IV. Approximation Algorithms via Exact Algorithms
Thomas Sauerwald

Easter 2020

[UNIVERSITY OF
QP CAMBRIDGE

Outline

The Subset-Sum Problem

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > , X < L.
[\

i: x;€S

(This problem is NP—hardj

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

>
RRE
I Il
—
>lo

X3=5
X4 =6
X5 =1

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

>
RRE
I Il
—
>lo

X3=5
X4 =6
X5 =1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons
()
[
X3=5
X4:6
|
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <L

it x€

t =13 tons
X1:10 r 1
[
X2:4
xX3=>5 X1+ x5 =11
| _—>
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons
[)
[
X3=5
| _—>
X4:6
| _—>
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

X1:10 r 1
X2:4

| _—>
xX3=>5 X3+ X4+ X5 =12

| _—>

| _—>
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

ﬁ!a

;,! 5 IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

ﬁl;

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo ={0)

3 fori =1ton

4 L; = MERGE-LISTS (L;_;. Li_; + x;) (§+X:={st+x:s€S})
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S| Returns the merged list (in sorted}

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

[implementable in time O(|L;_+|) (like Merge-Sort)]

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢

return the largest element in L,

n =S| Returns the merged list (in sorted}

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

Example:

ﬁl;

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10

ﬁl;

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10
* Lo =(0)

ﬁla

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
= Lo:<0>

- L1 :<0,1>

ﬁla

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
- Lo=<0>

= L1:<0,1>

- L2:<0717475>

ﬁla

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3=10,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3 =0,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint

= Correctness: L, contains all sums of {xi,X2,...,Xn}

Example:

= S={1,45},t=10

=Ly = <0>

=L = <07 1>

'L2:<0717475>

= [3=1(0,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;_j A==
5 remove from L; every element th[Cﬁn be shown by induction on n]
6 return the largest gk dint. Z

= Correctness: L, contains all sums of {xi,X2,...,Xn}

Example:

= S={1,45},t=10

* Lo=(0)

= L= <07 1>

= [, =(0,1,4,5)

= [3=1(0,1,4,5,6,9,10)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X2,...,Xn}
= Runtime: O(2' +2% + ... +2") = O(2")
Example:
= S={1,45},t=10
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X2,...,Xn}
= Runtime: O(2' +: 22 4 ... 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {x, Xz, . .. x,}]
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=]|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X2,...,Xn}
= Runtime: O(2' +22 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {xi, Xo, . . x,}] Better runtime if ¢
= Lo =(0) and/or |L;| are small.
L= <07 1>
.L2:<0717475>
= [3=(0,1,4,5,6,9,10)

IV. Approximation via Exact Algorithms The Subset-Sum Problem 4

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

ﬁ!a

;,! 5 IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

y
—_— <z <.
116 %Y

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

v
140

z<Ly

S

<z
[= [= (10,11,12, 15,20, 21, 22, 23, 24, 29)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

<
[= [= (10,11,12, 15,20, 21, 22, 23, 24, 29)
= 5=0.1

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

L S V4 S y
[. L= (10,11,12, 15,20, 21,22, 23, 24, 29)
"= 5=0.1
= [’ = (10,12, 15, 20, 23, 29)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’

(TRIM works in time ©(m), if L is given in sorted order.]

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last- (1 +§) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L=

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L' = (10)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last
L=(10,11,12,15,20,21,22, 23,24, 29)

L' = (10)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20,23, 29)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20,23, 29)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)
n=|S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + x;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

o e Y e S

Gy IV. Approximation via Exact Algorithms

The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

EXACT-SUBSET-SUM(S, 1)

1 n=]|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS(L;_y, Li—1 + X;) 4 L; = MERGE-LISTS(L;—1, L~ + X;)
[5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

g IV. Approximation via Exact Algorithms

The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

00 N || W =

|

|

EXACT-SUBSET-SUM(S, 1)

n=|S| 1 n=1S|
Lo = (0) 2 Lo =(0)

fori = 1ton 3 fori =1ton
L; = MERGE-LISTS(L;_y, L;—1 + X;) 4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
remove from L; every element that is greater than# 6 return the largest element in L,

let z* be the largest value in L,

return S~
Repeated application of TRIM

to make sure L;'s remain short.
5 IV. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS(L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

