appearance and texture representations; Motion capture;

1. Introduction

The core technology behind today’s structured light or time-of-
flight-based depth cameras already dates back several decades.
However, the recent introduction of consumer grade sensors that
package this technology into mass-manufactured devices of small
form factor made RGB-D cameras a commodity available to a larger
user base. Microsoft started this development in 2010 with the
Kinect, and several other devices followed, e.g., RGB-D cameras
such as the Intel RealSense, Primesense Carmine, Google Tango, or
Occiptial’s Structure Sensor. These cameras are not only available

at low price points, but these lightweight sensors also capture per-
pixel color and depth images at adequate resolution and at real-time
rates. In conjunction, these features put them ahead of even some far
more expensive 3D scanning systems, in particular when developing
solutions for consumer grade applications. The potential of these
new sensors has been quickly recognized in visual computing. For
instance, the seminal KinectFusion work [NDI∗11,IKH∗11] had re-
markable impact in the computer graphics and vision communities,
and triggered an incredible response. Since then, the state of the
art has been greatly advanced in computer graphics and computer

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13386



M. Zollhöfer et al. / State of the Art on 3D Reconstruction with RGB-D Cameras

vision research developing new methods to reconstruct models of
the static and dynamic world around us.

To enable this progress, many foundational research problems in
this area were revisited and rethought to make best use of the new
capabilities and to compensate the weaknesses of RGB-D cameras.
First, highly innovative new algorithms for RGB-D-based dense 3D
geometry reconstruction of static environments were developed.
They have pushed the state of the art along several dimensions: new
concepts to enable real-time scanning and scan integration were
introduced, new ideas for drift reduction and live scanning of larger
scenes were presented, and new ideas to obtain high geometry qual-
ity despite notable sensor noise were researched. Second, entirely
new methods for capturing dense 3D geometry models of dynamic
scenes and scene elementswere proposed, such asmodels ofmoving
humans and rigid objects, or of general deformable surfaces. Also in
this area, the state of the art has been advanced in several ways. For
example, new template-based methods have reached previously un-
seen runtime performance and accuracy levels, evenwhen capturing
with a single RGB-D camera. Others introduced new concepts to
achieve very high reconstruction detail, yet at higher computational
cost. Innovative concepts to capture space-time coherent geometry
and learn shape templates on the fly have opened up further new
possibilities. Third, entirely new methods were developed that cap-
ture additional scene properties from RGB-D data alongside with
geometry. In particular, new methods were proposed that capture
material and reflectance models of static and dynamic scenes, often
times in parallel with illumination estimates, mainly with a focus
on uncalibrated environments. Simultaneous shape and appearance
capture is much harder, but does not only lead to more expressive
scene models, but it also adds robustness to reconstruction under
difficult scene conditions.

In this report, we will review and compare in detail the state-of-
the-art methods from all three of these areas. We will explain the
common new algorithmic concepts underlying recent innovations.
In particular, we will explain and compare newly proposed concepts
for RGB-D geometry processing and shape representation. We will
review fundamental data structures and concepts enabling the scan-
ning of shape, material, and illumination even on large spatial and
temporal extent. Our focus will be on methods achieving interac-
tive or real-time frame rates. However, we will also explore the
fundamental basics enabling this runtime performance, and show
how they arose from ideas originally developed for offline recon-
struction. The report will also critically analyze recent progress and
discuss open questions and avenues for future research.

1.1. RGB-D Cameras and their Characteristics

Traditionally, there are two main approaches in range sensing, i.e.,
triangulation and Time-of-Flight (ToF). Triangulation can be real-
ized as passive approach, i.e., stereo vision, or as active systems,
such as structured light. While stereo vision computes the dispar-
ity between two images taken at different positions, structured light
cameras project an infrared light pattern onto the scene and estimate
the disparity given by the perspective distortion of the pattern due
to the varying object’s depth. Light detection and ranging (LIDAR)
scanners and ToF cameras, on the other hand, measure the time
that light emitted by an illumination unit requires to travel to an

object and back to a detector. While LIDAR comprise mechanical
components in order to realize the scanning approach, ToF cameras
perform the time-of-flight computation on integrated circuits using
standard CMOS or CCD technologies.

With early range cameras being (somewhat) accessible in the
early 2000’s, RGB-D camera prototypes have been set up in various
research labs [LKH07, HJS08]. Up to now, mass-market RGB-D
cameras rely on structured light or ToF camera approaches [KP15].
These RGB-D cameras often suffer from very specific noise charac-
teristics and sometimes very challenging data distortions, which, in
most cases, have to be taken into account in algorithm development.
Functionally, there are several differences between structured light
based RGB-D cameras, such as the first Kinect, and cameras on
the basis of ToF, e.g., the Kinect version V2. They are related to
the camera’s resilience against background light, e.g. for outdoor
applications, the quality of depth data, and the robustness in dealing
with semi-transparent media and other, so-called multi-path effect,
resulting from indirect paths taken by the active light [SLK15].
Another main difference between structured light and ToF camera
approaches is that structured light requires a baseline between the
illumination unit and the area sensor, which is not required for ToF.

1.2. Related STARs and Surveys

This state-of-the-art report addresses recent developments in RGB-
D scene reconstruction in terms of algorithmic concepts and with
respect to different application scenarios, e.g., the reconstruction
of static scenes (Sec. 2), dynamic scenes (Sec. 3), and color and
appearance capture (Sec. 4). There are a few surveys that are re-
lated to this STAR, they, however, focus on modeling techniques
for static scenes and related public datasets [CLH15, HSR15].
Berger et al. [BTS∗14] presented the “State of the Art in Surface
Reconstruction from Point Clouds” in Eurographics 2014. They
focus on 3D surface reconstruction from point cloud data and char-
acterize methods with respect to imperfections of the input point
cloud, the type of input data (geometry, color, and normal infor-
mation), the classes of supported shapes, and the output surface
format. Bonneel et al. [BKPB17a] presented a survey on “Intrinsic
Decompositions for Image Editing” in Eurographics 2017. They
focus on methods that decompose a color image into its reflectance
and illumination layers. They classify the approaches based on the
used priors that are imposed on the intrinsic decomposition prob-
lem.Weinmann et al. [WLGK16] presented a tutorial on “Advances
in Geometry and Reflectance Acquisition” in Eurographics 2016.
They focus on techniques that require sophisticated hardware setups
to reconstruct high quality shape and reflectance information such
as (spatially-varying) BRDFs and BSSRDFs from image data. For
more information on the general topic of template and model-based
non-rigid registration we refer to the SIGGRAPH Asia 2016 and
SGP 2015 courses of Bouaziz et al. [BTP15,BTLP16]. Even though
these surveys and courses are related, this state-of-the-art report has
a different focus: We focus on methods that extract scene informa-
tion in an online fashion, e.g., processing and accumulating data
directly from a raw RGB-D input data stream. Furthermore, this
STAR also describes the acquisition of dynamic scenes and of more
sophisticated appearance models, such as spatially-varying BRDFs.
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(a) KinectFusion [NDI∗11] (b) Voxel Hashing [NZIS13]

(c) Voxels vs. Points [KLL∗13a] (d) Elastic Fragments [ZMK13]

Figure 2: Static Scene Reconstruction: single object reconstruction using KinectFusion 2(a), capturing large scenes using Voxel Hashing 2(b),
comparison between voxel-based (left column) and point-based (middle and right column) representations 2(c), and the impact of drift and
the corresponding loop closure solution 2(d). Images taken from [NDI∗11], [NZIS13], [KLL∗13a], and [ZMK13].

2. Static Scene Reconstruction

3D reconstruction of static environments has its roots in several
areas within computer vision and graphics. Online reconstruction is
directly related to Simultaneous Localization andMapping (SLAM),
which focuses on the problem of robot navigation in unknown en-
vironments; e.g., [MAMT15, ESC14] and many others. Here, the
position and orientation of a mobile robot or an unmanned vehicle
is tracked (localization) and the observed scene data, mainly the
scene geometry, is fused into one common digital representation
(mapping). While there is a strong focus on trajectory and pose
optimization in SLAM, the reconstruction is typically limited to a
sparse point cloud. In computer graphics, on the other hand, dense
RGB-D reconstructions with high geometric quality are of primary
interest. Most modern approaches are based on the fundamental
research by Curless and Levoy [CL96] who introduced the seminal
work of volumetric fusion, thus providing the foundation for the
first real-time RGB-D reconstruction methods [RHHL02].

The introduction of low-cost RGB-D cameras such as the Mi-
crosoft Kinect as part of the XBox game console in combination
with the ubiquitous accessibility of GPU processing power opened
the door for the online reconstruction of static scenes at consumer
level, using the RGB-D camera as a hand-held device. The described
theoretical foundation and the availability of commodity hardware,
enabled the development of modern online reconstruction methods
such as Kinect Fusion [NDI∗11, IKH∗11], which are the main fo-
cus of this section. Poisson surface reconstruction [KBH06,KH13],

based on optimizing for an indicator function, is another popular
direction, which is often used in the offline context for point cloud
data. An overview of RGB-D reconstruction frameworks is provided
in Tab. 1.

In the following, we first give a brief overview of a reference
system (Sec. 2.1) for online static scene reconstruction that leverages
the depth and color information captured by a commodity RGB-D
sensor. Further on, we describe the technical details and different
choices for each of its constituting components, namely the data
preprocessing (Sec. 2.2), the camera pose estimation (Sec. 2.3), and
the underlying scene representation (Sec. 2.4).

2.1. Fundamentals of Static Scene Reconstruction

Although there are many different algorithms for RGB-D recon-
struction of static scenes, most if not all of these approaches have a
very similar processing pipeline, which we describe here for refer-
ence (c.f. Fig. 3).

In the first stage, the Depth Map Preprocessing, noise reduc-
tion and outlier removal is applied to the incoming RGB-D data.
Depending on the following stages, additional information is de-
rived from the input range map V and stored in additional input
maps (c.f. Sec. 2.2). In the subsequent stage, the Camera Pose Es-
timation, the best aligning transformation T for the current frame
(c.f. Sec. 2.3) is computed. This can be achieved in a frame-to-
frame, frame-to-model, or global fashion. Finally, all points p ∈ V
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Method Scene Data Structure Tracker Data Association Properties Speed
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Newcombe et al. [NDI∗11] X - X - - - - X - - - X - - - - X -
Izadi et al. [IKH∗11] X - X - - - - X - - - X - - - X X -
Whelan et al. [WKF∗12] X - X - - - - X - X - X - - X - X -
Nießner et al. [NZIS13] X - - - X - - X - - - X - - X - X -
Chen et al. [CBI13] X - - X - - - X - - - X - - X - X -
Steinbrüker et al. [SKC13] X - - X - - X - - - - X X X - - X -
Zhou et al. [ZK13] X - X - - - - - X X - X - X X - - X
Zhou et al. [ZMK13] X - X - - - - - X X - X - X X - - X
Keller et al. [KLL∗13a] - X - - - X - X - - - X - - - X X -
Choi et al. [CZK15a] X - X - - - - - X - X - - X X - - X
Whelan et al. [WSMG∗16] - X - - - X - X - - - X X X - - X -
Dai et al. [DNZ∗17] X - - - X - - - X X - X X X X - X -

Table 1: Overview of the state of the art in RGB-D based 3D reconstruction: current approaches can be differentiated in terms of the used
scene representation, the employed camera tracker, the used data association strategies, support for loop closure, streaming, robustness to
dynamic foreground objects, and their runtime performance. All of these dimensions are discussed in detail in this report.

Model
Data

Depth Map
Fusion

Camera Pose
Estimation

Depth Map
Fusion

Input Depth

Local Surface Reconstruction

Figure 3: Overview of the typical RGB-D reconstruction pipeline:
first, pre-processed input data is aligned with respect to the current
surface reconstruction; second, given the estimated camera pose,
the input data is integrated/fused into the current 3D model of the
reconstruction.

from the current input frame are transformed with the estimated
transformation T and are merged into the common modelM in the
Depth Map Fusion stage (c.f. Sec 2.4).

2.2. Depth Map Preprocessing

It has been shown that the noise of depth images of low-cost cam-
eras depends on a variety of parameters, such as the distance to the
acquired object, or the pixel position in the depth image [SLK15].
Most commonly, a bilateral filter [TM98] is applied for noise re-
duction and per-point normals are computed using finite differences
(forward or central). Depending on the model representation, data
association, and pose optimization approach, further geometric in-
formation is estimated. This includes noise or reliability informa-
tion of the individual range measurements [MHFdS∗12, LWK15],
the radius of the corresponding 3D point [KLL∗13b] or principal
curvatures [LKS∗17].

