V. Approx. Algorithms: Travelling Salesman Problem

Thomas Sauerwald

Easter 2020

Outline

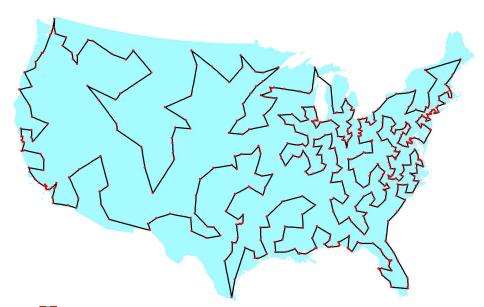
Introduction

General TSP

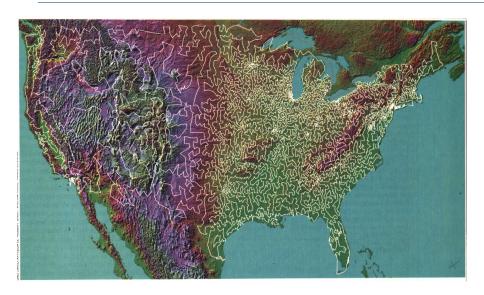
Metric TSP

33 city contest (1964)

532 cities (1987 [Padberg, Rinaldi])



13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])



Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition —		
1 ormal Bollintion		

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition -

■ Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

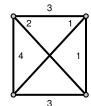
Formal Definition -

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition —

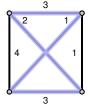
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.



Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition —

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

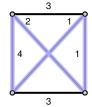


3+2+1+3=9

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition -

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.



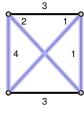
$$2+4+1+1=8$$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition -

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n! possible tours!



$$2+4+1+1=8$$

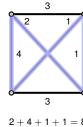
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition -

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

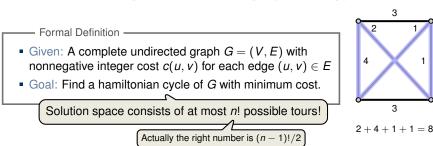
Solution space consists of at most *n*! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.



Special Instances

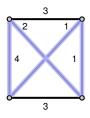
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition -

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most *n*! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

Metric TSP: costs satisfy triangle inequality:

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

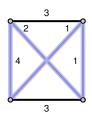
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition -

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most *n*! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

■ Metric TSP: costs satisfy triangle inequality:

NP hard (Ex. 35.2-2)

Even this version is

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

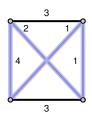
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition -

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

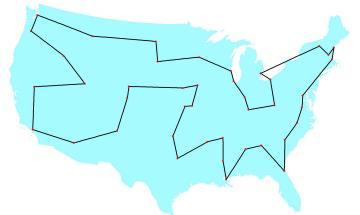
Metric TSP: costs satisfy triangle inequality: NP hard (Ex. 35.2-2)

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

 Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

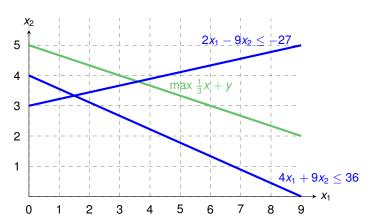


http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

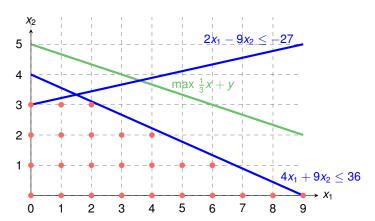
1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

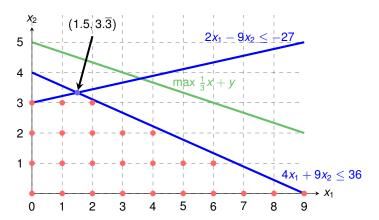
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