00 N || W =

remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*
S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

n =S|
Lo = (0)
fori = lton

L; = MERGE-LISTS(L;—1, L~ + X;)
remove from L; every element that is greater than ¢
return the largest element in L,

= We must bound the inaccuracy introduced by repeated trimming

_;:E IV. Approximation via Exact Algorithms

The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS(L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

00 N || W =

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*
S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

n =S|
Lo = (0)
fori = Iton

L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

E:E IV. Approximation via Exact Algorithms

The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS (L;_y, Li—; + x;)

L; = TRIM(L;,€/2n)

1
2
3
4
5
6
7
8

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*
S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

n =S|
Lo = (0)
fori = Iton

L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

NS

[Solution is a careful choice of 5!]

i
E:E IV. Approximation via Exact Algorithms

The Subset-Sum Problem 7

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

bl - e

g oy IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

bl - e

i IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
® line 4: Ly = (0,104)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
® line 4: Ly = (0,104)
= line 5: Ly = (0,104)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0, 104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

® line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= lined: Ly =

= line5: Ly =

= line6: Ly =

= line 4: L,

0,102, 104, 206)
line 5: Lo

0,102, 206)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
* line 4: L, = (0,102, 104, 206)
* line 5: L = (0, 102, 206)
= line 6: L = (0, 102, 206)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

n =S|

Lo = (0)

fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

1
2
3
4
5 L; = TRIM(L;,€/2n)
6
7
8

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter: § = ¢/(2 - n) = ¢/8 = 0.05

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:

line 4:

=
= line 2

Lo = (0)

Ly = (0,104)

Ly = {0,104}

L1 = {0,104)

L» = (0,102,104, 206)

Lo — (0,102, 206}

L, = (0,102, 206)

Ls = (0,102,201, 206, 303, 407)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter: § = ¢/(2 - n) = ¢/8 = 0.05

=

line 2

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:

line 4:
line 5:

tLo={0)

Ly = (0,104)

L7 = {0,104)

L1 = {0,104)

L» = (0,102,104, 206)

Lo — (0,102, 206}

L5 — {0,102, 206)

Ls = (0,102,201, 206, 303, 407)
Ly = (0,102,201, 303 407>

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line6: Ly = O 104)

= lined: L, =
= line 5: Ly, =
= line 6: L, =
= line 4: L
= line 5: L3
= line 6: L

(

(

(
(0,102,104, 206)

{0,102, 206}

{0,102, 206}

(0,102, 201,206,303, 407)
{0,102, 201,303, 407}

= (0,102,201, 303}

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
* line 5: L = (0, 102, 206)
= line 6: L = (0, 102, 206)
= line 4: Ly = (0,102, 201,206, 303, 407)
* line 5: Ly = (0, 102,201,303, 407)
= line 6: L = (0, 102,201,303)
= line 4: Ly = (0,101,102, 201,203, 302, 303, 404)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
* line 5: L, = (0, 102, 206}
= line 6: L, = (0, 102, 206)
= line 4: Ly = (0,102, 201,206, 303, 407)
= line 5: L3 = (0,102,201, 303 407)
= line 6: L3 = (0,102,201, 303}
® line 4: L4 = (0,101,102, 201,203, 302, 303, 404)
= line 5: Ly = (0,101,201, 302, 404)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter: § = ¢/(2 - n) = ¢/8 = 0.05

=

line 2

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:

line 4:
line 5:
line 6: L.

line 4:
line 5:
line 6:

tLo={0)

Ly = (0,104)

L7 = {0,104)

Ly = (0,104)

Lo = (0,102, 104, 206)

Lo — (0,102, 206}

L, = (0,102, 206)

Ls = (0,102,201, 206, 303, 407)
L3 = (0,102,201, 303 407>

— (0,102,201, 303}

L4 = (0,101,102,201,203, 302, 303, 404)
Ly = (0,101,201, 302 404>

Ly = (0,101,201, 302)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
* line 5: L, = (0, 102, 206}
= line 6: L, = (0, 102, 206)
= line 4: Ly = (0,102, 201,206, 303, 407)
= line 5: L3 = (0,102,201, 303 407)
= line 6: L3 = (0, 102 201 303)
= line 4: L4 = (0,101,102, 201,203, 302, 303, 404)
= line 5: Ly = (0,101,201 302 404)

line 6: Ly = (O, 101 201 302) Returned solution z* = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

IV. Approximation via Exact Algorithms The Subset-Sum Problem 8

Reminder: Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c ¢C
m = Z_) < p(n).
ax(") p()

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(n2/e),)

= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/e and n. G:or example, O((1/¢)? - n3).)

