IV. Approximation Algorithms via Exact Algorithms

Thomas Sauerwald

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.
\checkmark

This problem is NP-hard

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.
$t=13$ tons

$$
\begin{aligned}
& x_{1}=10 \\
& x_{2}=4 \\
& x_{3}=5 \\
& x_{4}=6 \\
& x_{5}=1
\end{aligned}
$$

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

The Subset-Sum Problem

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
Exact-Subset-Sum \((S, t)\)
\(1 \quad n=|S|\)
\(2 \quad L_{0}=\langle 0\rangle\)
3 for \(i=1\) to \(n\)
\(4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
5 remove from \(L_{i}\) every element that is greater than \(t\)
6 return the largest element in \(L_{n}\)
```


An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right) \quad S+x:=\{s+x: s \in S\}$
5 remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

ExAct-SUBSET-SUM (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right) \quad S+x:=\{s+x: s \in S\}$ remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
Exact-Subset-Sum \((S, t)\)
\(1 \quad n=|S|\)
\(2 \quad L_{0}=\langle 0\rangle\)
3 for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
        remove from \(L_{i}\) every element that is greater than \(t\)
6 return the largest element in \(L_{n}\)
```

Example:

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

Example:

- $S=\{1,4,5\}, t=10$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

Example:

- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

Example:

- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$ remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

Example:

- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

Example:

- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$
- $L_{3}=\langle 0,1,4,5,6,9,10\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

Example:

- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$
- $L_{3}=\langle 0,1,4,5,6,9,10\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest Correctness: L_{n} contains all sums of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Example:

- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$
- $L_{3}=\langle 0,1,4,5,6,9,10\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}\right.$
5 remove from L_{i} every element th can be shown by induction on n
6 return the largest

- Correctness: L_{n} contains all sums of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Example:

- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$
- $L_{3}=\langle 0,1,4,5,6,9,10\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest \quad Correctness: L_{n} contains all sums of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Example:

- Runtime: $O\left(2^{1}+2^{2}+\cdots+2^{n}\right)=O\left(2^{n}\right)$
- $S=\{1,4,5\}, t=10$
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$
- $L_{3}=\langle 0,1,4,5,6,9,10\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

$$
\text { Exact-Subset-Sum }(S, t)
$$

$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest

- Correctness: L_{n} contains all sums of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Runtime: $O\left(2^{1}+2^{2}+\cdots+2^{n}\right)=O\left(2^{n}\right)$

Example:

- $S=\{1,4,5\}$ There are 2^{i} subsets of $\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$.
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$
- $L_{3}=\langle 0,1,4,5,6,9,10\rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
Exact-Subset-Sum \((S, t)\)
```

$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest

- Correctness: L_{n} contains all sums of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Runtime: $O\left(2^{1}+2^{2}+\cdots+2^{n}\right)=O\left(2^{n}\right)$

Example:

- $S=\{1,4,5\}$ There are 2^{i} subsets of $\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$.
- $L_{0}=\langle 0\rangle$
- $L_{1}=\langle 0,1\rangle$
- $L_{2}=\langle 0,1,4,5\rangle$
- $L_{3}=\langle 0,1,4,5,6,9,10\rangle$

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List

- Given a trimming parameter $0<\delta<1$

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List

- Given a trimming parameter $0<\delta<1$
- Trimming L yields smaller sublist L^{\prime} so that for every $y \in L: \exists z \in L^{\prime}$:

$$
\frac{y}{1+\delta} \leq z \leq y
$$

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List

- Given a trimming parameter $0<\delta<1$
- Trimming L yields smaller sublist L^{\prime} so that for every $y \in L: \exists z \in L^{\prime}$:

$$
\frac{y}{1+\delta} \leq z \leq y
$$

- $L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List

- Given a trimming parameter $0<\delta<1$
- Trimming L yields smaller sublist L^{\prime} so that for every $y \in L: \exists z \in L^{\prime}$:

$$
\frac{y}{1+\delta} \leq z \leq y
$$

- $L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
- $\delta=0.1$

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List

- Given a trimming parameter $0<\delta<1$
- Trimming L yields smaller sublist L^{\prime} so that for every $y \in L: \exists z \in L^{\prime}$:

$$
\frac{y}{1+\delta} \leq z \leq y .
$$

- $L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
- $\delta=0.1$
- $L^{\prime}=\langle 10,12,15,20,23,29\rangle$

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List

- Given a trimming parameter $0<\delta<1$
- Trimming L yields smaller sublist L^{\prime} so that for every $y \in L: \exists z \in L^{\prime}$:

$$
\frac{y}{1+\delta} \leq z \leq y
$$

$\operatorname{Trim}(L, \delta)$
let m be the length of L
$L^{\prime}=\left\langle y_{1}\right\rangle$
last $=y_{1}$
for $i=2$ to m
if $y_{i}>$ last $\cdot(1+\delta) \quad / / y_{i} \geq$ last because L is sorted append y_{i} onto the end of L^{\prime}
last $=y_{i}$
return L^{\prime}

Towards a FPTAS

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List

- Given a trimming parameter $0<\delta<1$
- Trimming L yields smaller sublist L^{\prime} so that for every $y \in L: \exists z \in L^{\prime}$:

$$
\frac{y}{1+\delta} \leq z \leq y
$$

$\operatorname{Trim}(L, \delta)$
let m be the length of L
$L^{\prime}=\left\langle y_{1}\right\rangle$
last $=y_{1}$
for $i=2$ to m
if $y_{i}>$ last $\cdot(1+\delta) \quad / / y_{i} \geq$ last because L is sorted append y_{i} onto the end of L^{\prime}
last $=y_{i}$
return L^{\prime}
TRIM works in time $\Theta(m)$, if L is given in sorted order.

Illustration of the Trim Operation

```
\(\operatorname{Trim}(L, \delta)\)
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```


Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
    return \(L^{\prime}\)
```

 \(\delta=0.1\)
 $L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle \rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
    return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$

$$
L^{\prime}=\langle 10\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
    return \(L^{\prime}\)
```