2.3. Camera Pose Estimation

Pose estimation computes a 6-DoF poseT for every incoming RGB-
D frame with respect to the previous frame, to the so-far recon-
structed model, or to all previous frames.

2.3.1. Tracking Objectives

Early works on off-line 3D shape registration heavily inspire cur-
rent approaches for real-time camera tracking based on depth
streams. The first proposed techniques employed simple frame-
to-frame variants of the Iterative Closest Point Algorithm (ICP)
[BM92, YM92] and were based on a point-to-point [BM92] or
point-to-plane [YM92] error metric. Frame-to-frame tracking es-
timates the delta transformation ∆Tt−1 to the previous input frame
and concatenates the estimate to the previous pose estimation result
Tt = ∆Tt−1 ·Tt−1. With the invention of fast and efficient variants
of ICP [RL01], online in-hand scanning with live feedback became
a reality [RHHL02]. This was a big step forward, since the tight
feedback loop enabled the user of the system to fill reconstruction
holes and decide if the object has already been completely digitized.
One severe problem of the employed frame-to-frame strategies is
the accumulation of tracking drift over long scanning sequences.

To reduce this problem, frame-to-model tracking has been ex-
tensively used in recent online RGB-D reconstruction frameworks
[NDI∗11,IKH∗11,WKF∗12,CBI13,NZIS13]. Tracking is based on
the point-to-plane ICP described by [Low04a]. Frame-to-model
tracking has two significant advantages over a simple frame-to-
frame alignment strategy. First, instead of the last frame, a syn-
thetically rendered depth map of the current reconstruction state
is employed to anchor the reconstruction, thus drastically reducing
temporal tracking drift. Second, if a point-to-plane distance metric
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is used, the stabilized model normals can be utilized to define the
tangent plane instead of the noisy input normals, which leads to
higher accuracy tracking and increased robustness.

While frame-to-model tracking significantly reduces temporal
tracking drift, it does not completely solve the problem of local error
accumulation, since local tracking errors can still add up over time.
This can lead to loop closure problems if already scanned parts of the
scene are re-encountered over a different path in the same scanning
session. In this case, the previously obtained reconstruction will
not match the current depth observations leading to tracking failure
and/or double integration of surfaces. To alleviate such problems,
approaches for global pose optimization were introduced and first
applied to off-line 3D scene reconstruction [ZK13, ZMK13]. The
approach of Zhou et al. [ZK13] produces high-quality reconstruc-
tions using a hand-held consumer-grade sensor. They use points
of interest to preserve local detail in combination with global pose
optimization to distribute alignment errors equally over the scene.
In a follow-up work [ZMK13], to further increase the fidelity of the
reconstruction, non-rigid bundle adjustment is performed on elastic
fragments to deal with low-frequency camera distortions. The off-
line approach of Choi et al. [CZK15a] employs robust global pose
optimization based on line processes to eliminate wrong matches
and improve reconstruction quality. Very recently, the BundleFu-
sion approach of Dai et al. [DNZ∗17] enabled globally consistent
reconstruction at real-time frame rates based on online bundle ad-
justment and surface re-integration. For computational efficiency
and real-time performance, this approach organizes the input stream
in a hierarchy of chunks and leverages the computational power of
modern graphics hardware for data-parallel bundle adjustment. In
the first step, all frames in a new chunk are globally aligned to
each other (intra-chunk alignment). Afterwards each new chunk is
globally aligned with respect to all previous chunks (inter-chunk
alignment).

2.3.2. Data Association

Most camera tracking approaches that rely on frame-to-frame,
frame-to-model, or global pose optimization, require the identifi-
cation of corresponding points between individual frames and/or
the current model. The set of corresponding point pairs is fed into
the optimization (c.f. Sec. 2.3.1) in order to find the transforma-
tion that results in the best overall alignment. Essentially, there are
sparse approaches, which identify specific feature points, and dense
techniques that try to find correspondences to (almost) all point of
the incoming frame.

Sparse Correspondences In general, a set of sparse correspon-
dences is computed by matching feature points of the current color
and depth input to detected corresponding features in the previous
frames or in the model. Due to the computational complexity of
dense correspondence finding, early approaches only use a subset
of the incoming RGB-D observations. Statistical tests and sampling
on the data can be used to increase the number of good correspon-
dences [RL01,GIRL03].Detected andmatched sparse color features
over a temporal sequence of input frames can provide a sparse set of
valuable initial correspondences [GRB94]. A popular choice for the
feature extraction and matching is SIFT [Low99, Low04b, LS09],

which has been applied in several 3D scene reconstruction ap-
proaches [ZK15,HKH∗12,WJK∗13,DNZ∗17]. However, there are
many alternative feature sparse feature descriptors such as SURF
[BTVG06],ORB [RRKB11], ormore recently even learned descrip-
tors [HLJ∗15,YTLF16,ZSN∗17] . Another approach is to search for
correspondences across multiple frames [WG17].

Dense Correspondences All recent approaches use dense cor-
respondence finding in conjunction with projective data associa-
tion [BL95] and in combination with specific compatibility criteria
in order to select the “best” model point related to a given input
point by checking its projective neighborhood in image space. Most
approaches [NDI∗11, IKH∗11, WKF∗12, NZIS13, CBI13, SKC13,
ZMK13,KLL∗13a,WSMG∗16,DNZ∗17]measure spatial proximity
based on a point-to-plane [YM92] error metric. The point-to-plane
metric can be considered a first order approximation of the distance
to the target surface. Beyond spatial proximity, recent approaches
potentially consider distance related sensor uncertainty [NIL12],
compatibility of surface color [GRB94,NLB∗11, SKC13,RLL14],
of normals [Pul99, KLL∗13b], of gradients [SG14], and of local
curvature [LKS∗17].

2.3.3. Relocalization

The recovery from tracking failure is a crucial step in any ro-
bust camera tracking system. One of the first approaches to solve
this problem was proposed by Shotton et al. [SGZ∗13] by us-
ing regression forests to predict a probability density function of
a pixel’s location and was later extended to predict multi-modal
Gaussians [VNS∗15]. In their follow-up work, they propose a new
general framework for minimizing the reconstruction error in an
analysis-by-synthesis approach, which includes camera pose esti-
mation using a retrieval forest and a navigation graph as search
structure [VDN∗16], thus also enabling RGB-to-3D-model local-
ization. To overcome the problem of having to pre-train a regression
forest for each new scene, which takes several minutes, Cavallari
et al. [CGL∗17] introduced an approach that can adapt a generic
pre-trained forest to a new scene, thus making regression forests
real-time capable.

A keyframe-based technique for relocalization was proposed by
Glocker et al. [GSCI15] where, in case of tracking failure, poses
of keyframes that are similar to the current frame are retrieved
and used for reinitialization of the camera tracking. This approach
has been used by Whelan et al. [WLSM∗15] to detect previously
scanned areas and, in combination with a non-rigid deformation
algorithm (Sec. 3), to solve for loop closures. The global alignment
strategy of Dai et al. [DNZ∗17] solves tracking failures implicitly
as new chunks are globally compared to all previous chunks. If the
pose optimization for the current chunk fails, the chunk is ignored,
otherwise its geometry is integrated into the 3D model and its pose
is stored.

2.4. Geometry Representations and Fusion

The representation of the model M needs to be very efficient in
integrating the large amount of incoming range maps. Beyond this,
frame-to-model tracking requires an efficient way to generate virtual
views of the model from arbitrary viewpoints in order to align
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the incoming range maps with the model, mostly using projective
data association. There exist mainly two different representations to
accumulate the observed RGB-D data in one common 3D model.
Themost commonly usedway is to store the information in a regular
or hierarchical 3D voxel grid. Alternatively, the model can be stored
as accumulated 3D point set.

2.4.1. Voxel-Based Representation

The original research by Curless and Levoy [CL96] introduced
volumetric fusion by using a regular grid to store a discretized
version of a signed distance function (SDF) that represents the
model. This was adopted by the first real-time approach by
Rusinkiewicz et al. [RHHL02], and later by modern KinectFusion
methods [NDI∗11, IKH∗11]. Voxel-based representations are used
to implicitly store the model surface using an SDF, i.e., interior and
exterior voxels store the negative and positive distance to the closest
surface point, respectively. The surface itself is defined as the zero-
crossing of the SDF. The voxel size and the spatial extent of the grid
has to be defined prior to the execution of the algorithm. Additional
data, such as color, is commonly stored in per-voxel attributes.

As voxels close to the surface are of particular interest, truncated
signed distance functions (TSDFs) are commonly used. The basic
approach for accumulation of incoming range maps in voxel based
representations is to project each voxel onto the range map using the
estimated camera pose (c.f. Sec.2.3) and to evaluate its projective
distance. Commonly, the merging step is accomplished by weighted
averaging of the prior TSDF values in the grid and the incoming
one related to the range map. This merging step, which is normally
implemented using a weighted averaging scheme is very efficient in
removing sensor noise based on the temporal integration of multiple
distance samples.

To visualize voxel-based representations, e.g., for generating vir-
tual views, ray-casting is applied on the voxel-grid, e.g., using digital
differential analysis (DDA) [AW∗87] in combination with analytic
iso-surface intersection [PSL∗98]; alternatively a 3D mesh can ex-
tracted with the Marching Cubes level set method [LC87].

Regular voxel grids are very inefficient in terms of memory con-
sumption and bound to a predefined volume and resolution. In the
context of real-time scene reconstruction, where most approaches
heavily rely on the processing capability of modern GPUs, the spa-
tial extent and resolution of the voxel grid is typically limited by
GPU memory. In order to support larger spatial extents, various
approaches have been proposed to improve the memory efficiency
of voxel-based representations. In order to prevent data loss due
to range images acquired outside of the current reconstruction vol-
ume, Whelan et al. [WKF∗12] propose a simple dynamic shift of
the voxel grid, such that it follows the motion of the camera. The
approach converts the part of the volume that is shifted outside the
current reconstruction volume to a surface mesh and stores it sepa-
rately. While this enables larger scanning volumes, it requires heavy
out-of-core memory usage and already scanned, and streamed-out
surfaces, cannot be arbitrarily re-visited.

Voxel Hierarchies One way to store the surface effectively is to
use a hierarchy of voxels, such as an octree, where the (T)SDF
can be encoded in a sparse fashion around the actual surface.

Though not real-time capable, Fuhrmann and Goesele [FG11] in-
troduced a hierarchical SDF (hSDF) structure using an adaptive,
octree-like data structure providing different spatial resolutions.
Zeng et al. [ZZZL12, ZZZL13] use a fixed 4-level hierarchy and
store the TSDF on the finest level only. Chen et al. [CBI13] pro-
posed a similar 3-level hierarchy also with fixed resolution. Stein-
brücker et al. [SSC14] represents the scene in a multi-resolution
data structure for real-time accumulation on the CPU including an
incremental procedure for mesh outputs. Henry et al. [HFBM13]
subdivide the scene into many patch volumes, each consisting of a
regular voxel grid of arbitrary size and resolution. The patch vol-
umes are spatially organized in a pose graph, which is optimized
in order to achieve a globally consistent model. This approach is
interactive, but not fully real-time. An extremely compact hierarchy
is proposed by Reichl et al. [RWW16], who only store a binary grid
which is updated in a running window fashion.

Voxel Hashing Voxel hashing was introduced by Nießner et al.
[NZIS13]. The approach represents a virtually infinite scene by a
regular grid of smaller voxel blocks of predefined size and reso-
lution (c.f. Fig.2(b)), whose spatial locations are addressed with a
spatial hash function. Only the voxel blocks that actually contain ge-
ometry information are instantiated, and the corresponding indices
are stored in a linearized spatial hash. This strategy significantly re-
ducesmemory consumption and allows (theoretically) infinite scene
sizes. Compared to hierarchical approaches, the main benefit lies in
the very efficient data insertion and access, which both is in O(1).
The minimal memory and the high computational efficiency makes
hashing-based 3D reconstruction methods even applicable for mo-
bile phones, such as used in Google Tango [DKSX17]. In addition,
it allows to easily stream parts of the reconstruction out of core to
support high resolutions and extremely fast runtime performance.
Kahler et al. [KPR∗15] adopt the concept of voxel block hashing,
but uses a different hashing method to reduce the number of hash
collisions. Further on, they provide a hashing approach for irregular
grids with different resolution levels in order to capture different
parts of the scene at different levels of detail [KPVM16].