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

Y

Groeny -~ =7

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

Yy

(1 +€/(2n))f

N

(Can be shown by induction on ij

<z<y

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
Y o<y L

(1+¢/(2n))
1

(Can be shown by induction on ij

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
S A LS 2 pe———
(1+e¢/(2n)) (1+¢/(2n))"
1

(Can be shown by induction on ij

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
S —— e A N — P
(1+e¢/(2n)) (1+¢/(2n))"
N y* € n
(Can be shown by induction on ij ZsU+3)

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
S —— e A N — P
(1+e¢/(2n)) (1+¢/(2n))"
N y* € n
(Can be shown by induction on ij ZsU+3)

N nosoo

and now using the fact that (1 + inz) 3 e¢/2 yields

IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
S —— e A N — P
(1+e¢/(2n)) (1+¢/(2n))"
N y* € n
(Can be shown by induction on ij ZsU+3)

N nosoo

and now using the fact that (1 + inz) 3 e¢/2 yields

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
R 3 2 e A— L
(1+¢/(2n))y (1+¢€/(2n)"
N y* € n
(Can be shown by induction on ij > <\ 1+ on) 7

N nosoo

and now using the fact that (1 + inz) 3 e¢/2 yields

v < /2 (Taylor approximation of ej
z =

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
R 3 2 e A— L
(1+¢/(2n))y (1+¢€/(2n)"
N y* € n
(Can be shown by induction on ij > <\ 1+ on) 7

N nosoo

and now using the fact that (1 + inz) 3 e¢/2 yields

v < /2 (Taylor approximation of ej
z =

<1+4¢/2+4 (e/2)2

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
R 3 2 e A— L
(1+¢/(2n))y (1+¢€/(2n)"
N y* € n
(Can be shown by induction on ij > <\ 1+ on) 7

N nosoo

and now using the fact that (1 + inz) 3 e¢/2 yields

v < /2 (Taylor approximation of ej
z =

<T14e/2+4 (/22 <14e

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;|)
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

i
E:? IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to |log, . /(25 | additional values.

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.
Hence,

l0g14e/2m I +2=

52l
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.
Hence,
Int

log1. o f+2 = ——" L 42
O8ite/(en) 1+ 2= T o)

52
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.
Hence,
Int

log1. o f+2 = ——" L 42
O8ite/(en) 1+ 2= T o)

[Forx > —1,In(1+x) > ﬁ]

IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.
Hence,

Int
I fap— I
O8ite/n) 2= Tyt
2n(1 + ¢/(2n)) Int
2@t

€

[Forx > —1,In(1+x) > ﬁ]

IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.

Hence,

Int n
In(1 +¢/(2n))
2n(1 +¢€/(2n)) Int 42

€

log1c/(2n) t+2

[Forx>—1,|n(1+x)2$] :3n|nt+2

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.
Hence,

Int
I fap— I
O8ite/n) 2= Tyt
2n(1 + ¢/(2n)) Int
2@t

€

[Forx> —1,In(1 + x) > ﬁj st
€

= This bound on |L;| is polynomial in the size of the input and in 1/e.

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.
Hence,
| t+2 Int +
(e} = ——
Bite/(@n) In(1 + ¢/(2n))
2n(1 +¢/(2n)) Int
Lente/@m)int

[Forx> —1,In(1 + x) > ﬁj st
€

€

= This bound on |L;| is polynomial in the size of the input and in 1/e. O
1
(Need log(t) bits to represent t and n bits to represent Sj

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi < L.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

— Theorem

There is a FPTAS for the Knapsack problem.

\

il
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

~——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies 3, cq w; < t

P
LAIgorithm very similar to APPROX-SUBSET-SUM
— Theorem -

There is a FPTAS for the Knapsack problem.]

il
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 11

Outline

Parallel Machine Scheduling

E:E IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

m identical machines My, Mx, ..., Mn,

= Given: njobs Ji, Js, . . ., Jn with processing times p1, po, . ..

, Pn, and

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, Js, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mx, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, Js, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.