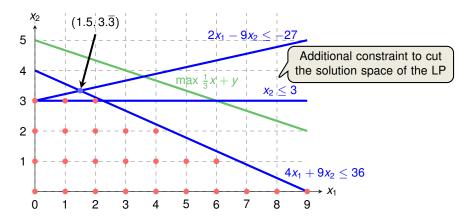
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



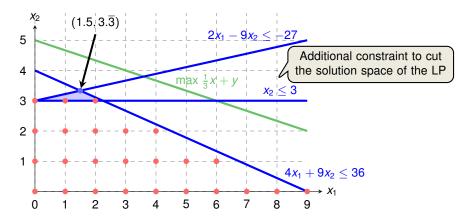
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



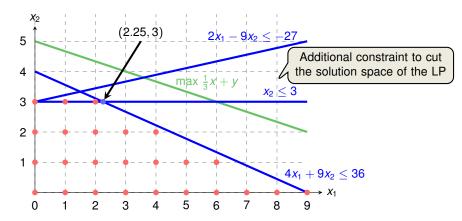
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



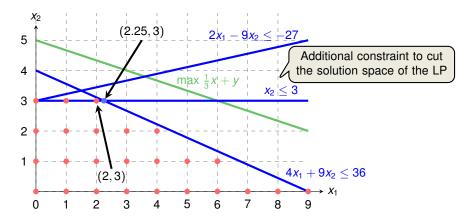
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



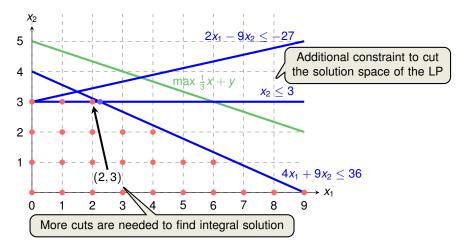
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



Outline

Introduction

General TSP

Metric TSP

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

• Let G = (V, E) be an instance of the hamiltonian-cycle problem

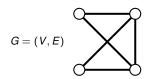
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

• Let G = (V, E) be an instance of the hamiltonian-cycle problem



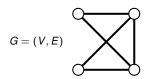
Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$G = (V, E)$$

G'=(V,E')

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

$$G = (V, E)$$

G'=(V,E')

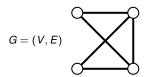
Theorem 35.3

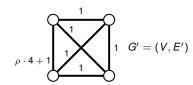
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$





Theorem 35.3

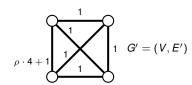
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$
 Large weight will render this edge useless!

$$G = (V, E)$$



Theorem 35.3

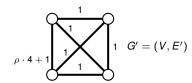
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let $G'_{\bullet} = (V, E')$ be a complete graph with costs for each $(u, v) \in E'$:

Can create representations of
$$G'$$
 and c in time polynomial in $|V|$ and $|E|!$ $c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

$$G = (V, E)$$



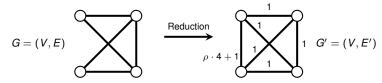
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

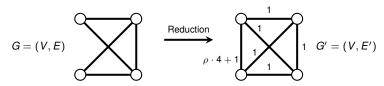
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

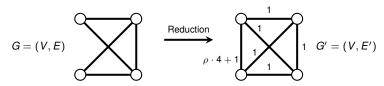
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

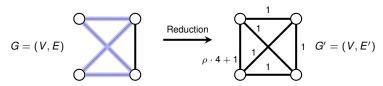
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

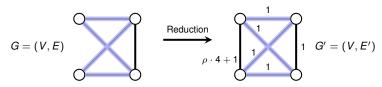
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

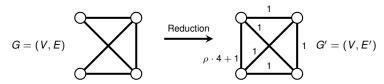
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

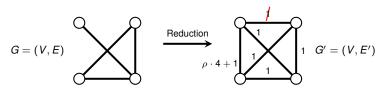
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

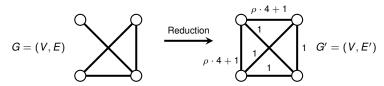
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