2.4.2. Point-Based Representation

Alternative to voxel-based representations, the acquired range im-
ages can be directly stored and accumulated in a point- or surfel-
based model [PZvBG00]. sThis sparse, point-based strategy is
used by several reconstruction approaches [KLL∗13b,WLSM∗15]
(c.f. Fig.2(c)). Additional information, such as point size/radius,
color, or other information, are stored as per-point attributes. The
point size, computed in the preprocessing step (Sec. 2.2), originates
from the projective acquisition of the range data and intrinsically
supports an adaptive resolution of the model. In order to prevent the
accumulation of outliers in point based models, at least two point
states are distinguished, i.e., stable and unstable points. Initially, as
points get into the model, they are unstable. Points get stable after
they have been merged with further incoming points at least a cer-
tain number of times (see below). This stabilization procedure may
also include further confidence scores related, e.g., to the reliability
of the incoming point.

Merging a new set of incoming points to the model first needs
explicit point correspondences between incoming andmodel points.
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Therefore, the neighborhood of model points N(p) ⊂ M of each
incoming point p is determined by rendering an index map. Here,
the indices of the model points are rendered in the image plane. In
order to get access to neighboring points, the index map is rendered
at a higher resolution than the input range map. Afterwards, the best
matching model point is determined using the same or very similar
rules as in dense correspondence finding; c.f. Sec. 2.3.2.

If used for visual feedback, this naive rendering of individ-
ual points, however, yields incomplete images with holes. In or-
der to render dense images, point splatting is commonly ap-
plied [RHHL02,WWLVG09,LKS∗17]. Here, each 3D point is pro-
jected as a circle with a certain radius onto the 2D image, resulting
in dense images.

2.4.3. Hybrid Approaches

Salas et al. [SMGKD14] distinguish between (nearly) planar and
non-planar regions with high curvature. The planar regions are
clustered and labeled in the model. Points of the same cluster are
forced to share the same normal, which intrinsically denoises the
accumulated 3D data. The algorithm is capable of merging different
clusters, which belong to the same plane, thus refining the data in
the case of loop closures. Non-planar data is accumulated in a point-
based model; c.f. Sec. 2.4.2.

2.5. Incorporation of Sensor Uncertainty

Sofka et al. [SYS07] improve the correspondences search by using
the covariancematrix of the estimated transformation and individual
point correspondences. The observed uncertainty is then used to
improve correspondences and the estimated transformation by an
EM-like approach.

Maier-Hein et al. [MHFdS∗12] propose an ICP variant that ac-
counts for anisotropic uncertainty in the point positions using the
Mahalanobis distance. Lefloch et al. [LWK15] extended this ap-
proach to online scene reconstruction in order to tackle anisotropic
sensor noise. They apply a two-sided Mahalanobis distance in the
dense correspondence search and accumulation stage; c.f. Sec. 2.3.2
and Sec. 2.4.2.

2.6. Autonomous 3D Reconstruction

Even given a robust state-of-the-art online 3D reconstruction ap-
proach, completely digitizing an object or even an entire scene at
high-quality is a tedious and time consuming process. Obtaining a
complete reconstruction of an object requires that it is viewed from
a large number of different viewpoints, and for completely digitizing
an entire scene, e.g., a large living room, the user has to traverse the
scene to gather depth samples of the entire surface geometry. This
process can easily amount to several minutes per scan, and the cho-
sen path through the scene impacts scanning time and reconstruction
quality. Finding the optimal sensor path is a challenging problem
and can be phrased as an optimization problem. Auto-scanning ap-
proaches automate the scanning process by solving the underlying
optimization problem to produce the control signals for a robotics
system. First approaches [KCF11,KRB∗12,WSL∗14,KRBS15] dig-
itized single objects based on a controllable robot arm that holds

and moves an object in front of a depth camera. Auto-scanning boils
down to a view planning problem, where the next best view for scan-
ning has to be found based on the current partial reconstruction of the
object. Some approaches [KCF11,KRB∗12,KRBS15] aim at mini-
mizing the number of views to cover the complete object, while oth-
ers [WSL∗14] are focused on maximizing the reconstruction qual-
ity. Another class of approaches aims at digitizing complete scenes,
e.g., an apartment, based on driving robots [CLKM15, XZY∗17]
or flying drones [HBH∗11,BPH∗12,SBK∗13]. In these approaches
the speed of scene exploration has to be balanced with respect to
the ability of the system to perform simultaneous localization and
mapping of the environment, and the underlying reconstruction ap-
proaches have to scale to much large environments. Driving robots
are bound to the ground plane, which simplifies the underlying path
planning problem to a 2D problem. In general, such systems can
not reach all parts of the scene which leads to incomplete recon-
structions. To tackle this problem, auto-scanning approaches based
on flying drones have been proposed [HBH∗11,BPH∗12,SBK∗13].
The underlying path planning is now a full 3D problem and thus
more challenging to solve. First approaches [XLC∗18] even enable
to reconstruct dynamic scenes based on cooperating drones.

2.7. Datasets

There are several datasets for evaluating static 3D scene reconstruc-
tion approaches that mainly differ in the type of sensor data and the
provided ground truth. Here, we focus on datasets for evaluating
RGB-D scanning approaches. The datasets by Zhou et al. [ZK13]
and Glocker et al. [GISC13] contain RGB-D sequences together
with camera pose estimates by the respective approach. In contrast,
Sturm et al. [SEE∗12], as well as Pomerleau et al. [PMC∗11] provide
ground truth trajectories from an external, high-accuracy motion-
capture system. In addition, some datasets include segmentation
masks and object labels [KAJS11, SF11, NSF12, SLX15] or con-
tain the ground truth geometry of the acquired objects [WMS16].
The SUN3D dataset [SLX15] provides a database of big indoor
scenes that have been reconstructed using structure from motion
from RGB-D scanning sequences. Handa et al. [HWMD14] cre-
ated the ICL-NUIM dataset based on two synthetically rendered 3D
scenes (Living Room, Office) using the POVRay raytracer [BC04].
They provide the ground truth camera trajectory for both scenes as
well as the synthetic ground truth 3D models for the Living Room
scene. In addition to the evaluation of the camera tracking accu-
racy, this enables an evaluation of the dense surface reconstruction
error with respect to the ground truth 3D model. The augmented
ICL-NUIM dataset [CZK15b] extends this dataset by adding four
additional camera trajectories with multiple loop closures that emu-
late a realistic hand-held RGB-D scanning sequence. The synthetic
RGB-D streams are generated based on a realistic noise model that
emulates the deficiencies of commodity RGB-D sensors in terms of
noise characteristics, quantization errors, and lens distortion. They
also provide a dense point-based surface model for the Office scene,
which enables the evaluation of surface reconstruction accuracy.
Very recently, Bulczak et al. [BLK18] present a ToF camera sim-
ulator that incorporates sensor noise, multi-path effects, and other
real-world sensor errors. For semantic classification we have seen
extensive work on synthetic data, such as SceneNet [HPB∗15] or
SUNCG [SYZ∗16], as well as annotated real-world data, including
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ScanNet [DCS∗17] andMatterport3D [CDF∗17]. A good and recent
overview and classification of the vast amount of RGB-D datasets
is given by Firman [Fir16].

3. Capturing Dynamic Scenes

In addition to static components, many natural environments con-
tain dynamic objects, such as closely interacting people. Obtaining
temporally coherent reconstructions that capture the non-rigid sur-
face motion at high quality is a highly challenging and ill-posed
problem, especially if real-time performance is the target. However,
fast and robust solutions have a high impact in multiple important
research fields and provide key technological insights. Applications
of dynamic scene reconstruction can be found in content creation
for visual effects, computer animation, man-machine interaction,
biomechanics, and medicine.

More recently, dynamic reconstruction techniques also find their
application in the context of virtual (VR) and augmented reality
(AR). A prominent recent example is the impressive Holoporta-
tion [DKD∗16a, OERF∗16] system, which performs online recon-
struction of a dynamic scene and enables full body telepresence in
augmented reality.

Figure 4: A sitting person is first reconstructed and then starts
to move. This non-rigid scene motion leads to a failure of camera
tracking (top). The approach of Keller et al. [KLL∗13a] computes a
foreground segmentation based on scene dynamics (A) and excludes
them from camera pose estimation (B). This enables robust camera
tracking even if large parts of the scene are moving (bottom). Image
taken from [KLL∗13a].

3.1. Robustness to Dynamic Objects

The first step in dealing with dynamic scenes is to make the re-
construction approach robust with respect to moving objects. In
volumetric fusion approaches that are based on implicit signed dis-
tance fields [CL96] – such as KinectFusion [NDI∗11, IKH∗11] –
the surface reconstruction is restricted to static environments. One
way to address dynamic scene elements is to treat them as outliers
during projective data association in the ICP tracking to avoid break-
ing the reconstruction [IKH∗11]. If there are multiple rigid objects,

one could in principal use several separate volumes to track and re-
construct each object independently. Handling dynamic foreground
objects (see Fig. 4) becomes significantly easier with a surfel-based
representation, as shown by Keller et al. [KLL∗13a]. Jaimez et
al. [JKGJC17] also classify the scene into static and dynamic parts.
Other approaches [DF14] assume a pre-scanned version of the static
environment as a prior. Afterwards, the camera motion is tracked
online, while the dynamic parts of the scene are segmented and
reconstructed separately. The Co-Fusion approach [RA17] enables
the independent reconstruction of multiple rigidly moving objects
in addition to a static background model.

3.2. Challenges of Dynamic Reconstruction

The reconstruction of dynamic scenes is computationally and al-
gorithmically significantly more challenging than its static recon-
struction counterpart. Modeling the non-rigid motion of general de-
forming scenes requires orders of magnitude more parameters than
the static reconstruction problem [PRR03]. In general, finding the
optimal deformation is a high-dimensional and highly non-convex
optimization problem that is challenging to solve, especially if real-
time performance is the target.

In addition to the many challenges of the static reconstruction
problem, there exist infinitely many solutions [FNT∗11] that non-
rigidly deform one shape to another, which makes the dynamic
reconstruction problem inherently ill-posed. Even if a static 3D
template of the deforming scene is available, e.g., obtained by rigid
fusion, estimating the non-rigid motion based on a single sensor is
still a very challenging problem, since more than half of the scene
is occluded at each time instance. Fast motion leads to large frame-
to-frame differences, which makes tracking challenging, especially
for highly deformable objects [LAGP09].

If no template can be acquired beforehand, object motion and
shape have to be recovered simultaneously. This is an inherently
ambiguous joint problem, since changes in the observations can
be explained by both dimensions. Although more complicated,
template-free approaches [BHLW12, TBW∗12, LLV∗12, CCS∗15,
NFS15, IZN∗16,DKD∗16b, SBCI17,DKD∗16b, SBCI17] have ob-
tained impressive results over the past years.

The key component of all state-of-the-art template-based and
template-free dynamic reconstruction techniques is a robust and
fast non-rigid registration framework.

3.3. Fundamentals of Non-Rigid Registration

Given a source shape S ⊂ R3 and a target shape T ⊂ R3, the objec-
tive of non-rigid registration is to find a warp field W : R3→ R3,
such that the warped source best explains the target W(S) = T. In
practice, the source and target are often presented as depthmaps, tri-
angle meshes, or signed distance functions. Mixed representations
are common in the literature [LSP08, LAGP09, ZNI∗14, NFS15,
IZN∗16, DKD∗16a, GXY∗17, YGX∗17]. Current approaches favor
warp fields based on coarse deformation proxies, since this reduces
complexity and enables real-time performance.

The non-rigid registration problem can be viewed from two per-
spectives: The problem of finding the optimal warp field W or the
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problem of finding the dense shape-to-shape correspondence C. If
the correspondence is available, the warp field can be easily com-
puted. The same holds vice versa. Finding the best warp field W∗

and correspondence C∗ between S and T can be formalized as a
highly non-linear joint optimization problem:

C∗,W∗ = argmin
C,W

Etotal(C,W) . (1)

Since there are in general infinitely many valid mappings [FNT∗11]
that deformone shape to another, the energy function Etotal normally
consists of several data Efit and regularization Ereg terms:

Etotal(C,W) = Efit(C,W)+λ ·Ereg(C,W) . (2)

While the data fitting terms measure the closeness of the model to
the input, the regularization terms encode prior assumptions about
the deformation behavior of the source model. λ is a trade-off factor
that balances the relative importance of the two components.