N T S

T T
T T T T

O 1 2 3 4 5 6 7 8 9 10 1

4
t

1 12 13 14 15

Parallel Machine Scheduling 13

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.

w D)

1 12 13 14 15

o
-
N
w
N
[6)]
m_
~ A
©
©
_lm..
o
-

Parallel Machine Scheduling 13

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.

A 2 e
m L J

o 1 2 3 4 5 6 7 8 9 10 1

1
I
i
I
1
!
i
i
1
T

4
t

1 12 13 14 15

T

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
() D |

m | o _)

1

} T T T T T T T T

T

0 1éé4'156%8é1'01'11'21'31'41'5

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
vk 0 JCa

M1[. Jo . _]i

1

I T T
L T T

0 1éé4'156%591'01'11'21'31'41'5

LIST SCHEDULING(J1, oo, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

S R
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

NET G G

M1[. Jo . _]i

T
T

O1éé456%59101112131415

I T
L T

Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

SR IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

NET G G

M1[. Jo . _]i

T
T

O1éé456%59101112131415

I T
L T

Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?]

Sl

SR IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk

ﬁ!i

;,I 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1y
> — .
Cmax_m;pk

ﬁ!a

;,H,, IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1y
> — .
Cmax_m;pk

Proof:

ﬁla

;,H,, IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1y
> — .
Cmax_m;pk

Proof:
b. The total processing times of all n jobs equals Y _;_, p«

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1y
Cmax > E;pk

Proof:
b. The total processing times of all n jobs equals Y _;_, p«
= One machine must have a load of at least % - S°7_, p«

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

18
Crhax < — max D.
max > m ;Pk + 1§k§npk

\

Hence list scheduling is a poly-time 2-approximation algorithm.

il
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

18
Crhax < — max D.
max > m ;Pk + 1§k§npk

\

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1<k<n

1 n
Cmax S E ;pk + max pk-

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Cnax = C;

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cmax S E Zpk + max pk-

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

O)
@
S S a—

B ’

M;

——

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cmax S E Zpk + max pk-

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

——

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cmax S E Zpk + max pk-

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

——

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cmax S E Zpk + max pk-

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

\ J

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

——

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cmax S E Zpk + max pk-

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

\ J

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 m
C—-p < EZCk
p

Ji

-

Crmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cmax S E Zpk + max pk-

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

\ J

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 m 1 n
Ci—pi < EZCk=EZPk
k=1 k=1

Ji

-

Crmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cmax S E Zpk + max pk-

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Crnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 & 1< 1o
Cj_pISE;Ck:E;pk = C/SE;pk+1r£Eénpk

1

Crmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1 n
ma><<_ .
C _m;kar max Pk

1<k<n

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Cnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yields: (Using Ex 35-5 a. &b.j

n \J

1 & 1 o 1
Cj—P/‘SE;Ck:E;Pk = C/SE;M#-EE%(NM

A
—
-

G —pi Cinax

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1 n
ma><<_ .
C _m;kar max Pk

1<k<n

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Cnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yields: (Using Ex 35-5 a. &b.j

n

1 & 1 < 1 N X
Cj—P/‘SE;Ck:E;Pk = Cigmkz;pk+1?f§npk§2'cmax

DC_) |
][K Ji j
D) D

I

G —pi Cinax

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

ﬁ!i

;,! 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—
Analysis can be shown to be almost tight. Is there a better algorithm?

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i = argming <<, Ck
Si=SuU{},C= C,-+p,-
: end for
creturn Sy, ..., Sy

—_
o

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i = argming <<, Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—~—~—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i = argming <<, Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:
= O(nlog n) for sorting

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—~—~—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i = argming <<, Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]
N

[This can be shown to be tight (see next inde).J

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then C.. > 2 - pmy1-

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then C;;... > 2 - pm+1-
= As in the analysis for list scheduling

B

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then C;;... > 2 - pm+1-
= As in the analysis for list scheduling, we have

Cmax = C/ = (C] —Pi) +P:

ﬁ!ﬁ

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then C.. > 2 - pmy1-
= As in the analysis for list scheduling, we have

1
Cmax = Cj = (C/ - pl) + Pf S C:mx + Ec:mx
)
(This is for the case i > m + 1 (otherwise, an even stronger inequality holds))

) DC O
) K : j

M;

