# VI. Approx. Algorithms: Randomisation and Rounding

Thomas Sauerwald

Easter 2020



# Outline

#### **Randomised Approximation**

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion



# Performance Ratios for Randomised Approximation Algorithms



A randomised algorithm for a problem has approximation ratio  $\rho(n)$ , if for any input of size *n*, the expected cost *C* of the returned solution and optimal cost *C*<sup>\*</sup> satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$

Call such an algorithm randomised  $\rho(n)$ -approximation algorithm.

extends in the natural way to randomised algorithms

Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and  $\epsilon > 0$ , is a  $(1 + \epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed  $\epsilon > 0$ , the runtime is polynomial in *n*. For example,  $O(n^{2/\epsilon})$ .
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both  $1/\epsilon$  and *n*. (For example,  $O((1/\epsilon)^2 \cdot n^3)$ .)



# Outline

**Randomised Approximation** 

### MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion



### **MAX-3-CNF Satisfiability**

Assume that no literal (including its negation)<br/>appears more than once in the same clause.MAX-3-CNF SatisfiabilityGiven: 3-CNF formula, e.g.:  $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$ Goal: Find an assignment of the variables that satisfies as many<br/>clauses as possible.Relaxation of the satisfiability problem. Want to com-<br/>pute how "close" the formula to being satisfiable is.

#### Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_3} \lor \overline{x_5}) \land (x_2 \lor \overline{x_4} \lor x_5) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$$

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0 \text{ and } x_5 = 1 \text{ satisfies 3 (out of 4 clauses)}$$

Idea: What about assigning each variable uniformly and independently at random?



# Analysis

#### - Theorem 35.6

Given an instance of MAX-3-CNF with *n* variables  $x_1, x_2, \ldots, x_n$  and *m* clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

For every clause i = 1, 2, ..., m, define a random variable:

 $Y_i = \mathbf{1}$ {clause *i* is satisfied}

Since each literal (including its negation) appears at most once in clause *i*,

• Let  $Y := \sum_{i=1}^{m} Y_i$  be the number of satisfied clauses. Then,

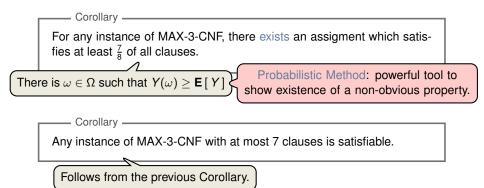
$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \cdot m. \quad \Box$$
(Linearity of Expectations)
(maximum number of satisfiable clauses is m)



### Interesting Implications

- Theorem 35.6 -

Given an instance of MAX-3-CNF with *n* variables  $x_1, x_2, ..., x_n$  and *m* clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.





# **Expected Approximation Ratio**

#### Theorem 35.6

Given an instance of MAX-3-CNF with *n* variables  $x_1, x_2, ..., x_n$  and *m* clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy  $(7/8) \cdot m$  clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$
  
*Y* is defined as in the previous proof. One of the two conditional expectations is at least  $\mathbf{E}[Y]!$ 

### GREEDY-3-CNF( $\phi$ , n, m)

2: Compute **E** [ 
$$Y | x_1 = v_1 \dots, x_{j-1} = v_{j-1}, x_j = 1$$
 ]

- 3: Compute **E**[ $Y \mid x_1 = v_1, ..., x_{j-1} = v_{j-1}, x_j = 0$ ]
- 4: Let  $x_j = v_j$  so that the conditional expectation is maximized
- 5: **return** the assignment  $v_1, v_2, \ldots, v_n$



# Analysis of GREEDY-3-CNF( $\phi$ , n, m)

This algorithm is deterministic.

Theorem

GREEDY-3-CNF( $\phi$ , *n*, *m*) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
  - In iteration j = 1, 2, ..., n,  $Y = Y(\phi)$  averages over  $2^{n-j+1}$  assignments
  - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E} \begin{bmatrix} Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1 \end{bmatrix} = \sum_{i=1}^{m} \mathbf{E} \begin{bmatrix} Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1 \end{bmatrix}$$

$$\mathbf{Step 2: satisfies at least 7/8 \cdot m clauses}$$

$$\mathbf{Due to the greedy choice in each iteration j = 1, 2, \dots, n,$$

$$\mathbf{E} \begin{bmatrix} Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = v_j \end{bmatrix} \ge \mathbf{E} \begin{bmatrix} Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1} \end{bmatrix}$$