Formulating the non-rigid registration problem as the joint prob-
lem of recovering both W∗ and C∗ simultaneously suggests a
class of iterative EM-style solution strategies [DLR77] that are
well known as Non-Rigid Iterative Closest Point (N-ICP) algo-
rithms [IGL03,BR04,BR07]. The key insight of these approaches is
to split the complicated joint optimization problem into two easier
sub-steps: An initial correspondence search based on the last warp
field estimate (E-step) and the update of the warp field based on
the found correspondences (M-step). The N-ICP algorithm iterates
between these two steps until convergence.

Many recent approaches rely onN-ICP [LSP08,LAGP09,NFS15,
GXW∗15, IZN∗16,DKD∗16a], others directly target the underlying
joint optimization problem [ZNI∗14,SBCI17]. In the following, we
provide more details on the employed deformation proxies and the
employed energy formulation.

3.3.1. Deformation Representation

The choice of a suitable deformation representation is of paramount
importance, since it heavily influences the algorithmic design
of every aspect of the non-rigid registration approach. Dense
mesh-based representations are currently not employed in the
state-of-the-art, especially not in current online approaches, since
such a representation leads to a high-dimensional optimization
problem. Many approaches rely on coarse deformation proxies
[LSP08, CZ09, LAGP09] that decouple the optimization problem
from the resolution of the underlying 3D template mesh. Current
approaches vary in the choice of the employed deformation proxy.

Coarse Tetrahedralization A common choice for the deformation
proxy is a coarse-scale version of the template model [BHZN10]
or a coarse volumetric tetrahedralization. This representation has
been extensively used in the context of off-line non-rigid tracking of
bodies [AFB15,dAST∗08]. More recently, Zollhöfer et al. [ZNI∗14]
proposed to use a coarse volumetric tetrahedralization for real-time
deformable template tracking based on a single RGB-D camera. The
coarse tetrahedralization has two main advantages over the initial
detailed template mesh: It drastically reduces the number of free
variables of the underlying optimization problem, thus enabling
real-time performance. An additional advantage is the fact that the
additional Steiner points inside the model stabilize the deformation

by preserving local volume and lead to a faster propagation of the
residual energy to occluded parts of the model.

Regular Volumetric Grids Another common choice, which has
been widely used in recent state-of-the-art approaches are coarse
regular volumetric grids [SP86,CZ09,ZSGS12, IZN∗16, SBCI17].
This proxy is based on the idea of free-form deformation [SP86] and
has been used before for online handle-based modeling [ZSGS12].
It shares all the advantages of the proxies that are based on a coarse
tetrahedralization. In addition, its high regularity results in good ac-
cess patterns and allows for easy parallelization of the optimization
strategy on commodity graphics hardware [IZN∗16]. While most
approaches store a full 6 DoF transformation per grid cell, some
recent approaches directly work on vector fields [SBCI17].

Figure 5: The deformation graph (right) of Sumner et al. [SSP07]
decouples the computational complexity from the underlying mesh
(left). The deformation graph is the most commonly used defor-
mation proxy in off-line as well as online non-rigid reconstruction
techniques.

Coarse Deformation Graph The most commonly used represen-
tation in current state-of-the-art approaches is the Deformation
Graph introduced by Sumner et al. [SSP07], see Fig. 5. It was
heavily used over the past years in many off-line [LSP08,LAGP09,
DFF13, DTF∗15, GXW∗15, GXW∗17] non-rigid registration tech-
niques due to its simplicity and generality. More recently, it is also
used frequently in online [NFS15, DKD∗16a, GXY∗17] non-rigid
reconstruction approaches. Similar to the other deformation prox-
ies, it decouples the optimization problem from the underlying fine
templatemesh. One significant advantage of theDeformationGraph
is its high adaptability to the shape of the underlying mesh.

3.3.2. Data Fitting Terms

In the literature,many different data fitting terms have been proposed
and used over the past years. The used terms are very similar to the
ones used for camera tracking in the static reconstruction problem,
see Sec. 2.3.2. Recent approaches employ a combination of terms.
In the following, we discuss the terms that are used most frequently
in practice.

Sparse Features Sparse constraints, such as detected and matched
color features, are used inmany approaches [DFF13,IZN∗16]. These
known correspondences are complementary to the approximate cor-
respondences discovered during the N-ICP iteration steps and lead
to faster convergence, since they guide the optimizer through the
complex energy landscape. In addition, a sparse set of correspon-
dence matches can help significantly to better enforce loop closure
and stabilizes the alignment in the tangent plane of the model.
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Dense Geometry Constraints Besides sparse constraints, recent
state-of-the-art approaches heavily rely on dense constraints. This
includes dense geometric point-to-point [LSP08,LAGP09,ZNI∗14,
DTF∗15, GXW∗15, NFS15, IZN∗16, GXW∗17] and point-to-plane
[LAGP09,ZNI∗14,NFS15,IZN∗16,DKD∗16a,GXY∗17,GXW∗15,
GXW∗17,GXY∗17] alignment. These two terms are often used in
combination to achieve a higher tracking accuracy. Besides these
surfacematching constraints, additional normalmatching [DTF∗15]
and convex hull constraints [DKD∗16a] can be employed. Other ap-
proaches employ point-to-tsdf alignment [DFF13]. The advantage
of this constraint is that it does not require explicit correspondence
search, since the optimizer can directly follow the local TSDF gra-
dients of the target surface. Even tsdf-to-tsdf alignment [SBCI17]
has been demonstrated. The key idea is to represent the source and
target surface as distance fields, and align them directly.

Dense Photometric Constraints The color constancy assumption
is often used to define a dense photometric term [DFF13,ZNI∗14]
for better alignment in the tangent plane. The direct use of color
for photometric alignment is problematic if the illumination is
temporally varying or if the object undergoes large deformations,
since this leads to drastic appearance changes due to shading ef-
fects. To tackle this problem, Guo et al. [GXY∗17] propose to use
reflectance constancy. To this end, their approach jointly solves
for geometry, motion, surface reflectance, and incident illumina-
tion. Instead of directly using the color information, recent state-
of-the-art approaches also incorporate dense regressed correspon-
dences [DKD∗16a,WFR∗16].

3.3.3. Regularization Strategies

The dynamic reconstruction problem is severely under-constrained,
since there exist infinitely many solutions [FNT∗11] that align two
objects non-rigidly. Thus, the data fitting terms alone are in general
not sufficient to uniquely constrain the solution. To resolve ambigu-
ities, different regularization terms have been proposed that encode
prior assumptions about the deformation behavior of the scene.

LinearDeformation Linear mesh deformation techniques [BS08],
e.g., thin-plate splines [Boo89], are nowadays mainly employed for
fine-scale alignment tasks after themodel has been coarselymatched
to the input [LAGP09,ZNI∗14]. Such linear techniques are currently
not used in the state-of-the-art for coarse model alignment, since
they do not handle rotations well.

Non-Linear Deformation Non-linear regularization energies are
the de facto standard in current off-line and online dynamic re-
construction techniques, due to their ability to handle large rota-
tions. One popular regularization energy is the as-rigid-as-possible
paradigm [SA07]. It enforces the deformation field to be locally
as rigid as possible to prevent unnecessary stretching and sheer-
ing of the template geometry. This deformation paradigm has
been applied to both real-time template-based [ZNI∗14] as well
as template-free [IZN∗16] non-rigid reconstruction approaches.
The most commonly used deformation framework is Embedded
Deformation [SSP07]. It is used in a large percentage of re-
cent state-of-the-art online [NFS15, DKD∗16a, GXY∗17] and off-
line [DFF13, DTF∗15, GXW∗15, GXW∗17, LSP08, LAGP09] ap-
proaches. It has two distinct components, a soft-constraint that

enforces local rigidity and a second soft-constraint that enforces
spatial smoothness of the warp field. This is in contrast to the as-
rigid-as-possible paradigm [SA07] that only enforces local rigid-
ity. Recently, a damped version of the Killing Vector Fields
[BBSG10, SBCBG11, TSB16] regularization term has been ap-
plied to the problem of template-free online surface reconstruc-
tion [SBCI17]. Killing Vector Fields enforce the deformation to be
locally isometric. Local isometry is also employed as regularization
constraint by [DKD∗16a].

3.4. Static Reconstruction of Quasi-Rigid Objects

The fundamental assumption of static scene reconstruction systems
is that the scene remains entirely static throughout the complete
scanning process. If this assumption is violated, the reconstructed
3D model will contain artifacts or the approach will completely
fail. Even for static scenes, sensor calibration errors can lead to
a significant non-rigid spatial distortion, such that the captured
depth maps cannot be aligned rigidly [IGL03]. Allowing for a small
amount of residual non-rigid deformation can alleviate this prob-
lem [IGL03]. Non-rigid registration has also been applied to on-
line loop closure for in-hand scanning [WWLG11]. A completely
static scene is difficult to guarantee in many real world scenar-
ios, e.g., for the 3D reconstruction of an animal or a baby that
will not hold still during scanning. Many approaches have been
developed that enable the static reconstruction of a high-quality
3D model even if the scene undergoes slight non-rigid deforma-
tions [BR07,WHB11,TZL∗12,ZZCL13,DFF13,DTF∗15]. This is
of particular interest for the digitization of humans with commodity
depth sensors [BR07,TZL∗12,LVG∗13,ZZCL13,DTF∗15].

3.5. Non-rigid Reconstruction of Dynamic Scenes

In the following, we discuss approaches that reconstruct the mo-
tion of dynamic scenes. We start with approaches that exploit
strong scene specific priors, and highlight recent progress in the
less constraint template-based and template-free reconstruction set-
ting. In the last years, many algorithmic improvements and the
steady growth of data parallel compute power led to the first online
approaches that were able to handle general scenes, see Tab. 2.

3.5.1. Strong Scene Priors

Special purpose solutions exist that enable high-quality reconstruc-
tion and tracking of certain object classes based on commodity
RGB-D cameras. These special purpose solutions exploit class spe-
cific knowledge and strong priors to simplify the reconstruction and
tracking problem. Significant progress has recently beenmade in the
reconstruction and tracking of faces [WBLP11, LYYB13,BWP13,
TZN∗15, GZC∗16], hands [IOA11, TST∗15, TBC∗16, TPT16] and
entire bodies [YLH∗12, HBB∗13, WSVT13, ZFYY14, BBLR15,
YGX∗17]. Bogo et al. [BBLR15] obtain textured detailed full-
body reconstructions of moving people from RGB-D sequences
using an extension of the BlendSCAPE model. Other approaches
work for general articulated shapes [YY14, SNF15]. Given such
strong priors, it is nowadays even possible to solve many of these
problems at real-time frame rates [WBLP11, LYYB13, TZN∗15,
TST∗15, TBC∗16, TPT16,HBB∗13,YGX∗17]. For example, Thies
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[ZNI∗14] X - - X X - - - X X - - - X - X - - - - -
[NFS15] X - X - - - - X X X - - - - - - X - X - -
[IZN∗16] X - X - - - X - X X - X - - - X - - X - -
[DKD∗16a] - X - X - - - X - X - - X - - - X - X X X
[GXY∗17] X - X - - - - X - X - - - - X - X - X - -
[SBCI17] X - X - - X - - - - X - - - - - - X X X X

Table 2: Overview of state-of-the-art online dynamic reconstruction approaches that do not require a strong prior, such as a skeleton.

et al. [TZN∗15] reconstruct facial identity, expression and incident
illumination at real-time rates [TZN∗15]. They employ a parametric
face and a blendshape expressionmodel to reduce the number of un-
known parameters significantly. Taylor et al. [TBC∗16] track the full
articulated motion of a hand based on a kinematic skeleton in real-
time using only a single depth camera. These approaches achieve
impressive results, but due to the employed strong prior, they only
reconstruct a limited subspace of all possible deformations and do
not generalize to general non-rigid scenes.

Figure 6: The first real-time template-based tracking approach that
works for general objects was proposed by Zollhöfer et al. [ZNI∗14].
Real-time performance is made possible by a novel hierarchi-
cal coarse-to-fine GPU optimization strategy. Image taken from
[ZNI∗14].