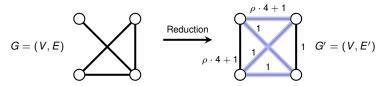
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

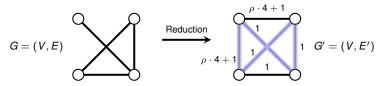
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

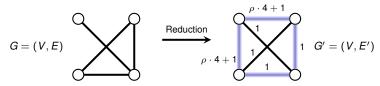
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

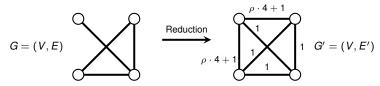
Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho|V|+1) + (|V|-1)$$



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

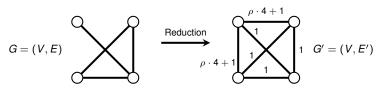
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

• Gap of $\rho + 1$ between tours which are using only edges in G and those which don't



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

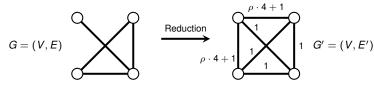
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of $\rho + 1$ between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

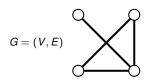
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

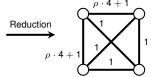
$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

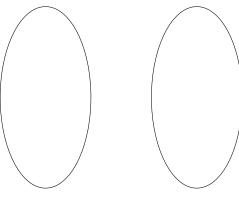
$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of ρ + 1 between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)



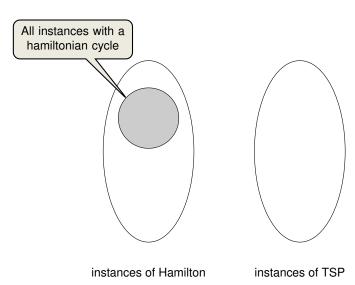


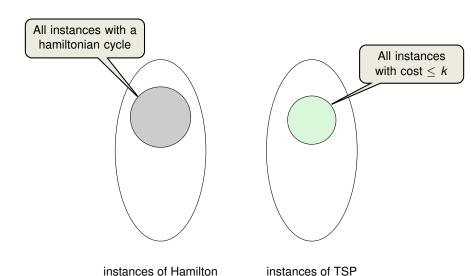
$$1 \quad G' = (V, E')$$

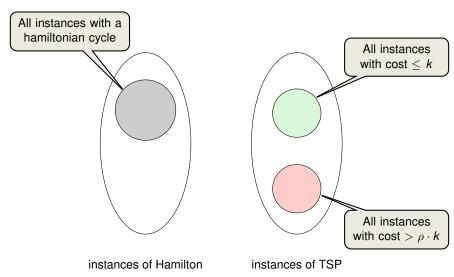


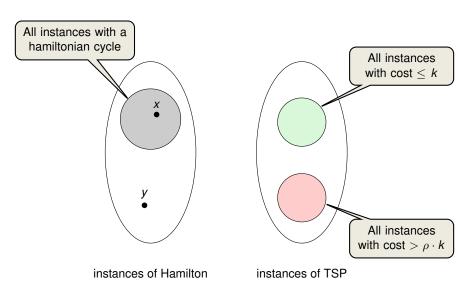
instances of Hamilton

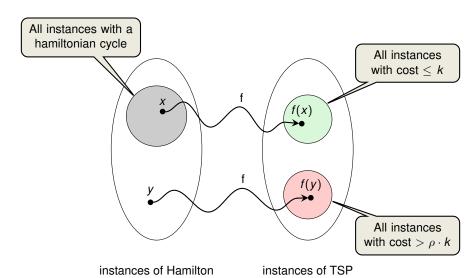
instances of TSP

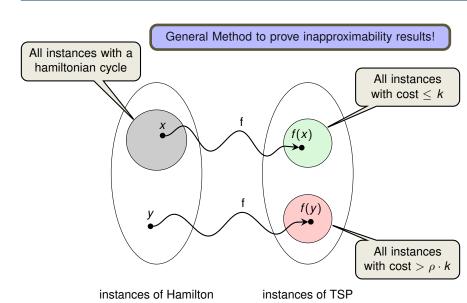












Outline

Introduction

General TSP

Metric TSP

Idea: First compute an MST, and then create a tour based on the tree.