$\delta=0.1$
\downarrow last
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$\uparrow i$
$L^{\prime}=\langle 10\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
    return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$$
\delta=0.1
$$

$$
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
$$

$$
L^{\prime}=\langle 10,12\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\left\langle 10,11,12, \underset{\downarrow_{i}}{\stackrel{\text { last }}{15}, 20,21,22,23,24,29\rangle}\right.$

$$
L^{\prime}=\langle 10,12\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\left\langle 10,11,12, \underset{\prod_{i}}{\downarrow_{i}}{ }^{\text {last }}, 20,21,22,23,24,29\right\rangle$

$$
L^{\prime}=\langle 10,12,15\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$$
\delta=0.1
$$

$$
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
$$

$$
L^{\prime}=\langle 10,12,15\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$$
\delta=0.1
$$

$$
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
$$

$$
L^{\prime}=\langle 10,12,15\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$$
\delta=0.1
$$

$$
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
$$

$$
L^{\prime}=\langle 10,12,15,20\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$
let m be the length of L

```
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$$
\delta=0.1
$$

last

$$
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
$$

$$
i
$$

$$
L^{\prime}=\langle 10,12,15,20\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$$
\delta=0.1
$$

$$
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
$$

$$
\uparrow i
$$

$$
L^{\prime}=\langle 10,12,15,20\rangle
$$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
last
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12,15,20\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
last
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12,15,20\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
last
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12,15,20,23\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\left\langle 10,11,12,15,20,21,22, \underset{\downarrow_{i}}{\downarrow_{i}}\right.$ last 24,29\rangle
$L^{\prime}=\langle 10,12,15,20,23\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12,15,20,23\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12,15,20,23\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12,15,20,23,29\rangle$

Illustration of the Trim Operation

$\operatorname{Trim}(L, \delta)$

```
let \(m\) be the length of \(L\)
\(L^{\prime}=\left\langle y_{1}\right\rangle\)
last \(=y_{1}\)
for \(i=2\) to \(m\)
    if \(y_{i}>\) last \(\cdot(1+\delta) \quad / / y_{i} \geq\) last because \(L\) is sorted
                append \(y_{i}\) onto the end of \(L^{\prime}\)
    last \(=y_{i}\)
return \(L^{\prime}\)
```

$\delta=0.1$
$L=\langle 10,11,12,15,20,21,22,23,24,29\rangle$
$L^{\prime}=\langle 10,12,15,20,23,29\rangle$

The FPTAS

```
Approx-Subset-Sum ( \(S, t, \epsilon\) )
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{TRIM}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
```


The FPTAS

Approx-Subset-Sum (S, t, ϵ)
$1 \quad n=|S|$
$2 L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
$5 \quad L_{i}=\operatorname{TRIM}\left(L_{i}, \epsilon / 2 n\right)$
$6 \quad$ remove from L_{i} every element that is greater than t
7 let z^{*} be the largest value in L_{n}
8 return z^{*}

Exact-Subset-Sum (S, t)

$$
\begin{aligned}
& n=|S| \\
& L_{0}=\langle 0\rangle \\
& \text { for } i=1 \text { to } n \\
& \quad L_{i}=\operatorname{MERGE}-\operatorname{LISTS}\left(L_{i-1}, L_{i-1}+x_{i}\right)
\end{aligned}
$$

$$
\text { remove from } L_{i} \text { every element that is greater than } t
$$

$$
\text { return the largest element in } L_{n}
$$

The FPTAS

Approx-Subset-Sum (S, t, ϵ)
$1 \quad n=|S|$
$2 L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
$5 \quad L_{i}=\operatorname{TRIM}\left(L_{i}, \epsilon / 2 n\right)$
$6 \quad$ remove from L_{i} every element that is greater than t
7 let z^{*} be the largest value in L_{n}
8 return z^{*}
Repeated application of TRIM to make sure L_{i} 's remain short.

Exact-Subset-Sum (S, t)

$$
\begin{aligned}
& n=|S| \\
& L_{0}=\langle 0\rangle \\
& \text { for } i=1 \text { to } n \\
& \quad L_{i}=\text { MERGE-LISTS }\left(L_{i-1}, L_{i-1}+x_{i}\right)
\end{aligned}
$$

remove from L_{i} every element that is greater than t return the largest element in L_{n}

The FPTAS

APPROX-SUBSET-SUM (S, t, ϵ)
$1 \quad n=|S|$
$2 L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
$5 \quad L_{i}=\operatorname{TRIM}\left(L_{i}, \epsilon / 2 n\right)$
remove from L_{i} every element that is greater than t
7 let z^{*} be the largest value in L_{n}
8 return z^{*}
Repeated application of TRIM to make sure L_{i} 's remain short.

Exact-SUBSET-SUM (S, t)

```
\(n=|S|\)
    \(L_{0}=\langle 0\rangle\)
    for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
```

 remove from \(L_{i}\) every element that is greater than \(t\)
 return the largest element in \(L_{n}\)
 - We must bound the inaccuracy introduced by repeated trimming

The FPTAS

APPROX-SUBSET-SUM (S, t, ϵ)
$1 \quad n=|S|$
$2 L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
$5 \quad L_{i}=\operatorname{TRIM}\left(L_{i}, \epsilon / 2 n\right)$
remove from L_{i} every element that is greater than t
7 let z^{*} be the largest value in L_{n}
8 return z^{*}
Repeated application of TRIM to make sure L_{i} 's remain short.

Exact-Subset-Sum (S, t)

```
\(n=|S|\)
```

 \(L_{0}=\langle 0\rangle\)
 for \(i=1\) to \(n\)
 \(L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
 remove from \(L_{i}\) every element that is greater than \(t\)
 return the largest element in \(L_{n}\)
 - We must bound the inaccuracy introduced by repeated trimming
- We must show that the algorithm is polynomial time

The FPTAS

APPROX-SUBSET-SUM (S, t, ϵ)
$1 \quad n=|S|$
$2 L_{0}=\langle 0\rangle$
3 for $i=1$ to n

4	$L_{i}=\operatorname{MERGE}-\operatorname{LiSTS}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5	$L_{i}=\operatorname{TRIM}\left(L_{i}, \epsilon / 2 n\right)$
6	remove from L_{i} every element that is greater than t

remove from L_{i} every element that is greater than t
7 let z^{*} be the largest value in L_{n}
8 return z^{*}
Repeated application of Trim to make sure L_{i} 's remain short.

Exact-Subset-Sum (S, t)