)

Cj — Pi Cmax

J AN

O T)
N
P

S R
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then C;;... > 2 - pm+1-
= As in the analysis for list scheduling, we have

Cmax = C/ = (C] - ,0/) +P: S C:13x + %C:-.ax = gcmax~ O

ﬁ!ﬁ

,,E %5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: AT P
TR T .
T P S
O R AR A AN B
| 1 1l ‘\ | 1 1 ‘\ ‘1_\1_\1_\
Ms SRR EEEEREEE
M EREREREEEEEERE
4 : H \: H H \: \:6:\6:\5‘\5‘\5‘
My BEEREEEREEERRER
|
M, SEEEEREEEERE
,\/,1 L ‘l_,‘t_,“_ I Y S N L

0123456 7 8 91011121314151617 181920

S R
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

:7:\7:\6‘\6:3 33 33
A TR

| |
e e

9) -
123456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

9
g
123 456 738

o
|

1011 1213141516 17 18 19 20

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

8)

9

9
12345678

o
|

1011 1213141516 17 18 19 20

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966

| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:

= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

)

)

1

2 3456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966

| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:

= two of length2m —1,2m—-2,...

m=5n=11:

, m and one extra job of length m

123 456 738

)
)
9

1011 1213141516 17 18 19 20

IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

e |
8] \6:\6:\ :\ :\ :
6) SEREE
5) SERER
9] l_;‘_/‘ U
1 23 456 7 8 910111213141516 17181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966

| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:

= two of length2m —1,2m—-2,...

m=5n=11:

, m and one extra job of length m

1

2 345678

)
)
9

1011 1213141516 17 18 19 20

IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

e Y
8 X 6) PRI
8) 6) 211911,
9) N
9] IR

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

—

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

7) 7)
8 X 6) "
8) 6) N
5 5) N
9 5)

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

—

9) 5) 5)

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

Cmax - 19

—

9) 5) 5 }

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: W 4.- .-, LPTgives Cna =19
TR T .
I
o :\ :\ ot
ottt N s
| | |
Ms SR REREERE
1 1 1 :\ :\7\\7\\ 0 N I I !
M A R L Y
M SRERERREERER
I
M EEEEEEERERE
,\/,1 [L L U s L L Y GO S L A

0123456 7 8 91011121314151617 181920

S R
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

9) -
123456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

9
g
123 456 738

o
|

1011 1213141516 17 18 19 20

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11:

8)

9

9
12345678

o
|

1011 1213141516 17 18 19 20

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

9)

9] __“__‘l_;“l_/‘__“__“__

1

2 3456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

8 X 7)

8) 7)

9)

9) -
123456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19
5 X 7) el h i
1155 H!

8 X 7) C
9 e

9] \ P

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

g X 7)
g X 7)
9 |
9 ——
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:

= two of length2m — 1,2m —2,..., m and one extra job of length m
m=5n=11: LPT gives Crmax = 19
M5) L
M 8 7 L
i X) Be
M 8 X 7) o E
My (9 I 6) SR
My 9) 6)

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

)
)
8) 7)
)
)

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

Crax =15

)
)
8) 7)
)
)

1

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19
Optimum is C;,., = 15

Crax =15

)
)
8) 7)
)
)

1

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19
Optimum is C;,., = 15

Crax =15

)
)
8) 7)
)
)

1

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Conclusion

Graham 1966
| List scheduling has an approximation ratio of 2.

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Conclusion

~——— Graham 1966

List scheduling has an approximation ratio of 2.

~——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 37 __ py.

i
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Conclusion

~——— Graham 1966
List scheduling has an approximation ratio of 2.

\

~——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 37 __ py.

Can we find a FPTAS (for polynomially bounded processing times)?

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Conclusion

~——— Graham 1966
List scheduling has an approximation ratio of 2.

\

~——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 37 __ py.

Can we find a FPTAS (for polynomially bounded processing times)?

No!

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Conclusion

——— Graham 1966
List scheduling has an approximation ratio of 2.

\

~——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 37 __ py.

\.

Can we find a FPTAS (for polynomially bounded processing times)?
No!

=

Because for sufficiently small approximation ratio
1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Exercise (easy): Run the LPT algorithm on three machines and jobs
having processing times {3, 4,4, 3,5, 3,5}. Which allocation do you
get?