3.5.2. General Deformable Object Tracking

Non-rigid ICP was first proposed in the context of non-rigid 2D
shape registration [PRR03] and later also extended to non-rigid reg-
istration in 3D [FNT∗11]. The first approaches where employed to
alignmultiple range scans [BR04,BR07,ZMK13] to counteract non-
rigid distortions caused by imperfect camera calibration. The first
non-rigid registration approaches thatwere able to track complex de-
formations [CZ09,LZW∗09,LSP08,LAGP09,GXW∗15,GXW∗17,
XLC∗18] used deformation proxies to decouple the dimensional-
ity of the optimization problem from the model complexity, but
still had slow off-line runtimes. Many recent approaches for ro-
bust off-line template tracking use key frames and robust optimiza-
tion [LAGP09, GXW∗15, GXW∗17, XLC∗18]. Other approaches
employ the `0-norm [GXW∗15] or a robust norm [DKD∗16a] to de-
fine the regularization objective. This allows for discontinuities in

the deformation field, which is especially advantageous for tracking
articulated motion.

Online deformable tracking of arbitrary general deforming ob-
jects, without the use of strong priors, has only been achieved quite
recently. The first approach to deliver real-time performance in this
setting was the template-based non-rigid tracking approach pro-
posed by Zollhöfer et al. [ZNI∗14], see Fig. 6. Input to this ap-
proach is a high-quality color and depth stream, which is captured
by a custom-built RGB-D sensor. After a template acquisition step,
the non-rigid object motion is tracked live at real-time frame rates
using robust optimization [LSP08, Zac14a, ZNI∗14]. This is made
possible by a hierarchical coarse-to-fine GPU registration approach
that exploits the data-parallel compute power of modern graphics
hardware. In contrast toN-ICP approaches, Zollhöfer et al. [ZNI∗14]
jointly optimize for the best correspondence. While this approach
enabled real-time tracking of general objects, a pre-acquired tem-
plate mesh has to be available. Acquiring such a template for each
scene is a tedious and time-consuming process that might be infea-
sible, e.g., for animals or small children that will not hold still.

Figure 7: Similar to DynamicFusion by Newcombe et al. [NFS15],
VolumeDeform by Innmann et al. [IZN∗16] enables template-free
non-rigid reconstruction of general dynamic scenes. The warp field
is parameterized based on a fine-scale deformation lattice instead of
a coarse-scale deformation graph, and sparse feature matches are
integrated into the alignment objective. Image taken from [IZN∗16].
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3.5.3. Template-free Deformable Reconstruction

If a template model of the object cannot be obtained beforehand,
the more challenging joint geometry and motion reconstruction
problem has to be solved. Separating object shape and motion
robustly is an inherently ambiguous problem, since either of the
two can explain changes in the observations. Many off-line ap-
proaches phrase temporal 3D reconstruction as a 4D space-time op-
timization problem [MFO∗07,WJH∗07, SAL∗08, SWG08]. These
approaches assume small deformations and small frame-to-frame
motion [WAO∗09, ZZCL13] to make the problem tractable. Re-
cently, many template-free approaches have been introduced that
exploit the data captured by commodity RGB-D sensors. Dou et
al. [DFF13] reconstruct temporally coherent non-rigidmotion based
on a setupwithmultiple commodity sensors. Recently, this approach
was extended to work with a single RGB-D camera [DTF∗15].

The first approach that tackled the template-free reconstruction
problem at real-time frame rates was the DynamicFusion approach
by Newcombe et al. [NFS15]. This approach enables the joint
reconstruction of object geometry and motion based on a single
commodity depth camera, e.g. the Microsoft Kinect. For each new
input frame, a mesh-based representation of the canonical model
is first extracted from the underlying volumetric TSDF. After-
wards, a model-to-frame N-ICP approach is used to estimate a
coarse warp field based on a deformation graph [SSP07]. Based on
the estimated warp field, the voxels of the volumetric TSDF can
be non-rigidly transformed to the space of the input depth map,
which enables the update of the TSDF based on volumetric fu-
sion [CL96, IKH∗11, NDI∗11]. The reconstructions are of higher
quality than each single depth frame alone due to the integration of
multiple surface samples and the canonical model can be completed
gradually if previously unobserved parts of the object become vis-
ible for the first time. An extension of DynamicFusion [NFS15],
called VolumeDeform [IZN∗16] (see Fig. 7), parameterizes the
warp field based on a fine-scale deformation lattice instead of a
coarse-scale deformation graph allowing for higher reconstruction
quality. To achieve real-time frame rates, this approach employs a
hierarchical coarse-to-fine data-parallel GPU optimization strategy.
In addition, more robust tracking is achieved by the integration of
sparse feature matches into the alignment objective. The approach
of Zhang et al. [ZX18] combines the reconstruction of static and dy-
namic scene components based on a Sigmoid-based Iterative Clos-
est Point method that decouples camera from scene motion. The
input sequence is segmented into static and dynamic parts which
are separately reconstructed at real-time frame rates. In the follow-
ing, we describe specific extensions of these baseline approaches
that improve robustness and reconstruction quality.

Robustness to Tracking Failure The recently proposed Fusion4D
approach of Dou et al. [DKD∗16a], which is also the basis of the im-
pressive Holoportation [OERF∗16] system, obtains complete, tem-
porally coherent models of a deforming scene at real-time frame
rates. It is based on a complex multi-view setup that consists of 8
pots, each of which consists of 2 infrared (IR) and 1 color camera. In
addition, a diffractive optical element and a laser is used to produce
a pseudo-random pattern in IR. Depth is computed based on stereo
matching in the IR domain, while the projected pseudo-random pat-
tern guarantees the availability of texture. The acquired depth maps

Figure 8: The Fusion4D approach of Dou et al. [DKD∗16a], which
is the basis of the impressive Holoportation [OERF∗16] system,
allows for topological changes in the scene by periodic resets of the
reference volume. Image taken from [DKD∗16a].

are fused in a reconstruction volume. What makes this approach
special is the employed key volume strategy, which makes the ap-
proach robust to tracking failures. Instead of fixing the reference
volume to the first input frame, the approach periodically resets
the reference to a fused local data volume, called a key volume.
In addition, the approach detects tracking failures and then auto-
matically refreshes all misaligned voxels based on the input data.
This allows the approach to maintain a high quality reconstruction,
even in challenging situations that bring the non-rigid tracker to its
limits. The periodic resets of the reference volume also enable the
reconstruction of topological changes in the scene, see Fig. 8. The
downside of this approach is that global tracking information is lost,
which might be required for certain types of applications, such as
a temporally coherent re-texturing of the scene. The approach of
Dou et al. [DDF∗17] enables high speed reconstruction of arbitrary
non-rigid scenes. One key ingredient is a dense 3D correspondence
field between the input and the reconstruction that is estimated us-
ing a learned approximation of spectral embeddings. This enables
to robustly handle fast scene motion. In addition, backward and for-
ward alignment is employed for better handling topology changes
and a detail layer is used to recover fine scale details, which would
otherwise be lost.

Reflectance Constancy The approach of Guo et al. [GXY∗17] em-
ploys a data term that is based on dense reflectance constancy instead
of the color constancy assumption that is used in the competing ap-
proaches, see Fig. 9. Dense reflectance constancy better handles
illumination changes and leads to more robust tracking under large
rigid and non-rigid motion. The implementation of reflectance con-
stancy requires material and lighting estimation, see Sec. 4 for a
detailed coverage of this topic.

Fast Motion and Topological Changes The recently proposed
KillingFusion approach of Slavcheva et al. [SBCI17] tackles the
problem of very fast motion and topological changes via level set
evolution, see Fig. 10. While most other approaches use variants of
the N-ICP algorithm for tracking, which requires the extraction of a
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Figure 9: The approach of Guo et al. [GXY∗17] employs dense
reflectance constancy. This better handles changing illumination
and leads to robust tracking even under large deformations. Image
taken from [GXY∗17].

Figure 10: The KillingFusion approach of Slavcheva et
al. [SBCI17] tackles the problem of very fast motion and topological
changes via level set evolution. The used regularization energy is
based on a damped version of approximately Killing Vector Fields.
Image taken from [SBCI17].

mesh-based representation in each iteration step, KillingFusion di-
rectly aligns twoTSDFs that encode the input and the currentmodel.
This supersedes the surface extraction step used by previous ap-
proaches and alleviates the need for explicit correspondence search.
TSDF alignment is based on a damped version of approximately
Killing Vector Fields [BBSG10,SBCBG11,TSB16] to warp the in-
put volume to the current reconstruction. After each iteration step,
the computed delta transformation is applied to the volume before
it is volumetrically resampled. This step allows the robust handling
of topological changes. The approach of Dou et al. [DKD∗16a]
handles topological changes based on a key frame strategy. The
recently proposed BodyFusion approach [YGX∗17] uses an articu-
lated skeleton to define the warp field instead of a coarse general
deformation graph. Since the skeleton parameterization is low di-
mensional, the tracking problem is drastically simplified and the
approach produces more stable reconstructions for the special case
of humans.

3.6. Dynamic Scene Datasets

Whereas there are many datasets for the evaluation of static 3D
reconstruction based on commodity RGB-D sensors (see Sec. 2.7),
only a few exist for commodity non-rigid surface tracking and re-

construction. Currently, most publicly available real world datasets
captured using an RGB-D sensor do not provide geometric ground
truth. For template-based tracking Guo et al. [GXW∗15,GXW∗17]
provide several sequences used in their publication. For template-
free reconstruction Innmann et al. [IZN∗16] andDou et al. [DTF∗15]
provide several sequences used in their publications. Quantitative
comparisons to other approaches are often performed on synthetic
RGB-D data streams. For this purpose the MIT dataset [VBMP08]
is often used. It contains several complex and large human motion
sequences that have been reconstructed using a multi-view capture
system. The multi-view image input, camera calibration, and the
3D reconstructions are provided. This enables the creation of hy-
brid real/synthetic RGB-D streams that provide real color and syn-
thetically rendered depth (optionally with simulated sensor noise)
based on the multi-view reconstructions. The multi-view 3D recon-
structions can then serve as ground truth for an evaluation of the
dense surface reconstruction error. Another high-quality multi-view
dataset that is often employed for quantitative evaluation is from
Collet et al. [CCS∗15]. Considering the recent advances regarding
range sensor technology and the success of dynamic real-time 3D
reconstruction systems, the lack of a large dynamic real-world RGB-
D benchmark with available ground truth leaves sufficient room for
further developments.

4. Color and Appearance

Besides the object and scene geometry that is of interest formany ap-
plications, surface colors and general appearance information play
an important role for various virtual (VR) and augmented reality
(AR) applications, and enable users to interactwith virtualmodels in
a similar way as with the real world. Obtaining such intrinsic scene
properties from captured image data is highly challenging and, al-
though the problem seems fairly related to static (see Sec. 2) and
dynamic (see Sec. 3) 3D reconstruction, it is a rather orthogonal field
of research. Whereas most color texture estimation approaches are
tightly coupled to static reconstruction, material acquisition tech-
niques based on RGB or RGB-D data mostly focus on objects and
small scenes and solve the problem in image space. However, recent
works in static [MFZ∗17,WWZ16] and dynamic [GXY∗17] recon-
struction start to connect the fields by jointly solving for a full vir-
tual model with the desired shape and appearance information. An
overview of state-of-the-art appearance reconstruction approaches
that make use of RGB-D information is provided in Tab. 3. In the
following, we discuss the challenging problems related to color and
material acquisition and the impressive solutions researchers have
developed.

4.1. Color Textures

Reconstructing pure color information from a sequence of RGB
images has been a challenging task for several years. After the recent
success of state-of-the-art volumetric fusion approaches, a wealth
of subsequent work tried to overcome the limitations of this system
and extended it in several ways. One particular line of research has
been the reconstruction of consistent color textures.
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Figure 11: Color Accumulation and Offline Texture Generation:
comparing volumetric blending [NZIS13] (left) with color map opti-
mization [ZK14] (middle), and texture generation [JJKL16] (right).
Image taken from [JJKL16].

