VI. Approx. Algorithms: Randomisation and Rounding

Thomas Sauerwald

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n)
$$

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n)
$$

Call such an algorithm randomised $\rho(n)$-approximation algorithm.

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio
A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n)
$$

Call such an algorithm randomised $\rho(n)$-approximation algorithm.

Approximation Schemes
An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$-approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon>0$, the runtime is polynomial in n. For example, $O\left(n^{2 / \epsilon}\right)$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1 / \epsilon$ and n. For example, $O\left((1 / \epsilon)^{2} \cdot n^{3}\right)$.

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{C}{C^{*}}, \frac{C^{*}}{C}\right) \leq \rho(n)
$$

Call such an algorithm randomised $\rho(n)$-approximation algorithm.
extends in the natural way to randomised algorithms
Approximation Schemes
An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$-approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed
$\epsilon>0$, the runtime is polynomial in n. For example, $O\left(n^{2 / \epsilon}\right)$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1 / \epsilon$ and n. For example, $O\left((1 / \epsilon)^{2} \cdot n^{3}\right)$.

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion

MAX-3-CNF Satisfiability

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \cdots$

MAX-3-CNF Satisfiability

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-3-CNF Satisfiability

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.
MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.
MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

$$
x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0 \text { and } x_{5}=1 \text { satisfies } 3 \text { (out of } 4 \text { clauses) }
$$

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

$$
x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0 \text { and } x_{5}=1 \text { satisfies } 3 \text { (out of } 4 \text { clauses) }
$$

Idea: What about assigning each variable uniformly and independently at random?

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:
$Y_{i}=\mathbf{1}$ \{clause i is satisfied $\}$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:
$Y_{i}=\mathbf{1}$ \{clause i is satisfied $\}$
- Since each literal (including its negation) appears at most once in clause i,

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:
$Y_{i}=\mathbf{1}$ \{clause i is satisfied $\}$
- Since each literal (including its negation) appears at most once in clause i,

$$
\operatorname{Pr}[\text { clause } i \text { is not satisfied }]=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& \operatorname{Pr}[\text { clause } i \text { is not satisfied }]=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow \quad & \operatorname{Pr}[\text { clause } i \text { is satisfied }]=1-\frac{1}{8}=\frac{7}{8}
\end{aligned}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{array}{rlrl}
& \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow \quad & \quad \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{array}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]
$$

Linearity of Expectations

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\underset{\text { Linearity of Expectations }}{\mathbf{E}[Y]=}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\begin{aligned}
\mathbf{E}[Y]= & \mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8} \\
& \text { Linearity of Expectations }
\end{aligned}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\begin{aligned}
\mathbf{E}[Y]= & \mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]= \\
& \text { Linearity of Expectations }
\end{aligned}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathrm{E}\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} \cdot m
$$

Linearity of Expectations

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \operatorname{Pr}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow & & \operatorname{Pr}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & E\left[Y_{i}\right] & =\operatorname{Pr}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} \cdot m
$$

Linearity of Expectations

Interesting Implications
Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

2
There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$
Probabilistic Method: powerful tool to show existence of a non-obvious property.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised $8 / 7$-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$
Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary
Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary
Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Follows from the previous Corollary.

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right] .
$$

Y is defined as in the previous proof.

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right]
$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]$!

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right] .
$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]$!
Algorithm: Assign x_{1} so that the conditional expectation is maximized and recurse.

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right] .
$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]$!