1. 13,3,5],[4,5],[4,3]
2. [5,3],[5.4].[4,3,3]
3. [3,3,3],[5,4],[5.4]

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Outline

Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

22

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

ﬁla

;,! 5 IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)

1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

H:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma
‘ SUBROUTINE can be implemented in time n°(/<").]

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[
‘ SUBROUTINE can be implemented in time n°(/<").

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[V
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := 3>7__ py.

5

\

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[
SUBROUTINE can be implemented in time n®(/<").

\ J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := 3>7__ py.

\ J

5

Proof (using Key Lemma):
PTAS(J1, o, . .., Jn, m)
1. Do binary search to find smallest T s.t. Cnax < (1 4 €) - max{T, C..}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[
SUBROUTINE can be implemented in time n®(/<").

\ J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := 3>7__ py.

5

Since 0 < Cp.x < P and C;,, is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(J1,J2,...,JH,ITI) —_—
1. Do binary search to find smallest T s.t. Cnax < (1 4 €) - max{T, C..}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

el b
< B

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[
SUBROUTINE can be implemented in time n®(/<").

\ J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := 3°7__ p.

5

Since 0 < Cp.x < P and C;,, is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(J1,J2,...,JH,ITI) —_—
1. Do binary search to find smallest T s.t. Cnax < (1 4 €) - max{T, C..}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

el b
< B

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[V
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := 3>7__ py.

—2.

(polynomial in the size of the input Since 0 < Ci,, < P and C.,, is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps. }
PTAS(d1, o, ..., dn,m) ———=
1: Do binary search to find smallest T s.t. Crax < (1 +€) - max{ T, Cyax}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

5

el b
< B

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{ T, Cn..}-

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{ T, Cn..}-

Proof:

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{ T, Cn..}-

Proof:
= Let M; be the machine with largest load

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{ T, Cn..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jirge Only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

1 n
C—pi < EZP}(
/\ k=1

(the “well-known” formula)

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

1 n
Cj_pfgﬁzpk =
/\ k=1

(the “well-known” formula)

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

1 < 1 <
Cj—PfSEZPk = CjSpi‘FEZpk
N k=1 k=1

(the “well-known” formula)

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

1 < 1<
Cj—PfSEZPk = CjSpi‘FEZpk
N k=1 k=1
(the “well-known” formula) <€ T+ Crax

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

1 < 1<
Cj—PfSEZPk = CjSpi‘FEZpk

N k=1 k=1
(the “well-known” formula) <
<

e- T+ C:,ax
(1+¢) -max{T,Ch..} O

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jige only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

1 < 1<
Cj—PfSEZPk = CjSpi‘FEZpk

N k=1 k=1
(the “well-known” formula) <
<

e- T+ C:,ax
(1+¢) -max{T,Ch..} O

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

ﬁ!a

L.!-.

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

ﬁl;

'«Ha

Let b be the smallest integer with 1/b < e.

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

ﬁla

'«Ha

h2
Let b be the smallest integer with 1/b < ¢. Define processing times p; = [%] . b—TZ

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

P
IHHHEB

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.T “ =05

125.T L
1.7 b=2

075.T 4 |p

05-T

0.25-5

_;:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.T s =05

125.7 o
1.7 b=2

0.75- T +|p

0.5-T+{-fPLf] - -

0.25-5

_;:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.T »e=05
125-T
. 2
1.-T b=
0.75- T + |P1
05T ' ————————
025-T ﬂps
:) 2]
Jlarge smaII

_;:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.T 1 e=05 15-T
125.T . 125 T
1.-T b=2 1-T
0.75-T 0.75-T
05T ' ———————— 05T
025.T .,o5 025-T
0 .. 0
Jlarge smaII

_;:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.T 1 e=05 15-T
125.T . 125 T
1.7 b=2 1.T
075-T > 0.75-T 1 |p]
05T ' ———————— 05T P
025.T .,o5 025-T P4
, 2l 1UUe
Jlarge smaII Jlarge

_;:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

N
= Let b be the smallest integer with 1/b < e. Define processing times p! = [p’T] L

b2
i ith o |
= Every pl, — - b_'g for a — b, b + 17 . b2 {Can assume there are no jobs with p; > T.J

15.T " e=05 15.-T
125.T Ch 125.T
1-T b=2 1-T
0.75- T +|pi > 075-T+|p]
0.5-T+{-fPLf] - - 05T ph
025-T Ds 025-T P4
0 0
Jlarge Jsmall Jlarge

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

N
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
T
= Everyp,f:owﬁforoz:b,b—f—h...,b2

" LetCheall (Sp, Spii--. S) With 8- j- L < T.