4.1.1. Online Texture Reconstruction

In some work, extensions to the fusion process of KinectFusion
have been proposed to also cover colors. Whelan et al. [WKJ∗15]
reject samples at object boundaries and grazing angles that would
potentially lead to artifacts and inconsistent results. In subsequent
work [WSMG∗16], they estimate the positions and directions of
light sources in the scene to further reject samples from fusion
that only contain specular highlights. While this already improves
the visual quality of the textures significantly, large artifacts may
still arise. Most RGB-D cameras acquire color images by adjusting
the exposure time dynamically depending on the currently visible
illumination. This ensures that the dynamic range of the current
view is faithfully mapped and quantized to the camera’s bright-
ness range. Simply fixing the exposure time is not only some-
times prohibited by the camera firmware or unsupported by the
drivers, it can also quickly lead to over- or under-saturated pix-
els and regions in the images, since the whole possible dynamic
range is far too large to represent it accurately with only 8-bit per
color channel. Thus, researchers developed techniques to capture
high dynamic range (HDR) color textures from low dynamic range
(LDR) images with varying exposure times. In a pre-processing
step, the camera-specific response curve is usually estimated to
linearize the observed intensity values. Afterwards, the relative
exposure time is estimated between subsequent frames to obtain
HDR colors [MBC13,LHZC16,APZV17]. Finally, those values are
fused together into either key frames [MBC13] or a global virtual
model [LHZC16,APZV17] in real-time.

4.1.2. Offline Texture Reconstruction

In the offline context, similar ideas have been used to obtain glob-
ally consistent textures. One of the first approaches was proposed
by Zhou et al. [ZK14] in which camera poses and colors of selected
key frames are jointly optimized by maximizing photometric con-
sistency (c.f. Fig. 11, middle). Narayan et al. [NA15] use a similar
technique, but only consider a pixel-dependent subset of the key
frames for the optimization and add an additional smoothness term
along edges. This improves the visual quality of the results and espe-
cially reduces color bleeding. Substantial improvements have been
achieved by Huang et al. [HDGN17] who also built upon the work
of Zhou et al. [ZK14]. After a primitive abstraction of the scene has
been computed, the color values are first corrected by compensating

the varying exposure and white-balance and then aligned by opti-
mizing an energy based on dense photometric, sparse feature, and
primitive relationship constraints. Finally, a consistent texture is ob-
tained using a temporally coherent sharpening operation. Zhang et
al. [ZCC16] also apply exposure compensation techniques to recon-
struct consistent HDR color textures and demonstrate various edit-
ing applications. Compelling results have been recently achieved by
Maier et al. [MKC∗17] who jointly refine camera poses, the geome-
try and reflectance of themodel stored in a truncated signed distance
field (TSDF) and optimize for the intrinsics camera and distortion
parameters. Some researchers obtain a coarse 3Dmodel of the scene
via current reconstruction techniques (see Sec. 2) in a first step and
then use it as a global reference to select and fuse key-frames into
a refined model of much higher quality by imposing photometric
consistency [MSC15, JJKL16,RTKPS16] (c.f. Fig. 11, right). Very
recently, Bi et al. [BKR17] proposed a patch-based optimization
approach to produce high-quality texture maps for scanned objects.

4.2. Material Acquisition

While reconstructing consistent color textures is itself a challenging
task, it can still not fully explain the visual appearance of objects.
In general, the observed colors in an image I ⊂ R3 not only de-
pend on the specific material properties but also on the surrounding
scene-specific illumination. The process of reconstructing the ma-
terial reflectances out of the final rendered image is called Inverse
Rendering and is a highly ill-posed problem.

Themost popular approach to tackle this problem is called Intrin-
sic Image Decomposition and was first formulated by Barrow and
Tenenbaum [BT78]. Assuming that all materials predominantly are
Lambertian, i.e., their appearance is independent of the view direc-
tion and only depends on the incoming light direction, the resulting
image can be approximated and decomposed into two parts:

I (x) = R(x) ·S(x) . (3)

Here, I is the observed image, R is the diffuse part of the surface
reflectance properties, and S is the shading that depends on the
surface geometry and the illumination. In addition to its simplicity,
this decomposition is modeled in images space meaning that the re-
flectance R and the shading S are also images and the multiplication
is performed component-wise per pixel x. The great advantage of
this technique is that this effectively removes the burden of knowing
the exact 3D geometry of the scene.

However, the problem is still highly ill-posed since for any op-
timal solution (R∗,S∗) there exist infinitely many other equivalent
solutions

(
c ·R∗, 1

c ·S∗
)
where c is a positive number. In order to

avoid this scale ambiguity, further constraints are introduced and
finding R and S is formulated as an energy optimization problem:

Etotal(R,S) = Efit(R,S)+λ ·Ereg(R,S) . (4)

The total energy Etotal typically consists of a data fitting term Efit and
a regularization term Ereg where the parameter λ controls the rela-
tive influence between both terms. Researchers have tried many dif-
ferent variations and combinations of the terms to obtain plausible
results. In this report, wemainly focus on recent techniques that also
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Chen and Koltun [CK13] X X - - - - X - X X - - - - X -
Barron and Malik [BM13] - - - X - - X - - - X X - - X -
Kerl et al. [KSSC14] X - - - - X - - X X - - - X X -
Hachama et al. [HGW15] - - - X - X - - X X - - - - X -
Wu et al. [WZ15] - - - - X - - X - - - X X X - X
Wu et al. [WWZ16] - - - - X - - X - - - - X - - X
Richter-Trummer et al. [RTKPS16] - - - X - X - - X - - X X - - X
Zuo et al. [ZWZY17] - - X - - X - - - - - - - - - X

Table 3: Overview of state-of-the-art appearance reconstruction approaches that take advantage of RGB-D and IR data.

incorporate the additionally provided depth information from RGB-
D cameras. For a more detailed overview of this highly challenging
field, we refer to the excellent work of Bonneel et al. [BKPB17b].

4.2.1. Data Fitting Terms

Many different data fitting terms have been proposed. All of them
have in common that they guide the solution towards the defined
model which is the Intrinsic Image Decomposition in our scenario.
In the following, we will discuss common choices.

Intrinsic Image Decomposition The most popular fitting terms
are the ones that are directly derived from the Intrinsic Image
Decomposition equation. The simplest variant is a least-squares
error term for the vector-valued reflectance and shading images
[LBP∗12, GMLMG12]. Under the assumption of white illumina-
tion, the shading image can be further constrained and simplified to
be only scalar-valued which reduces the number of unknown vari-
ables [SYLJ13, KSSC14]. Both strategies require additional hard
constraints to ensure that the reflectance and shading term are
both non-negative. An elegant way to directly incorporate them
in the energy formulation is to solve the problem in log-space
which has the additional advantage of transforming the component-
wise product into a less involving sum and allowing for more ef-
ficient optimization techniques. This has been applied for either
the scalar [MZRT16,MFZ∗17] and the vector-valued versions of
the least-squares error terms [SYJL11, LZT∗12, ZTD∗12, BM13].
Recently, Bonneel et al. [BST∗14] propose to optimize for the gra-
dient of the log-reflectance and shading which is another conve-
nient reformulation of the original problem. In addition, weighting
the contribution of each sample adaptively based on the bright-
ness of the observed color values further improves the robustness
and reduces the influence of dark regions with less reliable color
values [KGB14,MZRT16,MFZ∗17,CK13].

Patch-based Optimization Some approaches use patches to re-
duce the number of unknown variables and directly incorporate a
smoothness constraint on the shading layer. Shen et al. [STL08]

group pixels with similar textures locally and non-locally and solve
for the in-group reflectance intensities. Garces et al. [GMLMG12]
cluster pixels based on their chromaticity and then solve for the
shading image. In the context of video streams from a static scene
and camera, Laffont et al. [LB15] directly incorporate time coher-
ence in the fitting term by only allowing patches of the shading
image to change over time.

Statistic-based Approaches Similar to the patch-based tech-
niques, researchers tried to create statistics over the shape and
illumination on the input image itself [TFA05, TAF06], to pre-
capture training data [BM15], or use mixtures of shapes and il-
lumination [BM13]. This additional information can be leveraged
to further constrain the solution to obey the structure of the observed
statistics.

Shading Decomposition Much work has been spent on further de-
composing the shading layer. Chen et al. [CK13] model the vector-
valued shading image by a scalar-valued direct and indirect irra-
diance layer, and a vector-valued light color layer. This allows to
define smoothness priors per layer rather than for the whole shading
image and to control the influence of each term to the whole energy
independently. For outdoor scenarios, Laffont et al. [LBD13] apply
a similar idea by using two layers for the sun and the sky and one for
the indirect irradiance. The most prominent approaches represent
shading in the spherical harmonics basis and typically consider them
up to the second order to enforce global smoothness and allow for
efficient optimization. While the dimensionality of the unknowns
can be reduced to a constant number of lighting coefficients, the
shading variation is now encoded in the basis functions that require
the knowledge of surface normals. For RGB-D cameras, normals
can be estimated conveniently from the depth image to provide the
additionally needed information. In the context of dynamic scene re-
construction, Guo et al. [GXY∗17] jointly optimize for the lighting
coefficients and the observed motion between subsequent frames
to improve the robustness of the motion estimation (c.f. Fig.12). In
other work, per-vertex coefficients have been considered to account
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Figure 12: The approach of Guo et al. [GXY∗17] performs real-
time estimation of the geometry, motion, albedo and illumina-
tion [GXY∗17] of a general non-rigidly deforming scene. Image
taken from [GXY∗17].

for potentially spatially varying illumination [HGW15]. Recently,
shading has been also modeled by quadratic functions of the nor-
mals, which are similar to second spherical harmonics [ZWZY17].

4.2.2. Regularization Terms

Considering regularization priors, the most popular choices are
based on the Retinex theory [LM71] stating that reflectance is in
general sparse and shading is smooth. Therefore, researchers mostly
rely on at least one of these observations; however, many other
sources of information have been considered to further advance this
field.

Reflectance Sparsity As typically only a rather small number of
different materials are observed, sparsity can be enforced by penal-
izing reflectance variations across neighboring pixels. In case the
material changes between two pixels – i.e., the image gradient is
large –, the contribution of this term would be very large; hence,
reflectance edges would be smoothed out to reach the minimum
of the energy. Thus, each term is weighted based on a thresholded
gradient image [LM71, LZT∗12, ZTD∗12] to allow sharp edges in
the reflectance image. Instead of considering the gradient magni-
tude, chromaticity-based weights have been used to robustly detect
reflectance edges [SYH13, ZDI∗15, MZRT16, MFZ∗17]. Shen et
al. [SYLJ13, SYJL11] extend the original Retinex weights to also
consider the observed intensity values and relax the constraint at
dark regions where reflectance can be less reliably estimated and
differences might not be detected accurately. A combination of both
weighting strategies has been used by Chen et al. [CK13] to lower
the regularization contribution in those problematic regions and
obtain sharp edges. Recently, Kerl et al. [KSSC14] use the addi-
tionally provided infrared information of time-of-flight sensors to
apply weights based on the estimated infrared reflectance. Com-
pared to the typical choice of using the squared Euclidean norm of

reflectance differences, other norms have been used as well. Several
researchers [SYH13, KSSC14, HGW15] propose to use the more
robust `1 or total variation norm which has been successfully ap-
plied in other fields such as image denoising. The more general
`p-norm has also been used where p < 1 is a common choice to
further increase the flattening effect [BST∗14,MZRT16,MFZ∗17].
Recently, efficient implementations of iteratively reweighted least
squares (IRLS) solvers for finding optima of `p-norm constraints
enabled interactive applications as the intrinsic decomposition prob-
lem could be solved in real-time [TZS∗16,MZRT16,MFZ∗17]. In
some work, the effect of the sparsity has been extended by adding
a non-local term or applying multi-resolution techniques to smooth
across awider range of the image [LZT∗12,SYH13]. Li et al. [LB14]
even consider probabilistic approaches to enforce sparsity in the re-
flectance and smoothness in the shading layer.

Shading Smoothness While reflectance changes mostly across
materials, shading depends on the surface geometry and the il-
lumination. Both of them are usually smooth leading to the ob-
servation that shading also changes slowly and smoothly. Thus,
differences between neighboring values are penalized in the least-
squares sense [ZTD∗12,CK13,BST∗14,HGW15,LB15]. Similar to
reflectance sparsity, many approaches add an additional weighting
to this term to allow for a more fine-grained control of the prior.
Meka et al. [MZRT16,MFZ∗17] reuse their reflectance weights but
invert their contribution to further strengthen the idea of reflectance
edges. Lee et al. [LZT∗12] add a non-local term and used normal
information to threshold the weights in a similar manner as for
the reflectance layer. Bonneel et al. [BST∗14] consider chromatic-
ity as an approximation of reflectance and applied thresholding to
the shading gradients based on them. Other norms have been also
applied such as the weighted `1-norm considering the estimated
shading in the infrared channel [KSSC14], and the robust Tukey
function in combination with weights based on the estimated op-
tical flow between images [KGB14]. Shen et al. [SYH13] obtain
second order shading smoothness by imposing a prior using the
Laplace operator.