GREEDY-3-CNF (ϕ, n, m)
for $j=1,2, \ldots, n$
Compute $\mathrm{E}\left[Y \mid x_{1}=v_{1} \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
Compute $\mathrm{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=0\right]$
Let $x_{j}=v_{j}$ so that the conditional expectation is maximized
5: return the assignment $v_{1}, v_{2}, \ldots, v_{n}$

Analysis of Greedy-3-CNF (ϕ, n, m)

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Analysis of Greedy-3-CNF (ϕ, n, m)

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Analysis of Greedy-3-CNF (ϕ, n, m)

Proof:

Analysis of Greedy-3-CNF (ϕ, n, m)

Proof:

- Step 1: polynomial-time algorithm

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.
Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.
Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.
Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right]
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$\geq \mathbf{E}[Y]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$$
\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 m clauses \checkmark
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$$
\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 m clauses \checkmark
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$$
\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m
$$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\underline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \forall \overline{x_{3}}\right) \wedge 1 \wedge\left(x<\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \forall x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)

$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)

$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)

$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)

$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)
For any $\epsilon>0$, there is no polynomial time 8/7- $\boldsymbol{\epsilon}$ approximation algorithm of MAX3-CNF unless $P=N P$.

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)
For any $\epsilon>0$, there is no polynomial time 8/7- $\boldsymbol{\epsilon}$ approximation algorithm of MAX3-CNF unless $P=N P$.

Essentially there is nothing smarter than just guessing!

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

Applications:

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

The Greedy Approach from (Unweighted) Vertex Cover

```
Approx-VERTEX-Cover ( \(G\) )
\(C=\emptyset\)
\(E^{\prime}=G . E\)
while \(E^{\prime} \neq \emptyset\)
    let \((u, v)\) be an arbitrary edge of \(E^{\prime}\)
    \(C=C \cup\{u, v\}\)
    remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
return \(C\)
```


The Greedy Approach from (Unweighted) Vertex Cover

```
Approx-VERTEX-Cover ( \(G\) )
    \(C=\emptyset\)
    \(E^{\prime}=G . E\)
    while \(E^{\prime} \neq \emptyset\)
4 let \((u, v)\) be an arbitrary edge of \(E^{\prime}\)
\(5 \quad C=C \cup\{u, v\}\)
6 remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
return \(C\)
```


The Greedy Approach from (Unweighted) Vertex Cover

```
Approx-VERTEX-COVER ( \(G\) )
\(C=\emptyset\)
\(E^{\prime}=G . E\)
while \(E^{\prime} \neq \emptyset\)
            let \((u, v)\) be an arbitrary edge of \(E^{\prime}\)
            \(C=C \cup\{u, v\}\)
            remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
return \(C\)
```


Computed solution has weight 101

The Greedy Approach from (Unweighted) Vertex Cover

```
Approx-VERTEX-COVER ( \(G\) )
\(C=\emptyset\)
\(E^{\prime}=G . E\)
while \(E^{\prime} \neq \emptyset\)
4 let \((u, v)\) be an arbitrary edge of \(E^{\prime}\)
\(5 \quad C=C \cup\{u, v\}\)
6 remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
7 return \(C\)
```


Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

$$
\begin{array}{lcll}
\text { minimize } & \sum_{v \in V} w(v) x(v) & & \\
\text { subject to } & x(u)+x(v) & \geq 1 & \text { for each }(u, v) \\
& x(v) & \in\{0,1\} & \text { for each } v \in V
\end{array}
$$

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

$$
\begin{array}{llll}
\text { minimize } & \sum_{v \in v} w(v) x(v) & & \\
\text { subject to } & x(u)+x(v) & \geq 1 & \\
& x(v) & \in\{0,1\} & \\
\text { for each each } v \in V
\end{array}
$$

Linear Program
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \\
x(v) & \in[0,1] & & \text { for each } v \in V
\end{aligned}
$$

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

minimize	$\sum_{v \in V} w(v) x(v)$		
subject to	$x(u)+x(v)$	≥ 1	
$x(v)$	$\in\{0,1\}$		for each each $v \in V$

optimum is a lower bound on the optimal weight of a minimum weight-cover.
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \in \\
x(v) & \in[0,1] & & \text { for each } v \in V
\end{aligned}
$$

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

minimize	$\sum_{v \in V} w(v) x(v)$		
subject to	$x(u)+x(v)$	≥ 1	for each $(u, v) \in E$
$x(v)$	$\in\{0,1\}$	for each $v \in V$	

optimum is a lower bound on the optimal weight of a minimum weight-cover.
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \in E \\
x(v) & \in[0,1] & & \text { for each } v \in V
\end{aligned}
$$

Rounding Rule: if $x(v) \geq 1 / 2$ then round up, otherwise round down.