```
\(n=|S|\)
```

 \(L_{0}=\langle 0\rangle\)
 for \(i=1\) to \(n\)
 \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
 remove from \(L_{i}\) every element that is greater than \(t\)
 return the largest element in \(L_{n}\)
 - We must bound the inaccuracy introduced by repeated trimming
- We must show that the algorithm is polynomial time

Solution is a careful choice of $\delta!$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
```


Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
```


Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```


Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$
- line 4: $L_{3}=\langle 0,102,201,206,303,407\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$
- line 4: $L_{3}=\langle 0,102,201,206,303,407\rangle$
- line $5: L_{3}=\langle 0,102,201,303,407\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$
- line 4: $L_{3}=\langle 0,102,201,206,303,407\rangle$
- line $5: L_{3}=\langle 0,102,201,303,407\rangle$
- line 6: $L_{3}=\langle 0,102,201,303\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\{0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$
- line 4: $L_{3}=\langle 0,102,201,206,303,407\rangle$
- line 5: $L_{3}=\langle 0,102,201,303,407\rangle$
- line 6: $L_{3}=\langle 0,102,201,303\rangle$
- line 4: $L_{4}=\langle 0,101,102,201,203,302,303,404\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\{0,104\rangle$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$
- line 4: $L_{3}=\langle 0,102,201,206,303,407\rangle$
- line 5: $L_{3}=\langle 0,102,201,303,407\rangle$
- line 6: $L_{3}=\langle 0,102,201,303\rangle$
- line 4: $L_{4}=\langle 0,101,102,201,203,302,303,404\rangle$
- line 5: $L_{4}=\langle 0,101,201,302,404\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
- Input: \(S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4\)
\(\Rightarrow\) Trimming parameter: \(\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05\)
```

- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\langle 0,104\}$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$
- line 4: $L_{3}=\langle 0,102,201,206,303,407\rangle$
- line 5: $L_{3}=\langle 0,102,201,303,407\rangle$
- line 6: $L_{3}=\langle 0,102,201,303\rangle$
- line 4: $L_{4}=\langle 0,101,102,201,203,302,303,404\rangle$
- line 5: $L_{4}=\langle 0,101,201,302,404\rangle$
- line 6: $L_{4}=\langle 0,101,201,302\rangle$

Running through an Example (CLRS3)

```
Approx-Subset-Sum \((S, t, \epsilon)\)
\(n=|S|\)
\(L_{0}=\langle 0\rangle\)
for \(i=1\) to \(n\)
    \(L_{i}=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)\)
    \(L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)\)
    remove from \(L_{i}\) every element that is greater than \(t\)
let \(z^{*}\) be the largest value in \(L_{n}\)
return \(z^{*}\)
```

- Input: $S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4$
\Rightarrow Trimming parameter: $\delta=\epsilon /(2 \cdot n)=\epsilon / 8=0.05$
- line 2: $L_{0}=\langle 0\rangle$
- line 4: $L_{1}=\langle 0,104\rangle$
- line 5: $L_{1}=\{0,104\}$
- line 6: $L_{1}=\langle 0,104\rangle$
- line 4: $L_{2}=\langle 0,102,104,206\rangle$
- line 5: $L_{2}=\langle 0,102,206\rangle$
- line 6: $L_{2}=\langle 0,102,206\rangle$
- line 4: $L_{3}=\langle 0,102,201,206,303,407\rangle$
- line 5: $L_{3}=\langle 0,102,201,303,407\rangle$
- line 6: $L_{3}=\langle 0,102,201,303\rangle$
- line 4: $L_{4}=\langle 0,101,102,201,203,302,303,404\rangle$
- line 5: $L_{4}=\langle 0,101,201,302,404\rangle$
- line 6: $L_{4}=\langle 0,101,201,302\rangle$

Returned solution $z^{*}=302$, which is 2% within the optimum $307=104+102+101$

Reminder: Performance Ratios for Approximation Algorithms

Approximation Ratio
An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n)
$$

For many problems: tradeoff between runtime and approximation ratio.
Approximation Schemes
An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$-approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon>0$, the runtime is polynomial in n. For example, $O\left(n^{2 / \epsilon}\right)$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1 / \epsilon$ and n. For example, $O\left((1 / \epsilon)^{2} \cdot n^{3}\right)$.

Analysis of Approx-Subset-Sum

APPROX-SUBSET-Sum is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

Analysis of Approx-Subset-Sum

Theorem 35.8
 APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark

Analysis of Approx-Subset-Sum

Theorem 35.8
 APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution

Analysis of Approx-Subset-Sum

Theorem 35.8
 APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

Analysis of Approx-Subset-Sum

- Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y
$$

Can be shown by induction on i

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow}
$$

Can be shown by induction on i

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
$$

Can be shown by induction on i

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
$$

Can be shown by induction on i

$$
\frac{y^{*}}{z} \leq\left(1+\frac{\epsilon}{2 n}\right)^{n}
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
$$

and now using the fact that $\left(1+\frac{\epsilon / 2}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e^{\epsilon / 2}$ yields

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
$$

Can be shown by induction on i

$$
\frac{y^{*}}{z} \leq\left(1+\frac{\epsilon}{2 n}\right)^{n}
$$

and now using the fact that $\left(1+\frac{\epsilon / 2}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e^{\epsilon / 2}$ yields

$$
\frac{y^{*}}{z} \leq e^{\epsilon / 2}
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
$$

Can be shown by induction on i

$$
\frac{y^{*}}{z} \leq\left(1+\frac{\epsilon}{2 n}\right)^{n}
$$

and now using the fact that $\left(1+\frac{\epsilon / 2}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e^{\epsilon / 2}$ yields

$$
\frac{y^{*}}{z} \leq e^{\epsilon / 2} \text { Taylor approximation of } e
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
$$