Chromaticity Prior Although enforcing sparsity and smoothness
in the respective layers already leads to plausible results, effects
like indirect illumination can still lead to large deviations from
the desired results, especially in darker regions. Therefore, Meka
et al. [MZRT16,MFZ∗17] add an additional prior that forces the
chromaticity of the reflectance values in bright regions to be close
to the ones of the observed image. In combination with smoothness
constraints, this further improves the accuracy.

Reflectance Clustering Prior Another popular strategy to enforce
reflectance sparsity is to perform clustering either via a soft or a
hard constraint. Bi et al. [BHY15] approximated reflectance via
image flattening techniques and clustered similar values together to
obtain a sparse set ofmaterial labels. Afterwards, the intrinsic image
decomposition is solved based on the labeling serving as a hard
constraint. Other approaches also perform clustering but employ
a soft constraint to enforce non-local sparsity either solely for an
image [ZTD∗12,MZRT16] or a whole video sequence [BST∗14].
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Reflectance Ratio Prior Laffont et al. [LBP∗12] propose the idea
of reflectance ratios. The key observation is that intensity variations
can only be explained by different reflectance values in case their
shading values are identical. Thus, the ratio between reflectance
values can be approximated by the ratio of intensities. This has
been applied to estimate the reflectance of a collection of images.
After pixel correspondences have been computed to obtain robust
estimate of the ratios, pairwise priors are defined.

IR Reflectance Coupling Whereas most approaches solely focus
on RGB-D images or videos, Kerl et al. [KSSC14] experimented
with time-of-flight cameras that are capable of providing an addi-
tional smooth infrared image. The illumination conditions in this
channel are much more controlled as the sensor itself is the only
light source and ambient radiation is negligible. They proposed to
first estimate the infrared reflectance and then directly couple it with
its color version. This indirectly enforces temporal consistency as
the exposure time for infrared images is kept fixed by the camera.

Temporal Consistency Prior Recently, researchers not only tried
to acquire material properties from a single image but also from a
whole sequence of images – i.e., a video. Different strategies have
been developed starting from enforcing consistency between sub-
sequent images [MZRT16,BST∗14,LBP∗12,KGB14], propagating
parts of the previous solution to the current frame [YGL∗14], or even
adding constraints between frames and a global model [MFZ∗17].

User constraints Another valuable source of information are pri-
ors directly provided by the user. Compared to other priors that
are typically inspired by hysterics and common use cases, these
inputs can be considered as ground truth information since hu-
mans are very good at predicting material properties. In case
of video sequences, they are also typically propagated between
frames over time assuming that the optical flow is known. Popu-
lar choices of user inputs are strokes that enforce constant shading
or reflectance [BST∗14,MFZ∗17] locally in some regions. Further-
more, the user can directly resolve the scale ambiguity by a fixed-
illumination brush that determines the absolute quantity of a set of
shading values [BPD09].

4.2.3. SV-BRDF Acquisition

The fundamental assumption in all material acquisition approaches
discussed so far is that the diffuse component of the material prop-
erties is the most relevant one and dominates the specular compo-
nent in all common scenarios. While for most real-world materials
this approximation holds, there are still many others for which this
immediately breaks, e.g., metal and all kinds of polished mate-
rials. For this group of objects, strong highlights and reflections
are observed in the images leading to completely wrong estimates
in those regions. Therefore, more expressive models, in particular
spatially-varying Bidirectional Reflectance Distribution Functions
(SV-BRDFs), have been used to handle these cases.

One of the techniques for estimating SV-BRDFs from RGB-D
data has been proposed by Knecht et al. [KTTW12]. They consider
RGB-D and additional environment maps captured from a fish-eye
lens camera to remove highlights from color observations. Using

this cleaned data, a per-pixel diffuse SV-BRDF and per-cluster spec-
ular SV-BRDF is estimated interactively. The first work trying to
combine SV-BRDF estimationwith 3D reconstruction fromRGB-D
data has been done by Wu and Zhou [WZ15]. After reconstructing
the object shape using KinectFusion in a first pass, its appearance
is estimated afterwards. Using a mirror ball to acquire the illumina-
tion via an environment map and gray markers to photometrically
calibrate the captured RGB image, they are able to interactively
reconstruct an accurate SV-BRDF of an object with a Microsoft
Kinect sensor. They group pixels with the same materials together
and used the Ward model [War92] to estimate the specular part of
the SV-BRDF per cluster. Using the infrared channel of the Kinect,
the specular parameters of the Ward model are estimated by fus-
ing all clustered sampled together similar to the volumetric fusion
technique proposed by Curless and Levoy [CL96]. In subsequent
work, Wu et al. [WWZ16] change the philosophy of their design
from an interactive system to a more accurate offline approach.
By jointly optimizing for the camera poses, material clusters, en-
vironment lighting, and spatially-varying BRDFs, they are able to
obtain results of much higher quality than before. However, this ap-
proach is not able to run close to real-time anymore and requires the
whole video sequence to be knownbeforehand.Another offline tech-
nique that jointly solves for lighting, shape, and reflectance has been
developed by Lombardi and Nishino [LN16]. Richter-Trummer et
al. [RTKPS16] propose an off-line system that first estimates a con-
sistent color texture of the reconstructed model and then segments
it into patches of similar material. Based on these segments, low-
frequency environment lighting and per-vertex diffuse and specular
reflectance components are estimated. For a detailed overview of
the field of material acquisition from image data, we refer to the
excellent work of Weinmann et al. [WLGK16].

4.3. Geometry Refinement and Normals

The main observation when capturing RGB-D images is that for
most cameras the depth image is noisy and of rather low quality
whereas the RGB image shows many fine details and exhibits only
few noise. Therefore, much effort has been spent to raise the quality
of the depth images to the level of the RGB images to improve the
accuracy of reconstruction algorithms. Seminal work in this field
was presented by Horn et al. [HB86] who introduced the concept of
Shape-from-Shading (SfS) to estimate the geometry of objects from
a single image. By recovering the shading, normals and the shape
can be inferred. Therefore, the discussed techniques are closely
related to the field of material acquisition and several ideas can be
applied in both areas.

4.3.1. Natural Illumination

In several approaches, images taken from real-world scenarios with
entirely uncontrolled natural illumination have been considered as
the primary source of interest. Haque et al. [HCMG∗14] assume
Lambertian surfaces and add a first order normal smoothness and a
second order Laplacian depth smoothness prior to obtain plausible
results. This is closely related to the shading smoothness prior in
the field of material acquisition where shading variations are as-
sumed to be slow and smooth similar to the object’s shape. In the
context of refinement, the shape is constrained directly rather than
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Figure 13: The approach of Wu et al. [WZN∗14] performs online
shading-based surface refinement of a live depth stream captured
by a commodity RGB-D sensor. Image taken from [WZN∗14].

the dependent shading. Quadratic functions have also been applied
to parameterize the shading with respect to normals [HLSK13].
Zhang et al. [ZYY∗12] use a multiple light source setup and op-
timize for refined depth and normals jointly using an adaptive
visibility-based weighting scheme. Other low-rank techniques have
been successfully applied to enforce shading smoothness. This in-
cludes the rank 3 brightness matrix approximation proposed by
Chatterjee et al. [CMG15] and patch-based approaches that employ
low-rank subspace constraints for each patch [LRL14]. Both ap-
proaches consider matrix factorization algorithms to finally obtain
a refined depth image. Similar to the reflectance ratio prior in the
context of material acquisition, Yu et al. [YYTL13] consider ratios
computed per cluster to add further regularization priors. Recently,
Zollhöfer et al. [ZDI∗15] successfully refine the geometry of recon-
structed global models encoded in a truncated signed distance field
to obtain a refined version of much higher quality. However, their
approach requires the knowledge of accurate camera poses. Maier
et al. [MKC∗17] address these shortcomings by jointly refining the
camera poses and the surface geometry; however their method is
limited to the offline setting.

Much effort has been spent in the recent years to accelerate refine-
ment algorithms to allow real-time computations. One of the first
approaches that reached this highly desirable goal was proposed
by Wu et al. [WZN∗14] (c.f. Fig. 13). They estimate second order
spherical harmonics coefficients in a least-squares sense and then
refine the depth image via a highly optimized solver on the GPU.
Besides a depth fidelity term, they also enforce smoothness using
a second order Laplacian constraint on the vertices and a temporal
prior to the refined depth image frame the previous frame. Based
on this work, Or-El et al. [OERW∗15] use an extended shading
model that also covers sparse specular shading and inter-reflections
to increase the accuracy and robustness in problematic regions.

4.3.2. IR Illumination

Besides natural illumination, infrared information gained increasing
interest due to the success of RGB-D sensors, in particular time-
of-flight cameras. The acquired infrared images are comparable to
their RGB variants in terms of quality and noise but the illumination
conditions are typically more controlled as the camera itself emits
light into the scene. Therefore, reflectance and shading information
can be reconstructed more robustly to guide the refinement process.

Choe et al. [CPTSK14,CPTK17] model shading with a Lambertian
term and an image-wide ambient term that covers indirect light to
refine the vertex positions obtained from the depth image via dis-
placement vectors in real-time. Recently, Or-El et al. [OEHW∗16]
fit the Phong reflection model [Pho75] using efficient total variation
techniques to also cover specularities that would otherwise nega-
tively affect the refinement process and lead to incorrect results in
those regions.

4.3.3. Normals

Also closely related to depth refinement is the field of normal es-
timation from images. Since many refinement algorithms directly
or indirectly estimate normal information, approaches that solely
estimate normals can also be considered for refinement. In addi-
tion to the already discussed algorithms, especially learning-based
techniques have been used to tackle this challenging problem. In
recent work, Richter et al. [RR15] apply regression forests to pre-
dict normals from a single RGB image without any assumptions
about the lighting conditions that are typically exploited in Shape-
from-Shading. Similar work has been done byYoon et al. [YCK∗16]
who train a convolutional neural network (CNN) on uncalibrated
infrared data to obtain accurate results.

4.4. Material Datasets

Whereas there are several datasets for the evaluation of static 3D
reconstruction (see Sec. 2.7), only a few exist for material acqui-
sition, especially for intrinsic image decomposition. For BRDF
acquisition, widely used benchmarks are the MERL database
[Mat03], which consists of over 100 measured models, the CUReT
database [DVGNK99], which also contains over 60 measured Bidi-
rectional Texture Functions (BTFs), and the KTH-TIPS database
[CHM05, HCFE04], which extends the CUReT database. Wein-
mann et al. [WGK14] synthesized a BTF database of 84 materi-
als measured using 22801 view-light configurations in total. The
dataset also contains the corresponding surface geometry. In the
field of intrinsic image decomposition, the “MIT Intrinsic Images”
dataset [GJAF09] provides a database of object appearances that
are composed of diffuse shading, reflectance, and specularity lay-
ers. Croudsourcing has been used in some data sets to annotate
pixels with similar reflectance or shading for thousands of im-
ages [BBS14, KBSB17]. The MPI Sintel dataset [BWSB12] pro-
vides a set of computer-generated images that have similar statistics
to real-world images. Ye et al. [YGL∗14] created synthetic image
data by rendering 3D models with a constant and diffuse shader.
However,most of these datasets only contain RGBand lack depth in-
formation, making them only suitable for a subset of approaches that
do not require additional range information. Some researchers tried
to generate pseudo-synthetic RGB-D benchmark data by extending
the “MIT Intrinsic Images” dataset [GJAF09] with depth images
that were produced by the approach of Barron and Malik [BM12].
Considering the recent advances regarding range sensor technology
and the success of real-time 3D reconstruction systems, the lack of
RGB-D, and possibly RGB-D including IR, appearance benchmark
datasets leaves sufficient room for further developments.
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5. Energy Optimization

Many of the so-far discussed techniques solve the respective prob-
lem by optimizing an energy functional. Commonly, more complex
optimization problems use energy functionals that consist of two
parts, data fitting and regularization terms. Often the energy terms
are modeled based on a non-linear least-squares objective. This part
is handled rather similarly by different optimization approaches.
Many other objective functions, based for example on total varia-
tion or robust kernels, heavily influence the choice of the used solver,
meaning that each solver can only handle one specific category. In
the following, we will discuss the most common strategies.