The Algorithm

```
Approx-Min-Weight-VC( \(G, w)\)
\(1 \quad C=\emptyset\)
2 compute \(\bar{x}\), an optimal solution to the linear program
3 for each \(v \in V\)
\(4 \quad\) if \(\bar{x}(\nu) \geq 1 / 2\)
\(5 \quad C=C \cup\{v\}\)
return \(C\)
```


The Algorithm

```
Approx-Min-WEIGHT-VC( \(G, w)\)
\(C=\emptyset\)
compute \(\bar{x}\), an optimal solution to the linear program
for each \(v \in V\)
    if \(\bar{x}(\nu) \geq 1 / 2\)
    \(C=C \cup\{\nu\}\)
    return \(C\)
```

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

```
APPROX-MIN-WEIGHT-VC(G,w)
C=\emptyset
compute }\overline{x}\mathrm{ , an optimal solution to the linear program
for each v}\in
    if \overline{x}(v)\geq1/2
    C=C\cup{v}
    return C
```

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.
is polynomial-time because we can solve the linear program in polynomial time

Example of Approx-Min-Weight-VC

fractional solution of LP with weight $=5.5$

Example of Approx-Min-Weight-VC

Example of Approx-Min-Weight-VC

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
z^{*}
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
w\left(C^{*}\right) \geq z^{*}
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
w\left(C^{*}\right) \geq z^{*}=\sum_{v \in V} w(v) \bar{x}(v)
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge (u, v) $\in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion

The Weighted Set-Covering Problem

Set Cover Problem

- Given: set X and a family of subsets \mathcal{F}, and a cost function $c: \mathcal{F} \rightarrow \mathbb{R}^{+}$
- Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$

$$
\text { s.t. } \quad X=\bigcup_{S \in \mathcal{C}} S
$$

The Weighted Set-Covering Problem

$$
\begin{array}{cccccc}
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} \\
c: & 2 & 3 & 3 & 5 & 1
\end{array}
$$

Remarks:

- generalisation of the weighted vertex-cover problem
- models resource allocation problems

Setting up an Integer Program

Exercise: Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)

Setting up an Integer Program

0-1 Integer Program			
minimize	$\sum_{S \in \mathcal{F}} c(S) y(S)$		
subject to	$\sum_{S \in \mathcal{F}: x \in S} y(S) \geq 1$	for each $x \in X$	
$y(S)$	$\in\{0,1\}$	for each $S \in \mathcal{F}$	

Setting up an Integer Program

Linear Program
minimize
subject to

$$
\sum_{S \in \mathcal{F}} c(S) y(S)
$$

$$
\begin{aligned}
\sum_{S \in \mathcal{F}: x \in S} y(S) & \geq 1 & & \text { for each } x \in X \\
y(S) & \in[0,1] & & \text { for each } S \in \mathcal{F}
\end{aligned}
$$

Back to the Example

		S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
$c:$	2	3	3	5	1	2

Back to the Example

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$y():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Back to the Example

Back to the Example

The strategy employed for Vertex-Cover would take all 6 sets!

Back to the Example

The strategy employed for Vertex-Cover would take all 6 sets!
Even worse: If all y 's were below $1 / 2$, we would not even return a valid cover!