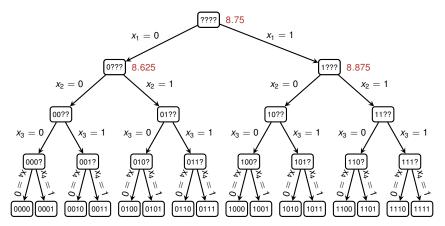
$$\geq \mathbf{E} \begin{bmatrix} Y \mid x_1 = v_1, \dots, x_{j-2} = v_{j-2} \end{bmatrix}$$

$$\vdots$$

$$\geq \mathbf{E} \begin{bmatrix} Y \end{bmatrix} = \frac{7}{8} \cdot m.$$

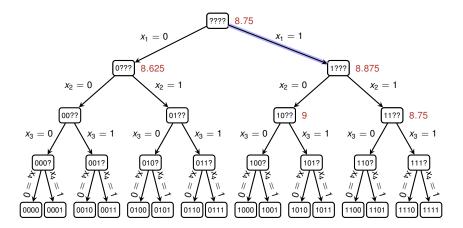


 $\begin{array}{c} (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_3} \lor x_4) \land (x_1 \lor x_2 \lor \overline{x_4}) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \end{array}$ 



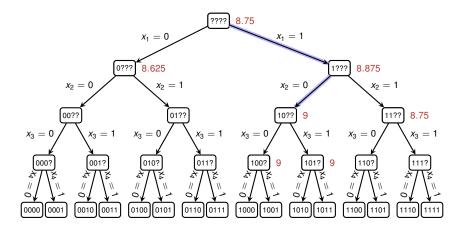


 $1 \land 1 \land 1 \land (\overline{x_3} \lor x_4) \land 1 \land (\overline{x_2} \lor \overline{x_3}) \land (x_2 \lor x_3) \land (\overline{x_2} \lor x_3) \land 1 \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$ 



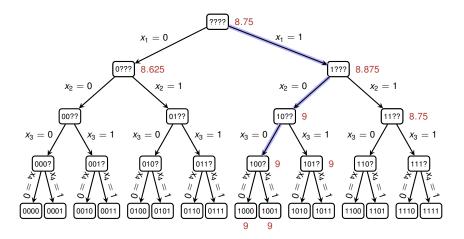


 $1 \land 1 \land 1 \land (\overline{x_3} \lor x_4) \land 1 \land 1 \land (x_3) \land 1 \land 1 \land (\overline{x_3} \lor \overline{x_4})$ 



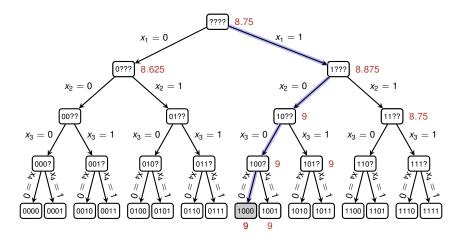


#### $1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$



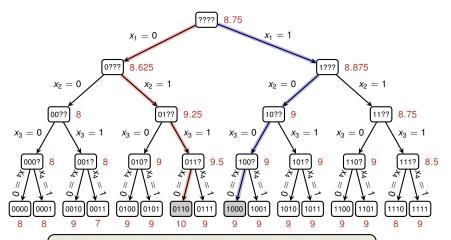


#### $1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$





 $\begin{array}{c} (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_3} \lor x_4) \land (x_1 \lor x_2 \lor \overline{x_4}) \land \\ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \end{array}$ 



Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

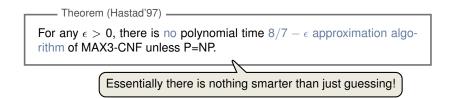


Theorem 35.6 -

Given an instance of MAX-3-CNF with *n* variables  $x_1, x_2, ..., x_n$  and *m* clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem -

GREEDY-3-CNF( $\phi$ , *n*, *m*) is a polynomial-time 8/7-approximation.





