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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > , X < L.
[\

i: x;€S

( This problem is NP—hardj
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <L

it x€

t =13 tons
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The Subset-Sum Problem
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

X1:10 r 1
X2:4

| _—>
xX3=>5 X3+ X4+ X5 =12

| _—>

| _—>
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S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo ={0)

3 fori =1ton

4 L; = MERGE-LISTS (L;_;. Li_; + x;) (§+X:={st+x:s€S})
5

6

remove from L; every element that is greater than ¢
return the largest element in L,
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S| Returns the merged list (in sorted}

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

[ implementable in time O(|L;_+|) (like Merge-Sort) ]

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢

return the largest element in L,

n =S| Returns the merged list (in sorted}

i
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

Example:
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10
* Lo =(0)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
= Lo:<0>

- L1 :<0,1>
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
- Lo=<0>

= L1:<0,1>

- L2:<0717475>
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3=10,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3 =0,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint

= Correctness: L, contains all sums of {xi,X2,...,Xn}

Example:

= S={1,45},t=10

=Ly = <0>

=L = <07 1>

'L2:<0717475>

= [3=1(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;_j A==
5 remove from L; every element th[Cﬁn be shown by induction on n]
6 return the largest gk dint. Z

= Correctness: L, contains all sums of {xi,X2,...,Xn}

Example:

= S={1,45},t=10

* Lo=(0)

= L= <07 1>

= [, =(0,1,4,5)

= [3=1(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X2,...,Xn}
= Runtime: O(2' +2% + ... +2") = O(2")
Example:
= S={1,45},t=10
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X2,...,Xn}
= Runtime: O(2' +: 22 4 ... 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {x, Xz, . .. x,}]
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=]|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X2,...,Xn}
= Runtime: O(2' +22 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {xi, Xo, . . x,}] Better runtime if ¢
= Lo =(0) and/or |L;| are small.
L= <07 1>
.L2:<0717475>
= [3=(0,1,4,5,6,9,10)
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

y
—_— <z <.
116 %Y
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

v
140

z<Ly

S

<z
[ = [ = (10,11,12, 15,20, 21, 22, 23, 24, 29)
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

<
[ = [ = (10,11,12, 15,20, 21, 22, 23, 24, 29)
= 5=0.1
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

L S V4 S y
[ . L= (10,11,12, 15,20, 21,22, 23, 24, 29)
"= 5=0.1
= [’ = (10,12, 15, 20, 23, 29)
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’

(TRIM works in time ©(m), if L is given in sorted order. ]
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last- (1 +§) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L=

i
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L' = (10)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last
L=(10,11,12,15,20,21,22, 23,24, 29)

L' = (10)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last
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L' = (10)
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lllustration of the Trim Operation
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
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L' = (10,12)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
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return L’
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted
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lllustration of the Trim Operation
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let m be the length of L
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let m be the length of L
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if y; > last - (1 + §) // y; > last because L is sorted
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12,15, 20, 23)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’
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L=(10,11,12,15,20,21, 22,23, 24, 29)
L
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let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20,23, 29)
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)
n=|S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + x;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

o e Y e S
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

EXACT-SUBSET-SUM(S, 1)

1 n=]|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS(L;_y, Li—1 + X;) 4 L; = MERGE-LISTS(L;—1, L~ + X;)
[5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

00 N || W =

|

|

EXACT-SUBSET-SUM(S, 1)

n=|S| 1 n=1S|
Lo = (0) 2 Lo =(0)

fori = 1ton 3 fori =1ton
L; = MERGE-LISTS(L;_y, L;—1 + X;) 4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
remove from L; every element that is greater than# 6 return the largest element in L,

let z* be the largest value in L,

return S~
Repeated application of TRIM

to make sure L;'s remain short.
5 IV. Approximation via Exact Algorithms The Subset-Sum Problem 7



The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS(L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

00 N || W =

remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*
S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

n =S|
Lo = (0)
fori = lton

L; = MERGE-LISTS(L;—1, L~ + X;)
remove from L; every element that is greater than ¢
return the largest element in L,

= We must bound the inaccuracy introduced by repeated trimming
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS(L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

00 N || W =

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*
S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

n =S|
Lo = (0)
fori = Iton

L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS (L;_y, Li—; + x;)

L; = TRIM(L;,€/2n)