Can be shown by induction on i

$$
\frac{y^{*}}{z} \leq\left(1+\frac{\epsilon}{2 n}\right)^{n}
$$

and now using the fact that $\left(1+\frac{\epsilon / 2}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e^{\epsilon / 2}$ yields

$$
\begin{aligned}
\frac{y^{*}}{z} & \leq e^{\epsilon / 2} \underbrace{\text { Taylor approximation of } e} \\
& \leq 1+\epsilon / 2+(\epsilon / 2)^{2}
\end{aligned}
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^{*} is a valid solution \checkmark
- Let y^{*} denote an optimal solution
- For every possible sum $y \leq t$ of x_{1}, \ldots, x_{i}, there exists an element $z \in L_{i}^{\prime}$ s.t.:

$$
\frac{y}{(1+\epsilon /(2 n))^{i}} \leq z \leq y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \frac{y^{*}}{(1+\epsilon /(2 n))^{n}} \leq z \leq y^{*}
$$

Can be shown by induction on i

$$
\frac{y^{*}}{z} \leq\left(1+\frac{\epsilon}{2 n}\right)^{n}
$$

and now using the fact that $\left(1+\frac{\epsilon / 2}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e^{\epsilon / 2}$ yields

$$
\begin{aligned}
\frac{y^{*}}{z} & \leq e^{\epsilon / 2} \text { Taylor approximation of } e \\
& \leq 1+\epsilon / 2+(\epsilon / 2)^{2} \leq 1+\epsilon
\end{aligned}
$$

Analysis of Approx-Subset-Sum

> Theorem 35.8
> APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

Analysis of Approx-Subset-Sum

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left.\left|L_{i}\right|\right)$

Analysis of Approx-Subset-Sum

Theorem 35.8
 APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left.\left|L_{i}\right|\right)$
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left.\left|L_{i}\right|\right)$
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0,1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values.

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left.\left|L_{i}\right|\right)$
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0,1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values. Hence,

$$
\log _{1+\epsilon /(2 n)} t+2=
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left.\left|L_{i}\right|\right)$
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0,1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values. Hence,

$$
\log _{1+\epsilon /(2 n)} t+2=\frac{\ln t}{\ln (1+\epsilon /(2 n))}+2
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left|L_{i}\right|$)
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0 , 1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values. Hence,

$$
\log _{1+\epsilon /(2 n)} t+2=\frac{\ln t}{\ln (1+\epsilon /(2 n))}+2
$$

$$
\text { For } x>-1, \ln (1+x) \geq \frac{x}{1+x}
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-Sum is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left|L_{i}\right|$)
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0 , 1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values. Hence,

$$
\begin{gathered}
\qquad \log _{1+\epsilon /(2 n)} t+2=\frac{\ln t}{\ln (1+\epsilon /(2 n))}+2 \\
\\
\text { For } x>-1, \ln (1+x) \geq \frac{x}{1+x}
\end{gathered}
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-Sum is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left|L_{i}\right|$)
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0 , 1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values. Hence,

$$
\begin{aligned}
\log _{1+\epsilon /(2 n)} t+2 & =\frac{\ln t}{\ln (1+\epsilon /(2 n))}+2 \\
& \leq \frac{2 n(1+\epsilon /(2 n)) \ln t}{\epsilon}+2 \\
\text { For } x>-1, \ln (1+x) \geq \frac{x}{1+x} & <\frac{3 n \ln t}{\epsilon}+2
\end{aligned}
$$

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left.\left|L_{i}\right|\right)$
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0,1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values. Hence,

$$
\begin{aligned}
\log _{1+\epsilon /(2 n)} t+2 & =\frac{\ln t}{\ln (1+\epsilon /(2 n))}+2 \\
& \leq \frac{2 n(1+\epsilon /(2 n)) \ln t}{\epsilon}+2 \\
\text { For } x>-1, \ln (1+x) \geq \frac{x}{1+x} & <\frac{3 n \ln t}{\epsilon}+2
\end{aligned}
$$

- This bound on $\left|L_{i}\right|$ is polynomial in the size of the input and in $1 / \epsilon$.

Analysis of Approx-Subset-Sum

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $\left|L_{i}\right|$ (running time is linear in $\left.\left|L_{i}\right|\right)$
- After trimming, two successive elements z and z^{\prime} satisfy $z^{\prime} / z \geq 1+\epsilon /(2 n)$
\Rightarrow Possible Values after trimming are 0,1 , and up to $\left\lfloor\log _{1+\epsilon /(2 n)} t\right\rfloor$ additional values. Hence,

$$
\begin{aligned}
\log _{1+\epsilon /(2 n)} t+2 & =\frac{\ln t}{\ln (1+\epsilon /(2 n))}+2 \\
& \leq \frac{2 n(1+\epsilon /(2 n)) \ln t}{\epsilon}+2 \\
\text { For } x>-1, \ln (1+x) \geq \frac{x}{1+x} & <\frac{3 n \ln t}{\epsilon}+2 .
\end{aligned}
$$

- This bound on $\left|L_{i}\right|$ is polynomial in the size of the input and in $1 / \epsilon$.

Need $\log (t)$ bits to represent t and n bits to represent S

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem

- Given: Items $i=1,2, \ldots, n$ with weights w_{i} and values v_{i}, and integer t

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem

- Given: Items $i=1,2, \ldots, n$ with weights w_{i} and values v_{i}, and integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem

- Given: Items $i=1,2, \ldots, n$ with weights w_{i} and values v_{i}, and integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which

1. maximizes $\sum_{i \in S^{\prime}} v_{i}$
2. satisfies $\sum_{i \in \mathcal{S}^{\prime}} w_{i} \leq t$

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

A more general problem than Subset-Sum

- Given: Items $i=1,2, \ldots, n$ with weights w_{i} and values v_{i}, and integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which

1. maximizes $\sum_{i \in S^{\prime}} v_{i}$
2. satisfies $\sum_{i \in \mathcal{S}^{\prime}} w_{i} \leq t$

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

A more general problem than Subset-Sum

- Given: Items $i=1,2, \ldots, n$ with weights w_{i} and values v_{i}, and integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which

1. maximizes $\sum_{i \in S^{\prime}} v_{i}$
2. satisfies $\sum_{i \in \mathcal{S}^{\prime}} w_{i} \leq t$

Theorem

There is a FPTAS for the Knapsack problem.

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and positive integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which maximizes $\sum_{i: x_{i} \in S^{\prime}} x_{i} \leq t$.

Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

A more general problem than Subset-Sum

- Given: Items $i=1,2, \ldots, n$ with weights w_{i} and values v_{i}, and integer t
- Goal: Find a subset $S^{\prime} \subseteq S$ which

1. maximizes $\sum_{i \in S^{\prime}} v_{i}$
2. satisfies $\sum_{i \in S^{\prime}} w_{i} \leq t$

Algorithm very similar to APPROX-SUBSET-SUM

There is a FPTAS for the Knapsack problem.

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

Parallel Machine Scheduling

Machine Scheduling Problem

- Given: n jobs $J_{1}, J_{2}, \ldots, J_{n}$ with processing times $p_{1}, p_{2}, \ldots, p_{n}$, and m identical machines $M_{1}, M_{2}, \ldots, M_{m}$

Parallel Machine Scheduling

Machine Scheduling Problem

- Given: n jobs $J_{1}, J_{2}, \ldots, J_{n}$ with processing times $p_{1}, p_{2}, \ldots, p_{n}$, and m identical machines $M_{1}, M_{2}, \ldots, M_{m}$
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max }=\max _{1 \leq j \leq n} C_{j}$, where C_{k} is the completion time of job J_{k}.

Parallel Machine Scheduling

Machine Scheduling Problem

- Given: n jobs $J_{1}, J_{2}, \ldots, J_{n}$ with processing times $p_{1}, p_{2}, \ldots, p_{n}$, and m identical machines $M_{1}, M_{2}, \ldots, M_{m}$
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max }=\max _{1 \leq j \leq n} C_{j}$, where C_{k} is the completion time of job J_{k}.
- $J_{1}: p_{1}=2$
- $J_{2}: p_{2}=12$
- $J_{3}: p_{3}=6$
- $J_{4}: p_{4}=4$

Parallel Machine Scheduling

Machine Scheduling Problem

- Given: n jobs $J_{1}, J_{2}, \ldots, J_{n}$ with processing times $p_{1}, p_{2}, \ldots, p_{n}$, and m identical machines $M_{1}, M_{2}, \ldots, M_{m}$
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max }=\max _{1 \leq j \leq n} C_{j}$, where C_{k} is the completion time of job J_{k}.
- $J_{1}: p_{1}=2$
- $J_{2}: p_{2}=12$
- $J_{3}: p_{3}=6$
- $J_{4}: p_{4}=4$

Parallel Machine Scheduling

Machine Scheduling Problem

- Given: n jobs $J_{1}, J_{2}, \ldots, J_{n}$ with processing times $p_{1}, p_{2}, \ldots, p_{n}$, and m identical machines $M_{1}, M_{2}, \ldots, M_{m}$
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max }=\max _{1 \leq j \leq n} C_{j}$, where C_{k} is the completion time of job J_{k}.
- $J_{1}: p_{1}=2$
- $J_{2}: p_{2}=12$
- $J_{3}: p_{3}=6$
- $J_{4}: p_{4}=4$

Parallel Machine Scheduling

Machine Scheduling Problem

- Given: n jobs $J_{1}, J_{2}, \ldots, J_{n}$ with processing times $p_{1}, p_{2}, \ldots, p_{n}$, and m identical machines $M_{1}, M_{2}, \ldots, M_{m}$
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max }=\max _{1 \leq j \leq n} C_{j}$, where C_{k} is the completion time of job J_{k}.
- $J_{1}: p_{1}=2$
- $J_{2}: p_{2}=12$

For the analysis, it will be convenient to denote

- $J_{3}: p_{3}=6$ by C_{i} the completion time of a machine i.
- $J_{4}: p_{4}=4$

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from Number-Partitioning.

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from Number-Partitioning.

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from Number-PaRtitioning.

LIST Scheduling $\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: while there exists an unassigned job
2: \quad Schedule job on the machine with the least load

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from Number-PaRtitioning.

Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.
$\operatorname{LIST} \operatorname{ScheduLing}\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: while there exists an unassigned job
2: \quad Schedule job on the machine with the least load

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from Number-PaRtitioning.

Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.
$\operatorname{LIST} \operatorname{SchedULING}\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: while there exists an unassigned job
2: \quad Schedule job on the machine with the least load
How good is this most basic Greedy Approach?

List Scheduling Analysis (Observations)

List Scheduling Analysis (Observations)

Ex 35-5 a.\&b.
a. The optimal makespan is at least as large as the greatest processing time, that is,

$$
C_{\max }^{*} \geq \max _{1 \leq k \leq n} p_{k}
$$

List Scheduling Analysis (Observations)

Ex 35-5 a.\&b.
a. The optimal makespan is at least as large as the greatest processing time, that is,

$$
C_{\max }^{*} \geq \max _{1 \leq k \leq n} p_{k}
$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

List Scheduling Analysis (Observations)

Ex 35-5 a.\&b.
a. The optimal makespan is at least as large as the greatest processing time, that is,

$$
C_{\max }^{*} \geq \max _{1 \leq k \leq n} p_{k}
$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

Proof:

List Scheduling Analysis (Observations)

Ex 35-5 a.\&b.
a. The optimal makespan is at least as large as the greatest processing time, that is,

$$
C_{\max }^{*} \geq \max _{1 \leq k \leq n} p_{k}
$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

Proof:
b. The total processing times of all n jobs equals $\sum_{k=1}^{n} p_{k}$

List Scheduling Analysis (Observations)

Ex 35-5 a.\&b.
a. The optimal makespan is at least as large as the greatest processing time, that is,

$$
C_{\max }^{*} \geq \max _{1 \leq k \leq n} p_{k}
$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

Proof:

b. The total processing times of all n jobs equals $\sum_{k=1}^{n} p_{k}$
\Rightarrow One machine must have a load of at least $\frac{1}{m} \cdot \sum_{k=1}^{n} p_{k}$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k} .
$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$
- When J_{i} was scheduled to machine $M_{j}, C_{j}-p_{i} \leq C_{k}$ for all $1 \leq k \leq m$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$
- When J_{i} was scheduled to machine $M_{j}, C_{j}-p_{i} \leq C_{k}$ for all $1 \leq k \leq m$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$
- When J_{i} was scheduled to machine $M_{j}, C_{j}-p_{i} \leq C_{k}$ for all $1 \leq k \leq m$
- Averaging over k yields:

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k} .
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\text {max }}=C_{j}$
- When J_{i} was scheduled to machine M_{j}, C_{j} - $p_{i} \leq C_{k}$ for all $1 \leq k \leq m$
- Averaging over k yields:

$$
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{m} C_{k}
$$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k} .
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\text {max }}=C_{j}$
- When J_{i} was scheduled to machine $M_{j}, C_{j}-p_{i} \leq C_{k}$ for all $1 \leq k \leq m$
- Averaging over k yields:

$$
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{m} C_{k}=\frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$
- When J_{i} was scheduled to machine $M_{j}, C_{j}-p_{i} \leq C_{k}$ for all $1 \leq k \leq m$
- Averaging over k yields:

$$
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{m} C_{k}=\frac{1}{m} \sum_{k=1}^{n} p_{k} \quad \Rightarrow \quad C_{j} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$
- When J_{i} was scheduled to machine $M_{j}, C_{j}-p_{i} \leq C_{k}$ for all $1 \leq k \leq m$
- Averaging over k yields:

$$
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{m} C_{k}=\frac{1}{m} \sum_{k=1}^{n} p_{k} \quad \Rightarrow \quad C_{j} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

List Scheduling Analysis (Final Step)

Ex 35-5 d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

$$
C_{\max } \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k}
$$

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:

- Let J_{i} be the last job scheduled on machine M_{j} with $C_{\max }=C_{j}$
- When J_{i} was scheduled to machine $M_{j}, C_{j}-p_{i} \leq C_{k}$ for all $1 \leq k \leq m$
- Averaging over k yields:

$$
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{m} C_{k}=\frac{1}{m} \sum_{k=1}^{n} p_{k} \quad \Rightarrow \quad C_{j} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}+\max _{1 \leq k \leq n} p_{k} \leq 2 \cdot C_{\max }^{*}
$$

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs
Analysis can be shown to be almost tight. Is there a better algorithm?

Analysis can be shown to be almost tight. Is there a better algorithm?

Least Processing Time $\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: Sort jobs decreasingly in their processing times
2: for $i=1$ to m
3: $\quad C_{i}=0$
4: $\quad S_{i}=\emptyset$
5: end for
6: for $j=1$ to n
7: $\quad i=\operatorname{argmin}_{1 \leq k \leq m} C_{k}$
8: $\quad S_{i}=S_{i} \cup\{\bar{j}\}, C_{i}=C_{i}+p_{j}$
9: end for
10: return S_{1}, \ldots, S_{m}

Analysis can be shown to be almost tight. Is there a better algorithm?

Least Processing Time $\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: Sort jobs decreasingly in their processing times
2: for $i=1$ to m
3 :
$C_{i}=0$
$S_{i}=\emptyset$
5: end for
6: for $j=1$ to n
7: $\quad i=\operatorname{argmin}_{1 \leq k \leq m} C_{k}$
8: $\quad S_{i}=S_{i} \cup\{\bar{j}\}, C_{i}=C_{i}+p_{j}$
9: end for
10: return S_{1}, \ldots, S_{m}

Runtime:

Analysis can be shown to be almost tight. Is there a better algorithm?

Least Processing Time $\left(\mathcal{~}_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: Sort jobs decreasingly in their processing times
2: for $i=1$ to m
3:

$$
C_{i}=0
$$

$S_{i}=\emptyset$
5: end for
6: for $j=1$ to n
7: $\quad i=\operatorname{argmin}_{1 \leq k \leq m} C_{k}$
8: $\quad S_{i}=S_{i} \cup\{\bar{j}\}, C_{i}=C_{i}+p_{j}$
9: end for
10: return S_{1}, \ldots, S_{m}

Runtime:

- $O(n \log n)$ for sorting

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs
Analysis can be shown to be almost tight. Is there a better algorithm?

Least Processing Time $\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: Sort jobs decreasingly in their processing times
2: for $i=1$ to m
$3:$

$$
C_{i}=0
$$

$S_{i}=\emptyset$
5: end for
6: for $j=1$ to n
$i=\operatorname{argmin}_{1 \leq k \leq m} C_{k}$
$S_{i}=S_{i} \cup\{\bar{j}\}, C_{i}=C_{i}+p_{j}$
9: end for
10: return S_{1}, \ldots, S_{m}

Runtime:

- $O(n \log n)$ for sorting
- $O(n \log m)$ for extracting (and re-inserting) the minimum (use priority queue).

Analysis of Improved Greedy

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.
This can be shown to be tight (see next slide).

Analysis of Improved Greedy

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof (of approximation ratio 3/2).

Analysis of Improved Greedy

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof (of approximation ratio 3/2).

- Observation 1: If there are at most m jobs, then the solution is optimal.

Analysis of Improved Greedy

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof (of approximation ratio 3/2).

- Observation 1: If there are at most m jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max }^{*} \geq 2 \cdot p_{m+1}$.

Analysis of Improved Greedy

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof (of approximation ratio $3 / 2$).

- Observation 1: If there are at most m jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max }^{*} \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling

Analysis of Improved Greedy

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof (of approximation ratio 3/2).

- Observation 1: If there are at most m jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max }^{*} \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$
C_{\max }=C_{j}=\left(C_{j}-p_{i}\right)+p_{i}
$$

Analysis of Improved Greedy

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof (of approximation ratio 3/2).

- Observation 1: If there are at most m jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max }^{*} \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$
C_{\max }=C_{j}=\left(C_{j}-p_{i}\right)+p_{i} \leq C_{\max }^{*}+\frac{1}{2} C_{\max }^{*}
$$

This is for the case $i \geq m+1$ (otherwise, an even stronger inequality holds)

Analysis of Improved Greedy

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof (of approximation ratio 3/2).