5.1. Non-Linear Least Squares Optimization

Many of the used data terms and regularizers are non-linear least
squares optimization problems. An optimization problem in the
unknowns x ∈ RN is a non-linear least squares problem if it has the
following canonical form:

E(x) =
M∑
i=1

[
ri(x)

]2
= | |F(x)| |22 . (5)

The vector field F :RN →RM stacks the M , potenitally non-linear,
residuals ri in a vector. If the vector field F is linear in the unknowns
x, the problem reduces to a linear least squares optimization prob-
lem:

x∗ = argmin
x
| |F(x)| |22 = argmin

x
| |Ax+b| |22 . (6)

The minimizer of such an objective function is given by the well-
known normal equations ATAx = −ATb. The resulting system of
linear equations can be solved using standard iterative solvers, e.g.,
Gradient Descent or Preconditioned Conjugate Gradient Descent,
or direct linear solvers, based on LU or Cholesky Decomposition.

Many online approaches favor iterative solution strategies, since
these can be easily parallelized on modern graphics hardware
[ZSGS12,ZNI∗14,DKD∗16a,GXY∗17,MZRT16,MFZ∗17].

If F is a non-linear function in the unknowns x, non-linear solvers
such as Gauss-Newton have to be employed. These solvers reduce
the solution of the non-linear least squares optimization problem
to a sequence of linear least squares problems based on a Taylor
expansion of the vector field F around the last solution xi :

F(xi+1) ≈ F(xi)+J(xi)δ, δ = xi+1 − xi . (7)

Therefore, these approaches solve a linear least squares problem in
each iteration step xi+1 = xi + δ

∗ to obtain a new solution xi+1:

δ∗ = argmin
δ
| |F(xi)+J(xi)δ | |22 . (8)

The resulting system of equations is linear and can be solved us-
ing the normal equations. Levenberg-Marquardt is an extension of
Gauss-Newton that adaptively blends between Gauss-Newton and
Gradient Descent to achieve robust convergence.

5.2. Total Variation

Another increasingly popular strategy to solve and regularize highly
challenging ill-posed problems is convex optimization. This partic-

ular class of energy functions has the following form:

Ed(x)+λ · |K(x)| . (9)

Here, x is an element of a finite-dimensional vector space X , Ed is
a convex function and represents the data term of the energy, and
|K(x)| is another convex function mapping from the vector space X
to another one Y . The most common choice for the regularization
term is the `1-normof the gradient function,which is also called total
variation norm. One of the first applications was image denoising
where this concept has been successfully applied first by Rudin et
al. [ROF92].

A commonway to solve such a problem is to reformulate it from a
minimization to a maximization task. The primal variable x is then
replaced by a dual variable y. This is often called the dual prob-
lem [ET99]. A mixture between both formulations also exists, i.e.
the called primal-dual problem. Here, an auxiliary variable is intro-
duced which is optimized in conjunction with the primal variable by
finding a saddle point of the reformulated energy function. During
the last two decades, several algorithms have been proposed to tackle
the problem in one of its formulations including the solver by Cham-
bolle and Pock [CP11], Split-Bregmanmethods [GO09], alternating
directions of multipliers (ADMM) [Ess09, LM79], Newton-based
solvers [CGM99], and many others. Recently, the concept of total
variation has also been extended to enforce higher order smooth-
ness [BKP10].

5.3. Robust Optimization

Robust optimization is often used for filtering out bad corre-
spondences in template-based non-rigid registration approaches
[LSP08, ZNI∗14] and bundle adjustment [Zac14b, CZK15a]. The
idea is to employ a robust kernel function instead of an `2-norm to
define the objective function:

E(x) =
M∑
i=1
Ψ(ri(x)) . (10)

Here, Ψ is the employed robust kernel. Due to the robust kernel,
the resulting optimization problem is non-linear and not in general
least-squares form. With some modifications, it is still possible to
cast the optimization problem as a non-linear least-squares problem,
which enables the use of the previously discussed standard solvers.
There are many different possibilities how this can be achieved. A
comprehensive summary and evaluation of the different approaches,
which includes Iteratively Reweighted Least Squares, the Triggs
correction, Square-rooting, andLifting, has been performed byZach
et al. [Zac14b]. We also provide an explanation on how IRLS can
deal with `p-norms in the next section.

5.4. Iteratively Reweighted Least Squares

Optimization problems that involve general `p-norms can be re-
duced to a sequence of, potentially non-linear, least squares opti-
mization problems based on Iteratively Reweighted Least Squares
(IRLS). This strategy has been applied to both tracking as well
as intrinsic decomposition problems [TZS∗16,MZRT16,MFZ∗17,
BST∗14]. The key idea of IRLS is to split the residuals, which
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involve the `p-norm, into two individual parts:

‖r‖p2 = ‖r‖
p−2
2︸  ︷︷  ︸

const.

· ‖r‖22 (11)

≈ c · ‖r‖22 .

The first part is considered constant during each iteration step and
the second part is in general least-squares form. Thus, in each it-
eration step, this approximation can be solved using a standard
(non-linear) least-squares solver.

6. Challenges and Future Work

This report summarizes the tremendous amount of scientific
progress which was spawned over the recent years by the wide ac-
cessibility of commodity RGB-D sensors. Despite this remarkable
progress, there are still many difficult open challenges that future
work on 3D reconstruction with RGB-D cameras needs to address,
in particular for interactive and online use cases.

Geometric Aspects of 3D Reconstruction Even though the core
system setups described in Sec. 2 are very mature, they are still
far from being ideal. In generic scene reconstruction situations
w/o prior knowledge, more efficient methods for geometry cleanup,
simplification and abstraction are needed. In our report, we deliber-
ately did not include post-processing approaches, as they are rather
unattractive in the 3D reconstruction context using RGB-D cameras.
Thus, we see a significant potential and need for further research,
since more elaborate geometric abstraction would intrinsically sup-
port better data compression, scene completion, and removal of spu-
rious geometry. This would help to compensate errors due to sensor
noise, limited resolution, and misalignments due to drift. Resulting
compression would also support scalability to larger scenes, in par-
ticular with online methods. Geometric abstraction, e.g., based on
shape primitives, has been extensively researched for the purpose of
static 3D model and scan simplification. Extending these concepts
to the wider context of unrestricted, continuous and real-time 3D re-
construction with RGB-D cameras is not straightforward. The latter
setting is much more complicated as scene dynamics can enforce to
roll-back prior decisions made to specific geometric constellations,
e.g., a plane needs to get back-converted into voxels/points in case
of changing shape. Handling this efficiently on the level of shape
abstraction is still a major challenge.

Capturing and Modeling Dynamics The reconstruction of scene
dynamics has seen tremendous progress in recent past, as explained
in Sec. 3. Nonetheless, existing approaches are still in their infancy
and can only handle very restricted types of scenes. Independent
of the specific application, robust handling of fast motions is still
infeasible in general environments. In addition, approaches are not
designed to handle difficult occlusions or self-occlusions, even lose
interactions between multiple elements in the scene is often highly
impractical. Most of them are geared towards reconstruction of
individual or a low number of deforming objects. Even most offline
methods break under difficult deformations and apparent topology
changes. Handling such cases in real-time is a challenge of even
larger scale.

Many approaches resort to some form of shape or deformation
template, e.g., a skeleton, a piecewise rigid shape model, or a de-
formable surface, to handle dynamic shape capture. Capturing or a
priori designing such a template is a challenge in its own right. It is
also a limitation in practice, since template initialization for all con-
ceivable deformable real world objects is hardly achievable. Some
approaches we discussed started to look into simultaneous template
building and deformable tracking. However, they only succeed on
very simple and slowly moving and deforming shapes. Space-time
coherent reconstruction of general deformable scenes frommultiple
RGB-D cameras, let alone a single RGB-B camera, is therefore still
a widely open problem. One strategy that could significantly im-
prove the capture and modeling of dynamics is therefore the active
learning of more expressive adaptable deformation models. New
strategies to capture dynamic scenes at larger temporal scales and
finer-scale spatial detail than currently possible will also be needed
in the future.

Appearance As depicted in Sec. 4, there have been ground-
breaking developments in online and interactive capture and rep-
resentation of 3D appearance, from simple Lambertian color and
textures, via (spatially varying) BRDFs, and other scatteringmodels
to illumination estimation. Still, due to the entanglement of all these
effects in real-world appearance acquisition systems, the underlying
problem is highly ill-posed and it is hard to deduce more generic
solutions. Even though, there are first online results, they capture
rather simplistic approximations of real-world appearance and light
transport complexity. The joint online estimation of high-quality
material and illumination properties leaves sufficient room for im-
provements, involving, for instance, more appropriate reflectance,
scattering, and more detailed, high-frequency illumination models.

High-Level Reconstruction From a more abstract perspective, the
existing online and interactive 3D reconstruction techniques have
the potential to enable a large variety of future high-level applica-
tions. This, however, requires substantial breakthroughs regarding
the following three aspects. (1) More generic scene reconstruction
approaches need to be developed that can cover a much wider scope
of application scenarios in a single approach. (2) The upcoming of
mobile devices and smartphones equipped with RGB-D sensors
do not automatically induce that the existing 3D reconstruction
solutions are available on these platforms. This is mainly due to
the limited spatial and temporal resolution of the highly-integrated
RGB-D cameras and the restricted computational power of mobile
processors. (3) Modeling of semantics with respect to geometry,
motion and appearance would strongly improve the deployability
of 3D reconstruction approaches to many other fields of applica-
tion, ranging from entertainment via medicine and health care to
autonomous systems.

Emerging Trends and Machine Learning While not the main
focus of this survey, machine learning based approaches, especially
in the form of deep neural networks, are a very promising avenue
for tackling the many challenges in 3D reconstruction, non-rigid
tracking and material estimation. Deep learning on 3D data has
seen a lot of progress recently, making it hard to exhaustively cover
all the literature; we leave this for a dedicated survey paper. In the
following, we shortly highlight a few approaches, which we deem
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to be most relevant in the context of this STAR report. Feature
matching [ZSN∗17] for static reconstruction and dense correspon-
dences [WHC∗16] for non-rigidly deforming shapes can be learned
using deep convolutional neural networks. Completing scans of sin-
gle objects [WSK∗15,DQN17], the environment around an RGB-
D frame [SYZ∗16], or even of complete scenes [DRB∗17] is a
very promising and active area of research. In addition, many ap-
proaches go beyond pure 3D reconstruction and additionally infer
high-level scene semantics [SYZ∗16,DCS∗17,CDF∗17]. Other ap-
proaches learn volumetric fusion [RUBG17] to better handle sensor
noise by exploiting learned data priors. Recently, deep learning has
been shown to perform well on point cloud data [QSMG16]. Be-
sides these more geometry related approaches, machine learning
has also been applied to BRDF estimation. The BRDF of an object
can be inferred based on RGB-D data captured from multiple view-
points [KGT∗17]. Also very recently, learning based approaches
have demonstrated BRDF estimation based on a single input im-
age [RRF∗16,GRR∗17,LCY∗17,LDPT17].

7. Conclusion

Online and interactive 3D reconstruction using commodity RGB-
D cameras has evolved dramatically within the last years. 1000+
papers have been published in this field since the upcoming of
the first Kinect generation, covering a vast variety of use cases
and applications, and there is no saturation in sight. The current
development covers the full reconstruction pipeline and brings about
innovations at all levels and intermediate steps, fromRGB-D camera
hardware to high level applications related to all possible aspects of
daily life.

This state-of-the-art report aggregates, reviews, compares, and
critically analyzes the major aspects of 3D reconstruction using
RGB-D cameras. Starting with the rather well-posed problems of
static scene reconstruction, forwhichwe outline the basic principles,
we unfold various lines of research and development in this respect
and evolve them to capturing scene dynamics and appearance,which
are far more ill-posed problems, requiring more complex solutions,
representations, and regularization techniques.We also look into the
methods approaching the challenging, practically highly-relevant,
and starkly ill-posed problem of combining shape, appearance, and
illumination capture.

We are convinced, that this state-of-the-art report will support the
further development of this field in several ways. First, even though
this report cannot dive too deep into all technical details, it serves
as a starting point for researchers and application engineers new
to the field of 3D reconstruction. Second, it serves as reference for
researcher active in this field, making them aware of approaches,
which are potentially orthogonal to themethodologies they currently
apply. Last, in conjunction with the presentation of this report at
the Eurographics conference 2018 in Delft, NL, it will foster the
discussion with respect to future approaches and potentials of the
powerful 3D reconstruction toolbox at hand.
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