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$y():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$y():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding

$$
\begin{array}{ccccccc}
\hline & S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} \\
c: & 2 & 3 & 3 & 5 & 1 & 2 \\
y(.): & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 & 1 / 2
\end{array}
$$

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding

- Let $\mathcal{C} \subseteq \mathcal{F}$ be a random set with each set S being included independently with probability $y(S)$.
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution \bar{y} by:

$$
\bar{y}(S)=\left\{\begin{array}{ll}
1 & \text { with probability } y(S) \\
0 & \text { otherwise }
\end{array} \quad \text { for all } S \in \mathcal{F}\right.
$$

Randomised Rounding

$$
\begin{array}{ccccccc}
\hline & S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} \\
c: & 2 & 3 & 3 & 5 & 1 & 2 \\
y(.): & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 & 1 / 2
\end{array}
$$

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding

- Let $\mathcal{C} \subseteq \mathcal{F}$ be a random set with each set S being included independently with probability $y(S)$.
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution \bar{y} by:

$$
\bar{y}(S)=\left\{\begin{array}{ll}
1 & \text { with probability } y(S) \\
0 & \text { otherwise }
\end{array} \quad \text { for all } S \in \mathcal{F}\right.
$$

- Therefore, $\mathbf{E}[\bar{y}(S)]=y(S)$.

Randomised Rounding

$$
\begin{array}{ccccccc}
& S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} \\
c: & 2 & 3 & 3 & 5 & 1 & 2 \\
y(.): & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 & 1 / 2
\end{array}
$$

Idea: Interpret the y-values as probabilities for picking the respective set.
\square

Randomised Rounding

$$
\begin{array}{ccccccc}
& S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} \\
c: & 2 & 3 & 3 & 5 & 1 & 2 \\
y(.): & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 & 1 / 2
\end{array}
$$

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

- The expected cost satisfies

$$
\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)
$$

Randomised Rounding

$$
\begin{array}{ccccccc}
& S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} \\
c: & 2 & 3 & 3 & 5 & 1 & 2 \\
y(.): & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 & 1 / 2
\end{array}
$$

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

- The expected cost satisfies

$$
\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)
$$

- The probability that an element $x \in X$ is covered satisfies

$$
\operatorname{Pr}\left[x \in \bigcup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\mathbf{E}[c(\mathcal{C})]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right]=\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-y(S))
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-y(S))
$$

$$
1+x \leq e^{x} \text { for any } x \in \mathbb{R}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{gathered}
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-y(S)) \\
\\
\left(1+x \leq e^{x} \text { for any } x \in \mathbb{R} \leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)}\right.
\end{gathered}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{aligned}
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-y(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)} \\
& =e^{-\sum_{S \in \mathcal{F}: x \in S} y(S)}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{aligned}
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-y(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)} \\
& =e^{-\sum_{S \in \mathcal{F}: x \in S} y(S)}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{aligned}
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-y(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)} \\
& =e^{-\sum_{s \in \mathcal{F}: x \in S} y(S)} \leq e^{-1}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered \checkmark

$$
\begin{aligned}
& \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-y(S)) \\
& \begin{array}{l}
1+x \leq e^{x} \text { for any } x \in \mathbb{R} \leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)} \\
=e^{-\sum_{S \in \mathcal{F}: x \in S} y(S)} \leq e^{-1}
\end{array}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} y(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered \checkmark

$$
\begin{aligned}
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \operatorname{Pr}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-y(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)} \text { y solves the LP! } \\
& =e^{-\sum_{S \in \mathcal{F}: x \in S} y(S)} \leq e^{-1}
\end{aligned}
$$

The Final Step

Lemma
Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

The Final Step

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

The Final Step

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets \mathcal{C}.

The Final Step

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets \mathcal{C}.

Weighted Set Cover-LP (X, \mathcal{F}, c)

1: compute y, an optimal solution to the linear program
2: $\mathcal{C}=\emptyset$
3: repeat $2 \ln n$ times
4: \quad for each $S \in \mathcal{F}$
5: \quad let $\mathcal{C}=\mathcal{C} \cup\{S\}$ with probability $y(S)$
6: return \mathcal{C}

The Final Step

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\operatorname{Pr}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets \mathcal{C}.