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{\min}
- 6: **return** the hamiltonian cycle H

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- in a preorder walk of T_{\min}
- 6: **return** the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

Idea: First compute an MST, and then create a tour based on the tree.

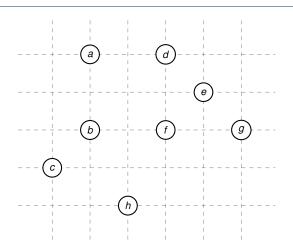
```
APPROX-TSP-TOUR(G, c)
```

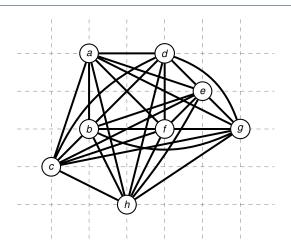
- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{\min}
- 6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

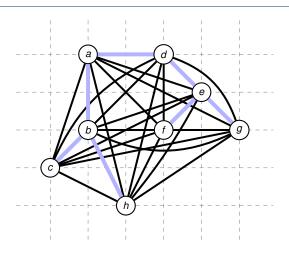
Remember: In the Metric-TSP problem, G is a complete graph.

Run of Approx-Tsp-Tour

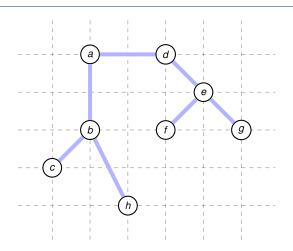




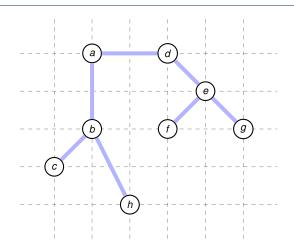
1. Compute MST T_{min}



1. Compute MST T_{\min}

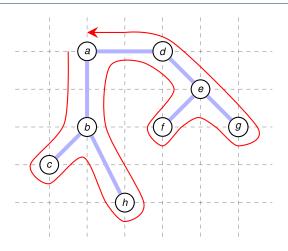


1. Compute MST T_{min} \checkmark

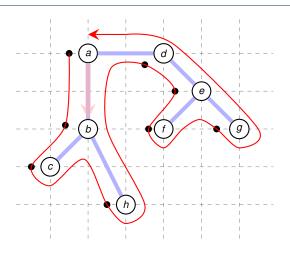


- 1. Compute MST T_{\min} \checkmark
- 2. Perform preorder walk on MST $T_{\rm min}$

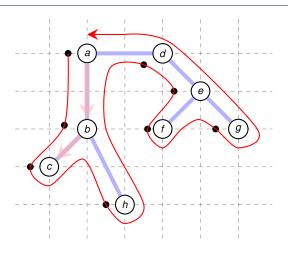
Run of APPROX-TSP-TOUR



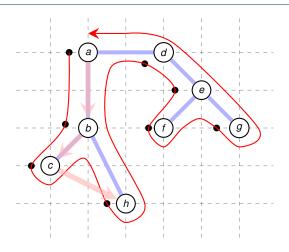
- 1. Compute MST T_{\min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark



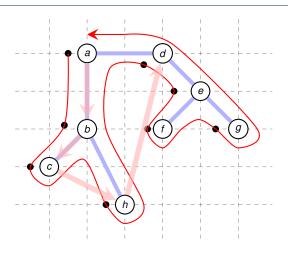
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