15.T 1 e=05 15-T
125.T . 125 T
1-T b=2 1.-T
075-T > 075-T+|p]
05T I ———————— 05-T P
025-T . Ds 025-T P4
0 .. 0
Jlarge smaII Jlarge

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

N
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
T
= Everyp,f:a~§fora:b,b+1,...,b2

. b2 LT Assignments to one machine
® LetCbeall (sp, Sp+1,.--,Spe) With 3577 ;8- f - 7 < T.<[with makespan < T.

15.T " e=05 15.-T
125.T Ch 125.T
1-T b=2 1-T
0.75- T +|pi > 075-T+|p]
0.5-T+{-fPLf] - - 05T ph
025-T Ds 025-T P4
0 0
Jlarge Jsmall Jlarge

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

= Let b be the smallest integer with 1/b < e. Define processing times p; = [@] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
15.T 1 e=05 1.5-T
125-T «ph—2 1.25-T
1-T 1.7
0.75- T + |P1 0.75- T +|p}
05T I ———————— 05T ph
025-T . D5 025-T P3
!) (7 T IUUE
Jlarge smaII Jlarge

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

= Let b be the smallest integer with 1/b < e. Define processing times p; = [@] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
15.T 1 e=05 15-T
125-T cph=2 125.T
1-T 1.-T
0.75-T + [P 0.75- T +|p}
05-T+t-ti*rrofF—=-"----- 05-T Jos
025.-T .ﬂ. 025.-T Ps
0 0 ’
Jlarge smaII Jlarge

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

b
Let b be the smallest integer with 1/b < . Define processing times p; = [p’T] . b—T2
Every p = o - b—TZ fora=bb+1,...,b?
. 2 .
Let C be all (Sp, Spy1, - - -, Sz) With zf’:js,- - b—Tz <T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11"'anb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

15-T "e=05 15-T
125.T . 125 T
1-T b=2 1.-T
075-T > 075-T+|p]
05T I ———————— 05-T P
025-T . Ds 025-T
0 .. 0
Jlarge smaII Jlarge

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

N
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yp;:a~b—T2f0I’oz:b,b+1,...,b2

Let C be all (Sp, Sp.1, -, Sy) with S5 s - - L<rT

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines requir chedule
all jobs with makespan < T: Assign some jobs to one machine, and then
use as few machines as possible for the rest.
£(0,0,...,0) =0 E

. =
Mo M- M) = 1 4 (sb,5b+1r],q~!r],sbz)ec HMo = b, M4t = Sp4ts - Mz = Sp2)-
15-T re=05 15.T
125-T . 125-T
1.T b=2 1.7
075-T > 075-T+|p]
05T I ———————— 05T ph
025-T .p5 025-T
0 . . 0
Jlarge smaII Jlarge

i
E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

. .) N ib?
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—Tz fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbanb+11"'anb2):1+ min f(nb_sb’nb+1 _sb+1"">nb2_sb2)‘
(8b:Sp+1,-+-,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

. .) N ib?
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—TZ fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbanb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘
(8b:Sp+1,-+-,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

b2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbeall (Sp, Spi1,-- -, Spe) With 375 j- 5 < T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
f(0,0,...,0) =0
f(nbanb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

h2
Let b be the smallest integer with 1/b < ¢. Define processing times p; = [%] -

_;:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

b2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbeall (Sp, Spi1,-- -, Spe) With 375 j- 5 < T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
f(0,0,...,0) =0
f(nbanb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+b- “max (pl —P,/)

’EJIarge

h2
Let b be the smallest integer with 1/b < ¢. Define processing times p; = [%] -

_;:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] ‘15
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
f(nbvnb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+b- “max (pl —P,/)

’EJIarge

crin T
b2

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] ‘15
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
f(nbvnb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+b- “max (pl —P,/)

’EJIarge

;
§T+b~E§(1+e)~T. O

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25

	The Subset-Sum Problem
	Parallel Machine Scheduling
	Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