Weighted Set Cover-LP (X, \mathcal{F}, c)
1: compute y, an optimal solution to the linear program
2: $\mathcal{C}=\emptyset$
3: repeat $2 \ln n$ times
4: \quad for each $S \in \mathcal{F}$
5: \quad let $\mathcal{C}=\mathcal{C} \cup\{S\}$ with probability $y(S)$
6: return \mathcal{C}

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right]
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n} .
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n} .
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n} .
$$

- Step 2: The expected approximation ratio

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n} .
$$

- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n} .
$$

- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio \checkmark
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

- This implies for the event that all elements are covered:

$$
\operatorname{Pr}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\operatorname{Pr}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]\} \geq 1-\sum_{x \in X} \operatorname{Pr}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio \checkmark
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

By Markov's inequality, $\operatorname{Pr}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

$$
\text { By Markov's inequality, } \operatorname{Pr}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
$$

Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, solution is within a factor of $4 \ln (n)$ of the optimum.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

$$
\text { By Markov's inequality, } \operatorname{Pr}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
$$

Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, probability could be further solution is within a factor of $4 \ln (n)$ of the optimum. increased by repeating

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

$$
\text { By Markov's inequality, } \operatorname{Pr}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
$$

Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, solution is within a factor of $4 \ln (n)$ of the optimum.
probability could be further increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

- First statement as in the proof of Theorem 35.6. For clause i not to be satisfied, all ℓ occurring variables must be set to a specific value.

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

- First statement as in the proof of Theorem 35.6. For clause i not to be satisfied, all ℓ occurring variables must be set to a specific value.
- As before, let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m} \frac{1}{2}=\frac{1}{2} \cdot m
$$

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i=1}^{m} z_{i} \\
\text { subject to } & \sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}\left(1-y_{j}\right) \\
z_{i} & \in z_{i} \quad \text { for each } i=1,2, \ldots, m \\
y_{j} & \in\{0,1\} \quad \text { for each } i=1,2, \ldots, m \\
& \text { for each } j=1,2, \ldots, n
\end{aligned}
$$

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program
maximize $\sum_{i=1}^{m} z_{i}$
subject to $\sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}\left(1-y_{j}\right) \geq z_{i} \quad$ for each $i=1,2, \ldots, m$
$z_{i} \in\{0,1\} \quad$ for each $i=1,2, \ldots, m$
C_{i}^{+}is the index set of the unnegated variables of clause i.
$y_{j} \in\{0,1\}$ for each $j=1,2, \ldots, n$

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program
C_{i}^{+}is the index set of the unnegated variables of clause i.

These auxiliary variables are used to reflect whether a clause is satisfied or not
subject to $\quad \sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}\left(1-y_{j}\right) \geq z_{i} \quad$ for each $i=1,2, \ldots, m$

$$
\begin{aligned}
& z_{i} \in\{0,1\} \text { for each } i=1,2, \ldots, m \\
& y_{j} \in\{0,1\} \text { for each } j=1,2, \ldots, n
\end{aligned}
$$

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program
maximize $\sum_{i=1}^{m} z_{i}$
These auxiliary variables are used to reflect whether a clause is satisfied or not
subject to $\sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}\left(1-y_{j}\right) \geq z_{i} \quad$ for each $i=1,2, \ldots, m$

$$
\begin{aligned}
& z_{i} \in\{0,1\} \text { for each } i=1,2, \ldots, m \\
& y_{j} \in\{0,1\} \text { for each } j=1,2, \ldots, n
\end{aligned}
$$

- In the corresponding LP each $\in\{0,1\}$ is replaced by $\in[0,1]$
- Let $\left(y^{*}, z^{*}\right)$ be the optimal solution of the LP
- Obtain an integer solution y through randomised rounding of y^{*}

Analysis of Randomised Rounding

Lemma
For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Analysis of Randomised Rounding

Lemma
For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \operatorname{Pr}[$ clause i is satisfied $]=$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \operatorname{Pr}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \operatorname{Pr}\left[y_{j}\right.$ is false]