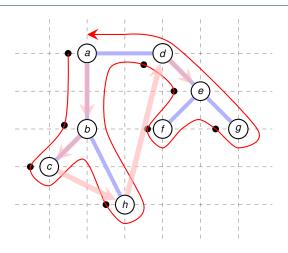
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



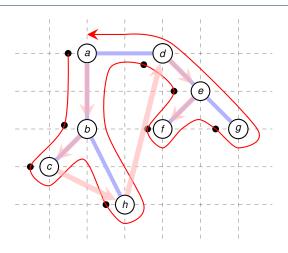
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



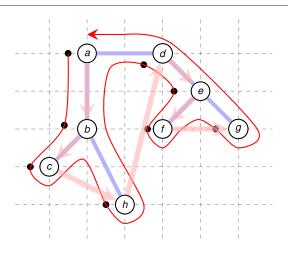
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



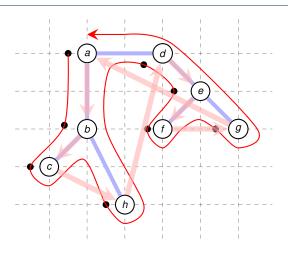
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



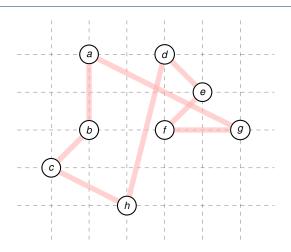
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



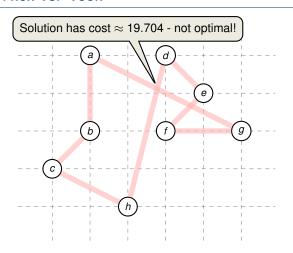
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



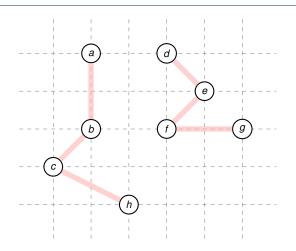
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



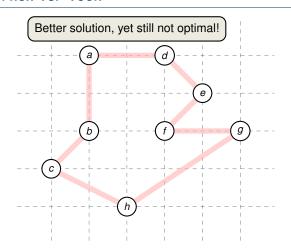
- 1. Compute MST *T*_{min} ✓
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



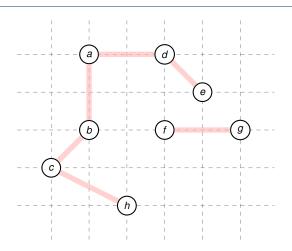
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



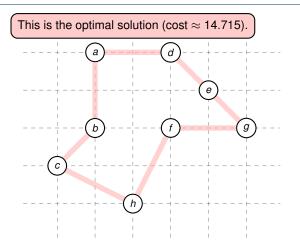
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



- 1. Compute MST T_{\min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

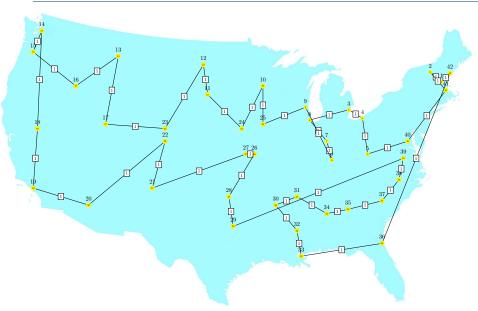


- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



- 1. Compute MST T_{\min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

Approximate Solution: Objective 921



Optimal Solution: Objective 699

Theorem 35.2

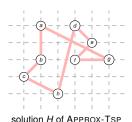
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2

 $\label{lem:approx} \mbox{APPROX-TSP-TOUR} \ \ \mbox{is a polynomial-time} \ \ \mbox{2-approximation} \ \ \mbox{for the traveling-salesman problem with the triangle inequality.}$

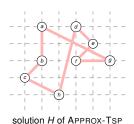
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

