II. Linear Programming

Thomas Sauerwald

Easter 2020

Introduction

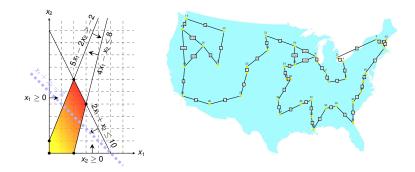
Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Introduction



- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

What are Linear Programs?

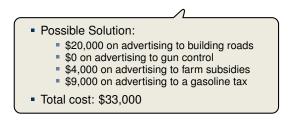
Linear Programming (informal definition) -----

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities
 - Example: Political Advertising (from CLRS3) -
- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

Political Advertising Continued

policy	urban	suburban	rural	
build roads	-2	5	3	
gun control	8	2	-5	
farm subsidies	0	0	10	
gasoline tax	10	0	-2	

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.



What is the best possible strategy?

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

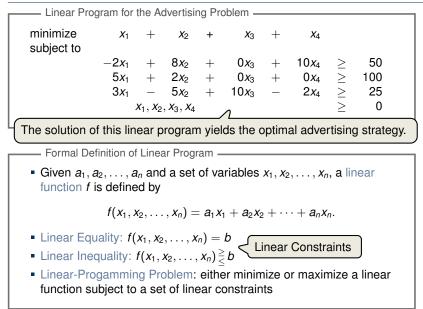
- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

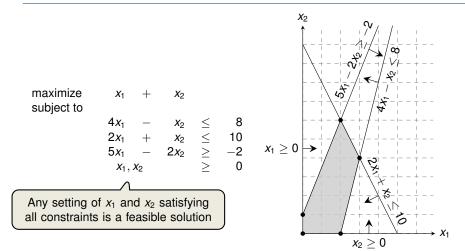
- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$
- $3x_1 5x_2 + 10x_3 2x_4 \ge 25$

Objective: Minimize $x_1 + x_2 + x_3 + x_4$

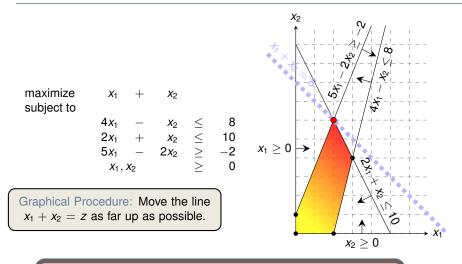
The Linear Program



A Small(er) Example



A Small(er) Example



While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Introduction

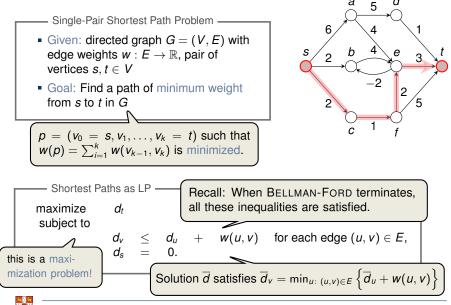
Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

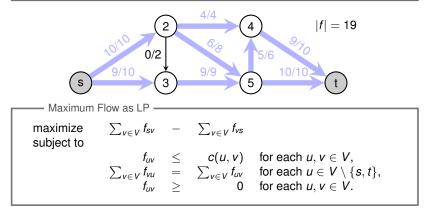
Shortest Paths



Maximum Flow

- Maximum Flow Problem -

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation



Minimum-Cost Flow

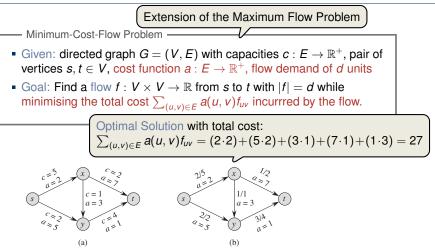


Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum Cost Flow as LPminimize $\sum_{(u,v)\in E} a(u,v)f_{uv}$ subject to $f_{uv} \leq c(u,v)$ for each $u, v \in V$, $\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0$ for each $u \in V \setminus \{s, t\}$, $\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d$, $f_{uv} \geq 0$ for each $u, v \in V$.

Real power of Linear Programming comes from the ability to solve **new problems**!