1
2
3
4
5
6
7
8

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*
S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

n =S|
Lo = (0)
fori = Iton

L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

NS

[Solution is a careful choice of 5!]
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

bl - e
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

bl - e
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
® line 4: Ly = (0,104)
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
® line 4: Ly = (0,104)
= line 5: Ly = (0,104)

i
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0, 104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

i
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

® line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= lined: Ly =

= line5: Ly =

= line6: Ly =

= line 4: L,

0,102, 104, 206)
line 5: Lo

0,102, 206)

i
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
* line 4: L, = (0,102, 104, 206)
* line 5: L = (0, 102, 206)
= line 6: L = (0, 102, 206)
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

n =S|

Lo = (0)

fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

1
2
3
4
5 L; = TRIM(L;,€/2n)
6
7
8

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter: § = ¢/(2 - n) = ¢/8 = 0.05

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:

line 4:

=
= line 2

Lo = (0)

Ly = (0,104)

Ly = {0,104}

L1 = {0,104)

L» = (0,102,104, 206)

Lo — (0,102, 206}

L, = (0,102, 206)

Ls = (0,102,201, 206, 303, 407)
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter: § = ¢/(2 - n) = ¢/8 = 0.05

=

line 2

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:

line 4:
line 5:

tLo={0)

Ly = (0,104)

L7 = {0,104)

L1 = {0,104)

L» = (0,102,104, 206)

Lo — (0,102, 206}

L5 — {0,102, 206)

Ls = (0,102,201, 206, 303, 407)
Ly = (0,102,201, 303 407>
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line6: Ly = O 104)

= lined: L, =
= line 5: Ly, =
= line 6: L, =
= line 4: L
= line 5: L3
= line 6: L

(

(

(
(0,102,104, 206)

{0,102, 206}

{0,102, 206}

(0,102, 201,206,303, 407)
{0,102, 201,303, 407}

= (0,102,201, 303}
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
* line 5: L = (0, 102, 206)
= line 6: L = (0, 102, 206)
= line 4: Ly = (0,102, 201,206, 303, 407)
* line 5: Ly = (0, 102,201,303, 407)
= line 6: L = (0, 102,201,303)
= line 4: Ly = (0,101,102, 201,203, 302, 303, 404)

i
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
* line 5: L, = (0, 102, 206}
= line 6: L, = (0, 102, 206)
= line 4: Ly = (0,102, 201,206, 303, 407)
= line 5: L3 = (0,102,201, 303 407)
= line 6: L3 = (0,102,201, 303}
® line 4: L4 = (0,101,102, 201,203, 302, 303, 404)
= line 5: Ly = (0,101,201, 302, 404)
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Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter: § = ¢/(2 - n) = ¢/8 = 0.05

=

line 2

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:

line 4:
line 5:
line 6: L.

line 4:
line 5:
line 6:

tLo={0)

Ly = (0,104)

L7 = {0,104)

Ly = (0,104)

Lo = (0,102, 104, 206)

Lo — (0,102, 206}

L, = (0,102, 206)

Ls = (0,102,201, 206, 303, 407)
L3 = (0,102,201, 303 407>

— (0,102,201, 303}

L4 = (0,101,102,201,203, 302, 303, 404)
Ly = (0,101,201, 302 404>

Ly = (0,101,201, 302)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem



Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
* line 5: L, = (0, 102, 206}
= line 6: L, = (0, 102, 206)
= line 4: Ly = (0,102, 201,206, 303, 407)
= line 5: L3 = (0,102,201, 303 407)
= line 6: L3 = (0, 102 201 303)
= line 4: L4 = (0,101,102, 201,203, 302, 303, 404)
= line 5: Ly = (0,101,201 302 404)

line 6: Ly = (O, 101 201 302) Returned solution z* = 302, which is 2%
within the optimum 307 = 104 + 102 + 101
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Reminder: Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c ¢C
m = Z_ ) < p(n).
ax( " ) p()

[ For many problems: iradeoff between runtime and approximation ratio. ]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(n2/e),)

= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/e and n. G:or example, O((1/¢)? - n3).)
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

i
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

i
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
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= This bound on |L;| is polynomial in the size of the input and in 1/e. O
1
(Need log(t) bits to represent t and n bits to represent Sj
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
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The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
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[A more general problem than Subset-Sum]
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Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
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[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes ). g Vi

2. satisfies 3, cq w; < t

P
LAIgorithm very similar to APPROX-SUBSET-SUM
— Theorem -

There is a FPTAS for the Knapsack problem. ]
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Parallel Machine Scheduling
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Parallel Machine Scheduling

Machine Scheduling Problem

m identical machines My, Mx, ..., Mn,

= Given: njobs Ji, Js, . . ., Jn with processing times p1, po, . ..

, Pn, and
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, Js, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mx, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cx is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
vk 0 JCa
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I T T
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LIST SCHEDULING(J1, oo, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
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Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
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M1[ . Jo . _ ]i
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Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?]