- Observation 1: If there are at most m jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max }^{*} \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$
C_{\max }=C_{j}=\left(C_{j}-p_{i}\right)+p_{i} \leq C_{\max }^{*}+\frac{1}{2} C_{\max }^{*}=\frac{3}{2} C_{\max }
$$

Tightness of the Bound for LPT

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Tightness of the Bound for LPT

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

Tightness of the Bound for LPT

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:

Tightness of the Bound for LPT

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}
M_{3}
M_{2}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}
M_{3}
M_{2}
M_{1}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}
M_{3}
M_{2}
M_{1}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}
M_{3}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}

M_{2}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}

\square

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}
M_{3}
M_{2}
M_{1}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}
M_{3}
M_{2}
M_{1}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}
M_{3}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

M_{5}
M_{4}

M_{2}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$
M_{5}

\square

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$
M_{5}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$
M_{5}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$
M_{5}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$
M_{5}

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11: \quad \text { LPT gives } C_{\max }=19
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11: \quad \text { LPT gives } C_{\max }=19
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11: \quad \text { LPT gives } C_{\max }=19
$$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$
Optimum is $C_{\max }^{*}=15$

Tightness of the Bound for LPT

Graham 1966

The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Proof of an instance which shows tightness:

$$
\frac{19}{15}=\frac{20}{15}-\frac{1}{15}
$$

- m machines and $n=2 m+1$ jobs:
- two of length $2 m-1,2 m-2, \ldots, m$ and one extra job of length m

$$
m=5, n=11:
$$

LPT gives $C_{\text {max }}=19$
Optimum is $C_{\max }^{*}=15$

Conclusion
Graham 1966
List scheduling has an approximation ratio of 2.

$$
\begin{aligned}
& \text { The LPT algorithm has an approximation ratio of } 4 / 3-1 /(3 m) \text {. }
\end{aligned}
$$

Conclusion

Graham 1966
List scheduling has an approximation ratio of 2.

$$
\begin{aligned}
& \text { The LPT algorithm has an approximation ratio of } 4 / 3-1 /(3 m) \text {. }
\end{aligned}
$$

Theorem (Hochbaum, Shmoys'87)
There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

Conclusion

Graham 1966
List scheduling has an approximation ratio of 2.

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Theorem (Hochbaum, Shmoys'87)
There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

Can we find a FPTAS (for polynomially bounded processing times)?

Conclusion

Graham 1966
List scheduling has an approximation ratio of 2.

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Theorem (Hochbaum, Shmoys'87)
There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

Can we find a FPTAS (for polynomially bounded processing times)? No!

Conclusion

Graham 1966
List scheduling has an approximation ratio of 2.

Graham 1966
The LPT algorithm has an approximation ratio of $4 / 3-1 /(3 m)$.

Theorem (Hochbaum, Shmoys'87)
There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

Can we find a FPTAS (for polynomially bounded processing times)? No!

Because for sufficiently small approximation ratio $1+\epsilon$, the computed solution has to be optimal, and Parallel Machine Scheduling is strongly NP-hard.

Exercise (easy): Run the LPT algorithm on three machines and jobs having processing times $\{3,4,4,3,5,3,5\}$. Which allocation do you get?

1. $[3,3,5],[4,5],[4,3]$
2. $[5,3],[5,4],[4,3,3]$
3. $[3,3,3],[5,4],[5,4]$

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine $\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine($\left.J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$
Key Lemma
Subroutine can be implemented in time $n^{O\left(1 / \epsilon^{2}\right)}$.

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine($\left.J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$
Subroutine can be implemented in time $n^{O\left(1 / \epsilon^{2}\right)}$ We will prove this on the next slides.

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine($\left.J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$
Key Lemma We will prove this on the next slides.
SUBroutine can be implemented in time $n^{O\left(1 / \epsilon^{2}\right)}$.

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine $\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$
Key Lemma We will prove this on the next slides.
Subroutine can be implemented in time $n^{O\left(1 / \epsilon^{2}\right)}$.

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

Proof (using Key Lemma):

$\operatorname{PTAS}\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$
1: Do binary search to find smallest T s.t. $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.
2: Return solution computed by $\operatorname{Subroutine}\left(~_{1}, J_{2}, \ldots, J_{n}, m, T\right)$

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine $\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$
Key Lemma We will prove this on the next slides.
SUbroutine can be implemented in time $n^{O\left(1 / \epsilon^{2}\right)}$.

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

Proof (using Key Lemma):
 $\operatorname{PTAS}\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$

1: Do binary search to find smallest T s.t. $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.
2: Return solution computed by $\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine($\left.J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$
Key Lemma We will prove this on the next slides.
SUbroutine can be implemented in time $n^{O\left(1 / \epsilon^{2}\right)}$.

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.

Proof (using Key Lemma):
 $\operatorname{PTAS}\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)$

1: Do binary search to find smallest T s.t. $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.
2: Return solution computed by $\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$

A PTAS for Parallel Machine Scheduling

Basic Idea: For $(1+\epsilon)$-approximation, don't have to work with exact p_{k} 's.

Subroutine $\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$
Key Lemma We will prove this on the next slides.

SUBroutine can be implemented in time $n^{O\left(1 / \epsilon^{2}\right)}$.

Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O\left(n^{O\left(1 / \epsilon^{2}\right)} \cdot \log P\right)$, where $P:=\sum_{k=1}^{n} p_{k}$.
polynomial in the size of the input \quad Since $0 \leq C_{\max }^{*} \leq P$ and $C_{\max }^{*}$ is integral, Proof (using Key Lemma): binary search terminates after $O(\log P)$ steps.

$$
\operatorname{PTAS}\left(J_{1}, J_{2}, \ldots, J_{n}, m\right)
$$

1: Do binary search to find smallest T s.t. $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.
2: Return solution computed by $\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$

Implementation of Subroutine

```
    \(\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)\)
1: Either: Return a solution with \(C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}\)
2: Or: Return there is no solution with makespan \(<T\)
```

Subroutine $\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\text {max }} \leq(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\text {max }}^{*}\right\}$.

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

Implementation of Subroutine

$\operatorname{SubroutinE}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text {small }}$ be the last job added to M_{j}.

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text {small }}$ be the last job added to M_{j}.

$$
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

the "well-known" formula

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text {small }}$ be the last job added to M_{j}.

$$
C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \quad \Rightarrow
$$

the "well-known" formula

Implementation of Subroutine

$\operatorname{SubroutinE}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text {small }}$ be the last job added to M_{j}.

$$
\begin{aligned}
& \quad C_{j}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}
\end{aligned} \quad \Rightarrow \quad C_{j} \leq p_{i}+\frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text {small }}$ be the last job added to M_{j}.