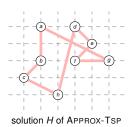


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove an arbitrary edge

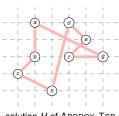


Theorem 35.2 -

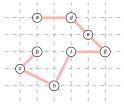
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove an arbitrary edge



solution H of APPROX-TSP

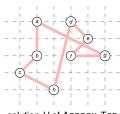


spanning tree T as a subset of H^*

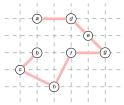
Theorem 35.2

APPROX-TSP-Tour is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and



solution H of APPROX-TSP

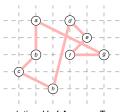


spanning tree T as a subset of H^*

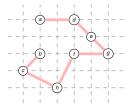
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour *H** and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$



solution H of APPROX-TSP



spanning tree T as a subset of H^*

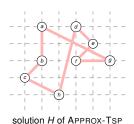
Theorem 35.2

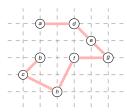
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \leq c(T) \leq c(H^*)$

exploiting that all edge costs are non-negative!

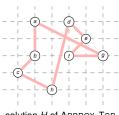




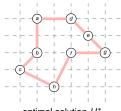
Theorem 35.2

APPROX-TSP-Tour is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)



solution H of APPROX-TSP

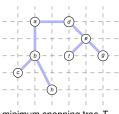


optimal solution H*

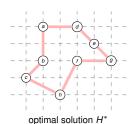
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour *H** and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)



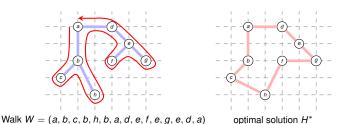
minimum spanning tree T_{min}



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

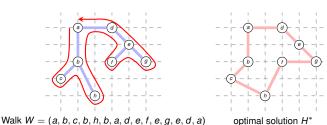
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so



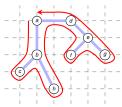
Theorem 35.2 -

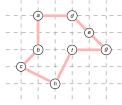
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min})$$





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

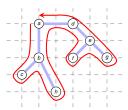
Theorem 35.2

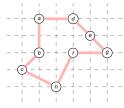
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

Theorem 35.2 -

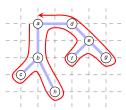
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

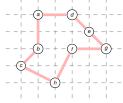
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

Theorem 35.2

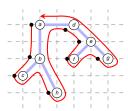
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

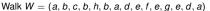
Proof:

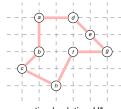
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H







Theorem 35.2 -

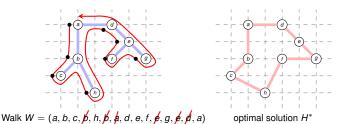
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H



Theorem 35.2

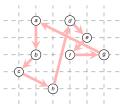
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

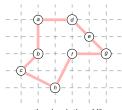
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H



Tour H = (a, b, c, h, d, e, f, g, a)



optimal solution H*

Theorem 35.2 -

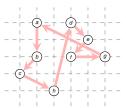
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

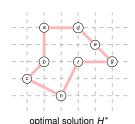
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!



Tour H = (a, b, c, h, d, e, f, g, a)



Theorem 35.2 -

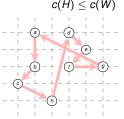
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

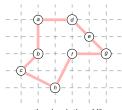
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!



Tour H = (a, b, c, h, d, e, f, g, a)



optimal solution H*

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

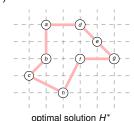
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

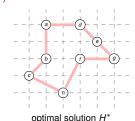
Proof:

- Consider the optimal tour H^* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



Theorem 35.2

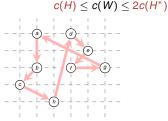
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

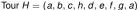
Proof:

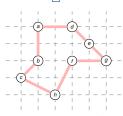
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T_{\min}) \le c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!







optimal solution H*

- Theorem 35.2 -

APPROX-TSP-Tour is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES (G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M_{\min} with minimum weight in the complete graph
- 5: over the odd-degree vertices in T_{\min}
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T_{\min} \cup M_{\min}$
- 8: return the hamiltonian cycle H

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

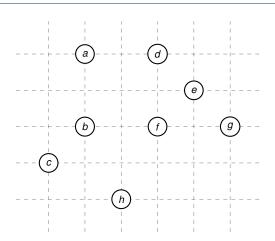
Can we get a better approximation ratio?