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \operatorname{Pr}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \operatorname{Pr}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-y_{j}^{*}\right)$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \operatorname{Pr}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \operatorname{Pr}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-y_{j}^{*}\right)$

$$
\begin{aligned}
& \text { Arithmetic vs. geometric mean: } \\
& \frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}}
\end{aligned}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \operatorname{Pr}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \operatorname{Pr}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-y_{j}^{*}\right)$

$$
\left.\begin{array}{l}
\text { Arithmetic vs. geometric mean: } \\
\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k} .} .
\end{array}\right\} \geq 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-y_{j}^{*}\right)}{\ell}\right)^{\ell}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \operatorname{Pr}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \operatorname{Pr}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-y_{j}^{*}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\text { Arithmetic vs. geometric mean: } \\
\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}} \cdot\left\{\begin{array}{l}
\geq 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-y_{j}^{*}\right)}{\ell}\right)^{\ell} \\
=1-\left(1-\frac{\sum_{j=1}^{\ell} y_{j}^{*}}{\ell}\right)^{\ell}
\end{array}\right. \\
\begin{array}{ll}
\text { MAX-CNF }
\end{array}
\end{array} . \begin{array}{l}
\text { VI. Randomisation and Rounding }
\end{array}
\end{aligned}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \operatorname{Pr}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \operatorname{Pr}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-y_{j}^{*}\right)$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Arithmetic vs. geometric mean: } \\
\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}} .
\end{array}\right\} 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-y_{j}^{*}\right)}{\ell}\right)^{\ell} \\
& =1-\left(1-\frac{\sum_{j=1}^{\ell} y_{j}^{*}}{\ell}\right)^{\ell} \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell} .
\end{aligned}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

$$
\Rightarrow \quad g(z) \geq \beta_{\ell} \cdot z \quad \text { for any } z \in[0,1]
$$

- Therefore, $\operatorname{Pr}[$ clause i is satisfied $] \geq \beta_{\ell} \cdot z_{i}^{*}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{z_{i}^{*}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

$$
\Rightarrow \quad g(z) \geq \beta_{\ell} \cdot z \quad \text { for any } z \in[0,1]
$$

- Therefore, $\operatorname{Pr}[$ clause i is satisfied $] \geq \beta_{\ell} \cdot z_{i}^{*}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Theorem
Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*} .
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot z_{i}^{*}$
By Lemma

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:

$$
\begin{gathered}
\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot z_{i}^{*} \geq \sum_{i=1}^{m}\left(1-\frac{1}{e}\right) \cdot z_{i}^{*} \\
\text { By Lemma } \quad \text { Since }(1-1 / x)^{x} \leq 1 / e
\end{gathered}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\operatorname{Pr}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot z_{i}^{*}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot z_{i}^{*} \geq \sum_{i=1}^{m}\left(1-\frac{1}{e}\right) \cdot z_{i}^{*} \geq\left(1-\frac{1}{e}\right) \cdot$ OPT
By Lemma \quad Since $(1-1 / x)^{x} \leq 1 / e \quad \begin{gathered}\text { LP solution at least } \\ \text { as good as optimum }\end{gathered}$

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches
$\operatorname{Hybrid}-M A X-C N F(~ \varphi, n, m)$
1: Let $b \in\{0,1\}$ be the flip of a fair coin
2: If $b=0$ then perform random guessing
3: If $b=1$ then perform randomised rounding
4: return the computed solution

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches
$\operatorname{Hybrid}-\operatorname{MAX}-\operatorname{CNF}(\varphi, n, m)$
1: Let $b \in\{0,1\}$ be the flip of a fair coin
2: If $b=0$ then perform random guessing
3: If $b=1$ then perform randomised rounding
4: return the computed solution

Algorithm sets each variable x_{i} to TRUE with prob. $\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot y_{i}^{*}$. Note, however, that variables are not independently assigned!