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text {small }}$ be the last job added to M_{j}.

$$
C_{i}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

$$
\begin{aligned}
C_{j} & \leq p_{i}+\frac{1}{m} \sum_{k=1}^{n} p_{k} \\
& \leq \epsilon \cdot T+C_{\max }^{*} \\
& \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}
\end{aligned}
$$

Implementation of Subroutine

$\operatorname{Subroutine}\left(J_{1}, J_{2}, \ldots, J_{n}, m, T\right)$
1: Either: Return a solution with $C_{\max } \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$
2: Or: Return there is no solution with makespan $<T$

Observation

Divide jobs into two groups: $J_{\text {small }}=\left\{i: p_{i} \leq \epsilon \cdot T\right\}$ and $J_{\text {large }}=[n] \backslash J_{\text {small }}$. Given a solution for $J_{\text {large }}$ only with makespan $(1+\epsilon) \cdot T$, then greedily placing $J_{\text {small }}$ yields a solution with makespan $(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}$.

Proof:

- Let M_{j} be the machine with largest load
- If there are no jobs from $J_{\text {small }}$, then makespan is at most $(1+\epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text {small }}$ be the last job added to M_{j}.

$$
C_{i}-p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k}
$$

$$
\begin{aligned}
C_{j} & \leq p_{i}+\frac{1}{m} \sum_{k=1}^{n} p_{k} \\
& \leq \epsilon \cdot T+C_{\max }^{*} \\
& \leq(1+\epsilon) \cdot \max \left\{T, C_{\max }^{*}\right\}
\end{aligned}
$$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$.

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$ \Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$ Can assume there are no jobs with $p_{j} \geq T!$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T .\left\{\begin{array}{c}\text { Assignments to one machine } \\ \text { with makespan } \leq T .\end{array}\right.$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
f(0,0, \ldots, 0)=0
$$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & =1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
\end{aligned}
$$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

Assign some jobs to one machine, and then use as few machines as possible for the rest.
$f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)=1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right)$.

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & \left.=1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b} 2\right.}\right) \in \mathcal{C}
\end{aligned} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
$$

- Number of table entries is at most $n^{b^{2}}$, hence filling all entries takes $n^{O\left(b^{2}\right)}$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & =1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
\end{aligned}
$$

- Number of table entries is at most $n^{b^{2}}$, hence filling all entries takes $n^{O\left(b^{2}\right)}$
- If $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) \leq m$ (for the jobs with p^{\prime}), then return yes, otherwise no.

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & =1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
\end{aligned}
$$

- Number of table entries is at most $n^{b^{2}}$, hence filling all entries takes $n^{O\left(b^{2}\right)}$
- If $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) \leq m$ (for the jobs with p^{\prime}), then return yes, otherwise no.
- As every machine is assigned at most b jobs $\left(p_{i}^{\prime} \geq \frac{T}{b}\right)$ and the makespan is $\leq T$,

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & =1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
\end{aligned}
$$

- Number of table entries is at most $n^{b^{2}}$, hence filling all entries takes $n^{O\left(b^{2}\right)}$
- If $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) \leq m$ (for the jobs with p^{\prime}), then return yes, otherwise no.
- As every machine is assigned at most b jobs $\left(p_{i}^{\prime} \geq \frac{T}{b}\right)$ and the makespan is $\leq T$,

$$
C_{\max } \leq T+b \cdot \max _{i \in \mathrm{~J}_{\text {large }}}\left(p_{i}-p_{i}^{\prime}\right)
$$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & =1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
\end{aligned}
$$

- Number of table entries is at most $n^{b^{2}}$, hence filling all entries takes $n^{O\left(b^{2}\right)}$
- If $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) \leq m$ (for the jobs with p^{\prime}), then return yes, otherwise no.
- As every machine is assigned at most b jobs $\left(p_{i}^{\prime} \geq \frac{T}{b}\right)$ and the makespan is $\leq T$,

$$
\begin{aligned}
C_{\max } & \leq T+b \cdot \max _{i \in J_{\text {large }}}\left(p_{i}-p_{i}^{\prime}\right) \\
& \leq T+b \cdot \frac{T}{b^{2}}
\end{aligned}
$$

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule $J_{\text {large }}$ with makespan $(1+\epsilon) \cdot T$.

- Let b be the smallest integer with $1 / b \leq \epsilon$. Define processing times $p_{i}^{\prime}=\left\lceil\frac{p_{j} b^{2}}{T}\right\rceil \cdot \frac{T}{b^{2}}$
\Rightarrow Every $p_{i}^{\prime}=\alpha \cdot \frac{T}{b^{2}}$ for $\alpha=b, b+1, \ldots, b^{2}$
- Let \mathcal{C} be all $\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right)$ with $\sum_{i=j}^{b^{2}} s_{j} \cdot j \cdot \frac{T}{b^{2}} \leq T$.
- Let $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right)$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$
\begin{aligned}
f(0,0, \ldots, 0) & =0 \\
f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) & =1+\min _{\left(s_{b}, s_{b+1}, \ldots, s_{b^{2}}\right) \in \mathcal{C}} f\left(n_{b}-s_{b}, n_{b+1}-s_{b+1}, \ldots, n_{b^{2}}-s_{b^{2}}\right) .
\end{aligned}
$$

- Number of table entries is at most $n^{b^{2}}$, hence filling all entries takes $n^{O\left(b^{2}\right)}$
- If $f\left(n_{b}, n_{b+1}, \ldots, n_{b^{2}}\right) \leq m$ (for the jobs with p^{\prime}), then return yes, otherwise no.
- As every machine is assigned at most b jobs $\left(p_{i}^{\prime} \geq \frac{T}{b}\right)$ and the makespan is $\leq T$,

$$
\begin{aligned}
C_{\max } & \leq T+b \cdot \max _{i \in J_{\text {large }}}\left(p_{i}-p_{i}^{\prime}\right) \\
& \leq T+b \cdot \frac{T}{b^{2}} \leq(1+\epsilon) \cdot T .
\end{aligned}
$$