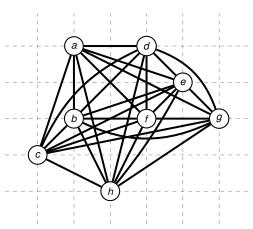
CHRISTOFIDES (G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M_{\min} with minimum weight in the complete graph
- 5: over the odd-degree vertices in T_{\min}
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T_{\min} \cup M_{\min}$
- 8: **return** the hamiltonian cycle H

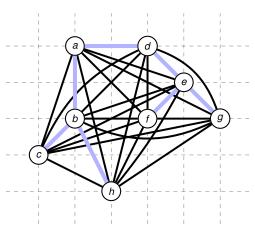
- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

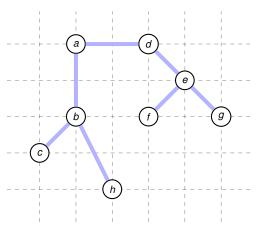




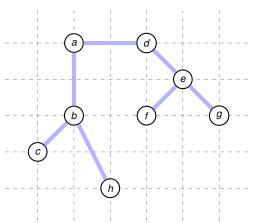
1. Compute MST T_{\min}



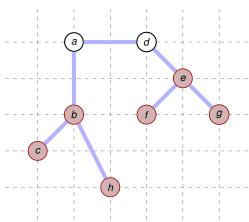
1. Compute MST T_{\min}



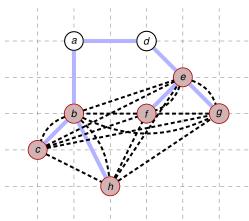
1. Compute MST T_{\min} \checkmark



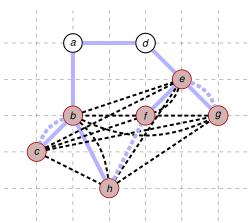
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min}



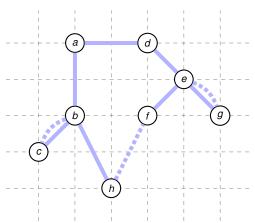
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min}



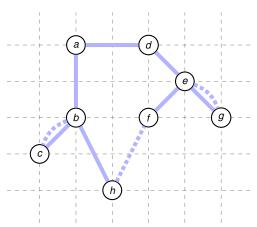
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min}



- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min}

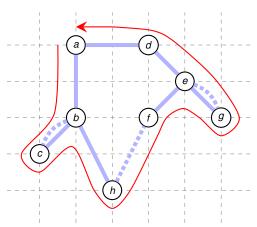


- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark



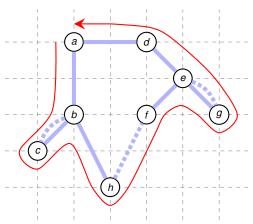
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\text{min}} \cup M_{\text{min}}$

All vertices in $T_{\min} \cup M_{\min}$ have even degree!

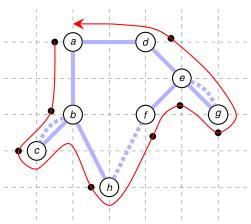


- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\text{min}} \cup M_{\text{min}} \checkmark$

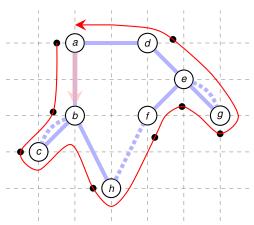
All vertices in $T_{\min} \cup M_{\min}$ have even degree!