Analysis of Hybrid Algorithm

Theorem
$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Analysis of Hybrid Algorithm

Theorem
$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

Analysis of Hybrid Algorithm

Theorem

Hybrid-MAX-CNF (φ, n, m) is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$

Analysis of Hybrid Algorithm

Theorem

Hybrid-MAX-CNF (φ, n, m) is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.

Analysis of Hybrid Algorithm

Theorem

Hybrid-MAX-CNF (φ, n, m) is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$,

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- Hybrid-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- Hybrid-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- Hybrid-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

Hybrid-MAX-CNF (φ, n, m) is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- Hybrid-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- Hybrid-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot z_{i}^{*}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot z_{i}^{*}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot z_{i}^{*}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot z_{i}^{*}+\frac{1}{2} \cdot \beta_{\ell} \cdot z_{i}^{*}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)
- $\Rightarrow \operatorname{HYBRID}-\operatorname{MAX}-\operatorname{CNF}(\varphi, n, m)$ satisfies it with prob. at least $3 / 4 \cdot z_{i}^{*}$

MAX-CNF Conclusion

Summary

- Since $\alpha_{2}=\beta_{2}=3 / 4$, we cannot achieve a better approximation ratio than $4 / 3$ by combining Algorithm $1 \& 2$ in a different way
- The $4 / 3$-approximation algorithm can be easily derandomised
- Idea: use the conditional expectation trick for both Algorithm 1 \& 2 and output the better solution
- The 4/3-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!

Exercise (easy): Consider any minimsation problem, where x is the optimal cost of the LP relaxation, y is the optimal cost of the IP and z is the solution obtained by rounding up the LP solution. Which of the follwing statements are true?

1. $x \leq y \leq z$,
2. $y \leq x \leq z$,
3. $y \leq z \leq x$.

Exercise (trickier): Consider a version of the SET-COVER problem, where each element $x \in X$ has to be covered by at least two subsets. Design and analyse an efficient approximation algorithm. Hint: You may use the result that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent Bernoulli random variables with $X:=\sum_{i=1}^{n} X_{i}, \mathbf{E}[X] \geq 2$, then

$$
\operatorname{Pr}[X \geq 2] \geq 1 / 4 \cdot\left(1-e^{-1}\right)
$$

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion

Spectrum of Approximations

Topics Covered

I. Sorting and Counting Networks

- 0/1-Sorting Principle, Bitonic Sorting, Batcher's Sorting Network

Bonus Material: A Glimpse at the AKS network

- Balancing Networks, Counting Network Construction, Counting vs. Sorting
II. Linear Programming
- Geometry of Linear Programs, Applications of Linear Programming
- Simplex Algorithm, Finding a Feasible Initial Solution
- Fundamental Theorem of Linear Programming
III. Approximation Algorithms: Covering Problems
- Intro to Approximation Algorithms, Definition of PTAS and FPTAS
- (Unweighted) Vertex-Cover: 2-approx. based on Greedy
- (Unweighted) Set-Cover: $O(\log n)$-approx. based on Greedy
IV. Approximation Algorithms via Exact Algorithms
- Subset-Sum: FPTAS based on Trimming and Dynamic Programming
- Scheduling: 2-approx. based on Simple Greedy, 4/3-approx. using LPT Bonus Material: A PTAS for Machine Scheduling based on Rounding and Dynamic Programming
V. The Travelling Salesman Problem
- Inapproximability of the General TSP problem
- Metric TSP: 2-approx. based on MST, 3/2-approx. based on MST + matching
VI. Approximation Algorithms: Rounding and Randomisation
- MAX3-CNF: 8/7-approx. based on Guessing, Derandomisation with Greedy
" (Weighted) Vertex-Cover: 2-approx. based on Deterministic Rounding
- (Weighted) Set-Cover: $O(\log n)$-approx. based on Randomised Rounding
- MAX-CNF: 4/3-approx. based on Guessing + Randomised Rounding

Thank you and Best Wishes for the Exam!