Sl
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1y
Cmax > E;pk

Proof:
b. The total processing times of all n jobs equals Y _;_, p«
= One machine must have a load of at least % - S°7_, p«
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

18
Crhax < — max D.
max > m ;Pk + 1§k§npk

\

Hence list scheduling is a poly-time 2-approximation algorithm.
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1<k<n

1 n
Cmax S E ;pk + max pk-

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Cnax = C;
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1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
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@
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List Scheduling Analysis (Final Step)
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cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i = argming <<, Ck
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Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]
N

[This can be shown to be tight (see next inde).J

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then C.. > 2 - pmy1-

IV. Approximation via Exact Algorithms Parallel Machine Scheduling



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then C;;... > 2 - pm+1-
= As in the analysis for list scheduling

B

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then C;;... > 2 - pm+1-
= As in the analysis for list scheduling, we have

Cmax = C/ = (C] —Pi) +P:

ﬁ!ﬁ

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then C.. > 2 - pmy1-
= As in the analysis for list scheduling, we have

1
Cmax = Cj = (C/ - pl) + Pf S C:mx + Ec:mx
)
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= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19
Optimum is C;,., = 15

Crax =15
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~——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 37 __ py.

\.

Can we find a FPTAS (for polynomially bounded processing times)?
No!

=

Because for sufficiently small approximation ratio
1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.
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Exercise (easy): Run the LPT algorithm on three machines and jobs
having processing times {3, 4,4, 3,5, 3,5}. Which allocation do you
get?

1. 13,3,5],[4,5],[4,3]
2. [5,3],[5.4].[4,3,3]
3. [3,3,3],[5,4],[5.4]
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Outline

Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)
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A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

ﬁla
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Proof (using Key Lemma):
PTAS(J1, o, . .., Jn, m)
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~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := 3>7__ py.
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(polynomial in the size of the input Since 0 < Ci,, < P and C.,, is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps. }
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Implementation of Subroutine
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2: Or: Return there is no solution with makespan < T
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

ﬁ!a

L.!-.
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15.T " e=05 15.-T
125.T Ch 125.T
1-T b=2 1-T
0.75- T +|pi > 075-T+|p]
0.5-T+{-fPLf ] - - 05T ph
025-T Ds 025-T P4
0 0
Jlarge Jsmall Jlarge

i
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

= Let b be the smallest integer with 1/b < e. Define processing times p; = [@] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
15.T 1 e=05 1.5-T
125-T «ph—2 1.25-T
1-T 1.7
0.75- T + |P1 0.75- T +|p}
05T I ———————— 05T ph
025-T . D5 025-T P3
! ) (7 T IUUE
Jlarge smaII Jlarge
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.
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= Let b be the smallest integer with 1/b < e. Define processing times p; = [@] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
15.T 1 e=05 15-T
125-T cph=2 125.T
1-T 1.-T
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

b
Let b be the smallest integer with 1/b < . Define processing times p; = [p’T] . b—T2
Every p = o - b—TZ fora=bb+1,...,b?
. 2 .
Let C be all (Sp, Spy1, - - -, Sz ) With zf’:js,- - b—Tz <T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11"'anb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

15-T "e=05 15-T
125.T . 125 T
1-T b=2 1.-T
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

N
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yp;:a~b—T2f0I’oz:b,b+1,...,b2

Let C be all (Sp, Sp.1, -, Sy) with S5 s - - L<rT

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines requir chedule
all jobs with makespan < T: Assign some jobs to one machine, and then
use as few machines as possible for the rest.
£(0,0,...,0) =0 E

. =
Mo M- M) = 1 4 (sb,5b+1r],q~!r],sbz)ec HMo = b, M4t = Sp4ts - Mz = Sp2)-
15-T re=05 15.T
125-T . 125-T
1.T b=2 1.7
075-T > 075-T+|p]
05T I ———————— 05T ph
025-T .p5 025-T
0 . . 0
Jlarge smaII Jlarge
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

. . ) N ib?
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—Tz fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbanb+11"'anb2):1+ min f(nb_sb’nb+1 _sb+1"">nb2_sb2)‘
(8b:Sp+1,-+-,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

. . ) N ib?
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—TZ fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbanb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘
(8b:Sp+1,-+-,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.
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= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
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If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,
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Let b be the smallest integer with 1/b < ¢. Define processing times p; = [%] -
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Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.
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= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] ‘15
= Everyp/ =a- b—TZ fora=bb+1,...,b?
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* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
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£(0,0,...,0)=0
f(nbvnb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.
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