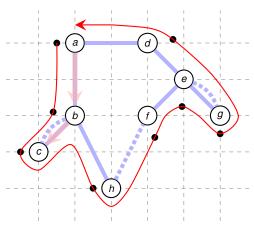
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



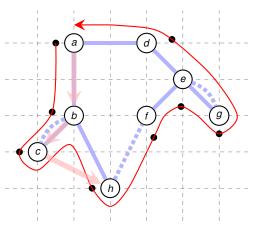
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



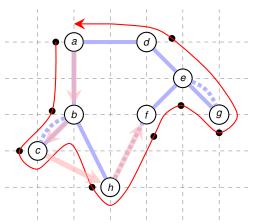
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



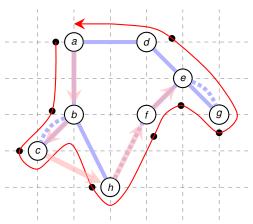
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



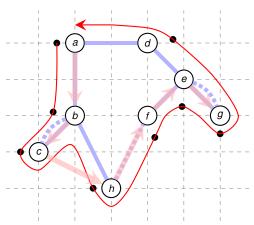
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



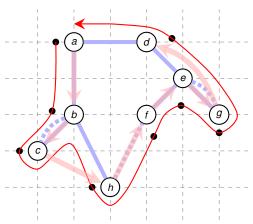
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



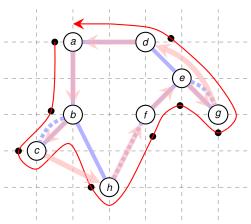
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



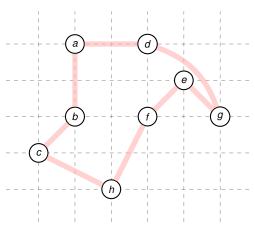
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



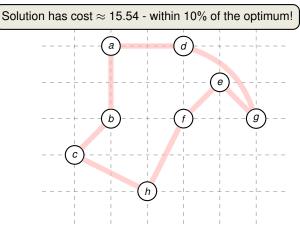
- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle ✓



- 1. Compute MST T_{\min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle ✓

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

As before, let H* denote the optimal tour

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

(1)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
 (1)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

• Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
 (1)

- Let H*_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
 (1)

- Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{add}^*)$

Number of odd-degree vertices is even!

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
 (1)

- Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality, Number of odd-degree vertices is even!

(2)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
 (1)

- Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality, Number of odd-degree vertices is even!

$$c(M_{\min}) \le \frac{1}{2}c(H_{odd}^*) \le \frac{1}{2}c(H^*).$$
 (2)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
 (1)

- Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality, Number of odd-degree vertices is even!

$$c(M_{\min}) \le \frac{1}{2}c(H_{odd}^*) \le \frac{1}{2}c(H^*).$$
 (2)

• Combining 1 with 2 yields

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
 (1)

- Let H*_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality, Number of odd-degree vertices is even!

$$c(M_{\min}) \le \frac{1}{2}c(H_{odd}^*) \le \frac{1}{2}c(H^*).$$
 (2)

Combining 1 with 2 yields

$$c(W) \le c(H^*) + c(M_{\min}) \le c(H^*) + \frac{1}{2}c(H^*) = \frac{3}{2}c(H^*).$$

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

still the best algorithm for the metric TSP problem(!)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

still the best algorithm for the metric TSP problem(!)

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

still the best algorithm for the metric TSP problem(!)

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

Both received the Gödel Award 2010

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

still the best algorithm for the metric TSP problem(!)

- Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

Both received the Gödel Award 2010

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

Exercise: Prove that the approximation ratio of APPROX-TSP-TOUR satisfies $\rho(n) < 2$.

Hint: Consider the effect of the shortcutting, but note that edge costs might be zero!