# Outline

**Randomised Approximation** 

MAX-3-CNF

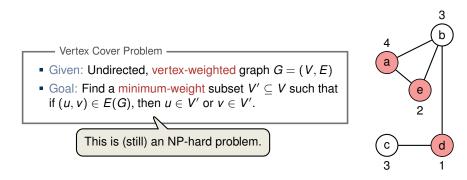
### Weighted Vertex Cover

Weighted Set Cover

#### MAX-CNF

Conclusion





### Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

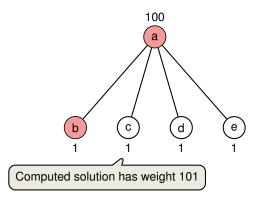


# The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER (G)

- 1  $C = \emptyset$
- $2 \quad E' = G.E$
- 3 while  $E' \neq \emptyset$
- 4 let (u, v) be an arbitrary edge of E'
- 5  $C = C \cup \{u, v\}$
- 6 remove from E' every edge incident on either u or v

7 return C



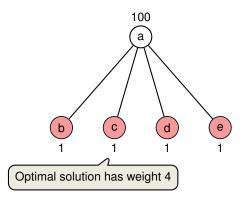


# The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER (G)

- 1  $C = \emptyset$
- $2 \quad E' = G.E$
- 3 while  $E' \neq \emptyset$
- 4 let (u, v) be an arbitrary edge of E'
- 5  $C = C \cup \{u, v\}$
- 6 remove from E' every edge incident on either u or v

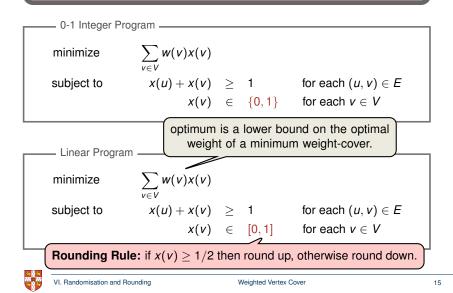
7 return C





# Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.



APPROX-MIN-WEIGHT-VC(G, w)

```
1 \quad C = \emptyset
```

2 compute  $\bar{x}$ , an optimal solution to the linear program

- 3 for each  $\nu \in V$
- 4 **if**  $\bar{x}(v) \ge 1/2$
- 5  $C = C \cup \{\nu\}$
- 6 return C

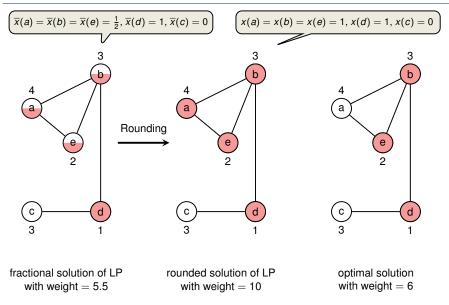
#### Theorem 35.7 ·

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

is polynomial-time because we can solve the linear program in polynomial time



### Example of APPROX-MIN-WEIGHT-VC





### **Approximation Ratio**

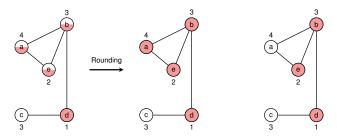
Proof (Approximation Ratio is 2 and Correctness):

- Let C\* be an optimal solution to the minimum-weight vertex cover problem
- Let z\* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
  - Consider any edge  $(u, v) \in E$  which imposes the constraint  $x(u) + x(v) \ge 1$
  - $\Rightarrow$  at least one of  $\overline{x}(u)$  and  $\overline{x}(v)$  is at least  $1/2 \Rightarrow C$  covers edge (u, v)
- Step 2: The computed set C satisfies w(C) ≤ 2z\*:

$$w(C^*) \geq z^* = \sum_{v \in V} w(v)\overline{x}(v) \geq \sum_{v \in V: \ \overline{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2} = \frac{1}{2}w(C). \quad \Box$$





Weighted Vertex Cover

# Outline

**Randomised Approximation** 

MAX-3-CNF

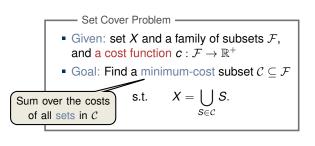
Weighted Vertex Cover

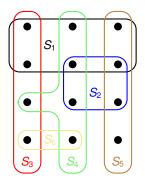
Weighted Set Cover

MAX-CNF

Conclusion







#### Remarks:

- generalisation of the weighted vertex-cover problem
- models resource allocation problems



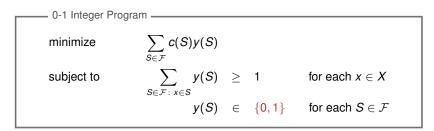
### Setting up an Integer Program

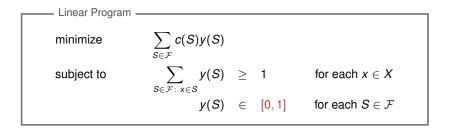


**Exercise:** Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)



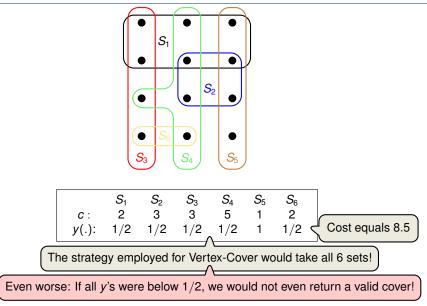
### Setting up an Integer Program







### **Back to the Example**





## **Randomised Rounding**

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding -

- Let C ⊆ F be a random set with each set S being included independently with probability y(S).
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution y by:

$$ar{y}(S) = egin{cases} 1 & ext{with probability } y(S) \ 0 & ext{otherwise.} \end{cases}$$
 for all  $S \in \mathcal{F}.$ 

• Therefore, 
$$\mathbf{E}[\bar{y}(S)] = y(S)$$
.



### **Randomised Rounding**

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma ·

The expected cost satisfies

$$\mathsf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$$

■ The probability that an element *x* ∈ *X* is covered satisfies

$$\Pr\left[x \in \bigcup_{S \in \mathcal{C}} S\right] \ge 1 - \frac{1}{e}.$$



# **Proof of Lemma**

🗕 Lemma 🛛

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
- The probability that x is covered satisfies  $\Pr[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

### Proof:

Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{Pr}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}y(S)\cdot c(S).$$

Step 2: The probability for an element to be (not) covered

$$\Pr[x \notin \bigcup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)} (y \text{ solves the LP!})$$

$$= e^{-\sum_{S \in \mathcal{F}: x \in S} y(S)} \leq e^{-1} \square$$



# The Final Step

- Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
- The probability that x is covered satisfies  $\Pr[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of  $\Omega(\log n)$  random sets C.

WEIGHTED SET COVER-LP( $X, \mathcal{F}, c$ )

- 1: compute y, an optimal solution to the linear program
- 2:  $\mathcal{C} = \emptyset$
- 3: repeat 2 ln n times
- 4: **for** each  $S \in \mathcal{F}$
- 5: let  $C = C \cup \{S\}$  with probability y(S)
- 6: return  $\mathcal{C}$





Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\Pr\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \le \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

This implies for the event that all elements are covered:

$$\Pr[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\ge 0 = 0 + \Pr[A] + \Pr[B] \ge 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \ge 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
  - By previous lemma, the expected cost of one iteration is  $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
  - Linearity  $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2\ln(n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq 2\ln(n) \cdot c(\mathcal{C}^*)$



Pr [ /

### Analysis of WEIGHTED SET COVER-LP

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

By Markov's inequality,  $\Pr[c(\mathcal{C}) \le 4 \ln(n) \cdot c(\mathcal{C}^*)] \ge 1/2.$ 

Hence with probability at least  $1 - \frac{1}{n} - \frac{1}{2} > \frac{1}{3}$ , solution is within a factor of  $4 \ln(n)$  of the optimum.

probability could be further increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs



# Outline

**Randomised Approximation** 

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

### MAX-CNF

Conclusion



## MAX-CNF

Recall:

MAX-3-CNF Satisfiability -

Given: 3-CNF formula, e.g.:  $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$ 

 Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

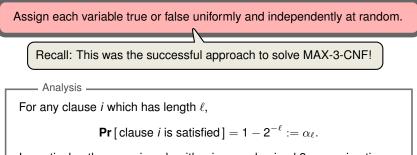
- Given: CNF formula, e.g.:  $(x_1 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches



## Approach 1: Guessing the Assignment



In particular, the guessing algorithm is a randomised 2-approximation.

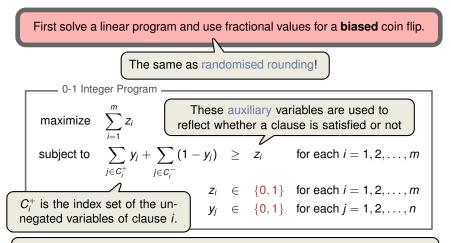
#### Proof:

- First statement as in the proof of Theorem 35.6. For clause *i* not to be satisfied, all  $\ell$  occurring variables must be set to a specific value.
- As before, let  $Y := \sum_{i=1}^{m} Y_i$  be the number of satisfied clauses. Then,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] \ge \sum_{i=1}^{m} \frac{1}{2} = \frac{1}{2} \cdot m.$$



## Approach 2: Guessing with a "Hunch" (Randomised Rounding)



- In the corresponding LP each  $\in \{0,1\}$  is replaced by  $\in [0,1]$
- Let (y\*, z\*) be the optimal solution of the LP
- Obtain an integer solution y through randomised rounding of y\*



## Analysis of Randomised Rounding

- Lemma

For any clause *i* of length  $\ell$ ,

$$\Pr\left[ ext{clause } i ext{ is satisfied } 
ight] \geq \left( 1 - \left( 1 - rac{1}{\ell} 
ight)^\ell 
ight) \cdot z_i^*.$$

### Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>j</sub> by x<sub>j</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \lor \cdots \lor x_\ell)$

$$\Rightarrow \mathbf{Pr}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{j=1}^{\ell} \mathbf{Pr}[y_j \text{ is false }] = 1 - \prod_{j=1}^{\ell} (1 - y_j^*)$$
Arithmetic vs. geometric mean:  

$$\frac{a_1 + \dots + a_k}{k} \ge \sqrt[k]{a_1 \times \dots \times a_k}.$$

$$\ge 1 - \left(\frac{\sum_{j=1}^{\ell} (1 - y_j^*)}{\ell}\right)^{\ell}$$

$$= 1 - \left(1 - \frac{\sum_{j=1}^{\ell} y_j^*}{\ell}\right)^{\ell} \ge 1 - \left(1 - \frac{z_i^*}{\ell}\right)^{\ell}.$$



## Analysis of Randomised Rounding

- Lemma

For any clause *i* of length  $\ell$ ,

$$\Pr\left[ \text{clause } i \text{ is satisfied} 
ight] \geq \left( 1 - \left( 1 - rac{1}{\ell} 
ight)^\ell 
ight) \cdot Z_i^*.$$

Proof of Lemma (2/2):

So far we have shown:

**Pr** [clause *i* is satisfied ] 
$$\geq 1 - \left(1 - \frac{z_i^*}{\ell}\right)^\ell$$

- For any  $\ell \ge 1$ , define  $g(z) := 1 (1 \frac{z}{\ell})^{\ell}$ . This is a concave function with g(0) = 0 and  $g(1) = 1 - (1 - \frac{1}{\ell})^{\ell} =: \beta_{\ell}$ .  $\Rightarrow \quad g(z) \ge \beta_{\ell} \cdot z \quad \text{for any } z \in [0, 1] \quad 1 - (1 - \frac{1}{3})^3 \xrightarrow{\left[ 1 - \frac{1}{2} \right]} Z$
- Therefore, **Pr** [clause *i* is satisfied ]  $\geq \beta_{\ell} \cdot z_i^*$ .



## Analysis of Randomised Rounding

– Lemma

For any clause *i* of length  $\ell$ ,

$$\Pr\left[ \text{clause } i \text{ is satisfied } 
ight] \geq \left( 1 - \left( 1 - rac{1}{\ell} 
ight)^\ell 
ight) \cdot z_i^*.$$

Theorem

Randomised Rounding yields a 1/(1 - 1/e)  $\approx$  1.5820 randomised approximation algorithm for MAX-CNF.

#### Proof of Theorem:

- For any clause i = 1, 2, ..., m, let  $\ell_i$  be the corresponding length.
- Then the expected number of satisfied clauses is:

$$\mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[Y_i] \ge \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{\ell_i}\right)^{\ell_i}\right) \cdot z_i^* \ge \sum_{i=1}^{m} \left(1 - \frac{1}{e}\right) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot z_i^* \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$





- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*)

- 1: Let  $b \in \{0, 1\}$  be the flip of a fair coin
- 2: If b = 0 then perform random guessing
- 3: If b = 1 then perform randomised rounding
- 4: return the computed solution



Algorithm sets each variable  $x_i$  to TRUE with prob.  $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot y_i^*$ . Note, however, that variables are **not** independently assigned!



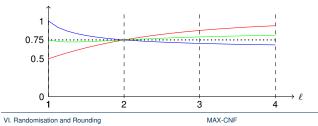
## Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot z_i^*$
- For any clause *i* of length *l*:
  - Algorithm 1 satisfies it with probability 1 − 2<sup>-ℓ</sup> = α<sub>ℓ</sub> ≥ α<sub>ℓ</sub> · z<sub>i</sub><sup>\*</sup>.
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot z_i^*$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*} + \frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$  for  $\ell \in \{1,2\}$ , and for  $\ell \geq 3$ ,  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$  (see figure)
- $\Rightarrow$  HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with prob. at least  $3/4 \cdot z_i^*$





#### Summary

- Since  $\alpha_2 = \beta_2 = 3/4$ , we cannot achieve a better approximation ratio than 4/3 by combining Algorithm 1 & 2 in a different way
- The 4/3-approximation algorithm can be easily derandomised
  - Idea: use the conditional expectation trick for both Algorithm 1 & 2 and output the better solution
- The 4/3-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!





**Exercise (easy):** Consider any minimsation problem, where x is the optimal cost of the LP relaxation, y is the optimal cost of the IP and z is the solution obtained by rounding up the LP solution. Which of the following statements are true?

- 1.  $x \leq y \leq z$ ,
- $2. y \leq x \leq z,$
- 3.  $y \leq z \leq x$ .





**Exercise (trickier):** Consider a version of the SET-COVER problem, where each element  $x \in X$  has to be covered by **at least two** subsets. Design and analyse an efficient approximation algorithm. Hint: You may use the result that if  $X_1, X_2, ..., X_n$  are independent Bernoulli random variables with  $X := \sum_{i=1}^{n} X_i$ ,  $\mathbf{E}[X] \ge 2$ , then

$$\Pr[X \ge 2] \ge 1/4 \cdot (1 - e^{-1}).$$



## Outline

**Randomised Approximation** 

MAX-3-CNF

Weighted Vertex Cover

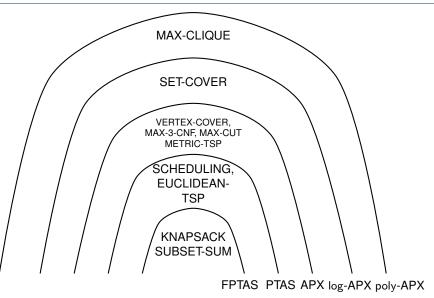
Weighted Set Cover

MAX-CNF

Conclusion



## **Spectrum of Approximations**





## **Topics Covered**

- I. Sorting and Counting Networks
  - 0/1-Sorting Principle, Bitonic Sorting, Batcher's Sorting Network Bonus Material: A Glimpse at the AKS network
  - Balancing Networks, Counting Network Construction, Counting vs. Sorting

#### II. Linear Programming

- Geometry of Linear Programs, Applications of Linear Programming
- Simplex Algorithm, Finding a Feasible Initial Solution
- Fundamental Theorem of Linear Programming
- III. Approximation Algorithms: Covering Problems
  - Intro to Approximation Algorithms, Definition of PTAS and FPTAS
  - (Unweighted) Vertex-Cover: 2-approx. based on Greedy
  - (Unweighted) Set-Cover: O(log n)-approx. based on Greedy
- IV. Approximation Algorithms via Exact Algorithms
  - Subset-Sum: FPTAS based on Trimming and Dynamic Programming
  - Scheduling: 2-approx. based on Simple Greedy, 4/3-approx. using LPT Bonus Material: A PTAS for Machine Scheduling based on Rounding and Dynamic Programming
- V. The Travelling Salesman Problem
  - Inapproximability of the General TSP problem
  - Metric TSP: 2-approx. based on MST, 3/2-approx. based on MST + matching
- VI. Approximation Algorithms: Rounding and Randomisation
  - MAX3-CNF: 8/7-approx. based on Guessing, Derandomisation with Greedy
  - Weighted) Vertex-Cover: 2-approx. based on Deterministic Rounding
  - Weighted) Set-Cover: O(log n)-approx. based on Randomised Rounding
  - MAX-CNF: 4/3-approx. based on Guessing + Randomised Rounding



# Thank you and Best Wishes for the Exam!