Introduction

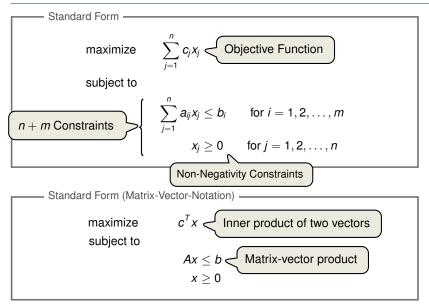
Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Standard and Slack Forms



Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

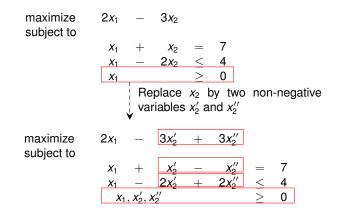
Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

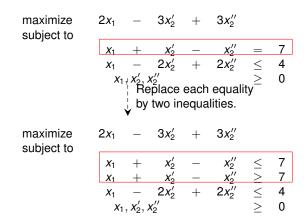
1. The objective might be a minimization rather than maximization.

minimize	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
-	<i>X</i> ₁	+	x ₂ 2x ₂	=	7
	<i>X</i> 1	_	$2x_{2}$	<	4
	X_1		-12		0
	~1	1		_	0
		Ne	nate ol	hiect	ive function
			guio oi	ojool	
	``	V			
maximize	2 <i>x</i> ₁	_	3 <i>x</i> ₂		
subject to					
	<i>x</i> ₁	+	<i>x</i> ₂	=	7
	<i>X</i> 1	_	$2x_{2}^{-}$	\leq	4
	^]	_	<u>~</u> ,72	\geq	4

2. There might be variables without nonnegativity constraints.

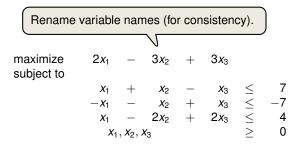


3. There might be equality constraints.



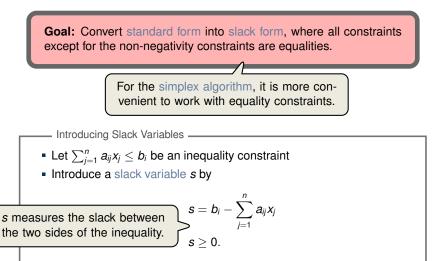
4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ ′	+	3 <i>x</i> ₂ ''		
-	<i>X</i> 1	+	X_2'	_	$X_{2}^{\prime \prime}$	<	7
	<i>X</i> 1	+	x_2'	_	x2''	2	7
	<i>X</i> ₁	-	$2x_{2}'$	+	$2x_{2}^{''}$	\leq	4
	<i>X</i> ₁	$, x_{2}', x_{2}'$	c_{2}''			\geq	0
		V V	egate	respe	ective in	nequa	alities.
maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ ′	+	3 <i>x</i> ₂ ''		
	<i>x</i> ₁	+	x_2'	_	x2"	\leq	7
	$-x_{1}$	_	<i>X</i> ₂ '	+	<i>x</i> ₂ ''	\leq	-7
	<i>X</i> ₁	_	2 <i>x</i> ₂ '	+	$2x_{2}^{\prime\prime}$	\leq	4
	<i>x</i> ₁	$, x_{2}', x_{2}'$	< <u>~</u>			\geq	0



It is always possible to convert a linear program into standard form.

Converting Standard Form into Slack Form (1/3)



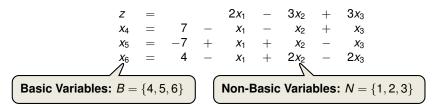
Denote slack variable of the *i*th inequality by x_{n+i}

Converting Standard Form into Slack Form (2/3)

maximize subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃				
	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7	7	
	$-x_{1}$	_	<i>X</i> ₂	+	<i>X</i> 3	\leq	-7	7	
	<i>X</i> ₁	_	$2x_2$	+	$2x_3$		4	ļ	
	X	$1, x_2, x_2$				\geq	C)	
				ntrod	uce sl	ack	variał	oles	
			↓ . ↓		000 0	aon	- ana	0.00	
maximize subject to			·	2	2 <i>x</i> ₁	_	3 <i>x</i> 2	+	3 <i>x</i> ₃
	<i>X</i> 4	=	7.	_	<i>X</i> ₁	_	X 2	+	<i>X</i> 3
	X 5	= -	-7 -	+	<i>X</i> ₁	+	<i>x</i> ₂	_	<i>X</i> 3
	<i>x</i> ₆	=	4	_	<i>x</i> ₁	+	2 <i>x</i> ₂	_	$2x_3$
	<i>X</i> ₁	, <i>x</i> ₂ , <i>x</i>	$x_{3}, x_{4}, x_{4}, x_{4}$	x ₅ , x ₆		\geq	0		

maximize subject to					2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃	
	<i>X</i> 4	=	7	_	<i>X</i> 1	_	<i>X</i> ₂	+	<i>X</i> 3	
	X 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> ₂	_	<i>X</i> 3	
	<i>x</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_{2}$	_	$2x_{3}$	
		<i>x</i> ₁ , <i>x</i> ₂	, x ₃ , x ₄	4, X 5, .	<i>x</i> ₆	\geq	0			
										unction
			l) ai	nd on	nit the	nonn	egativ	ity co	onstrai	nts.
			V				-	-		1
	z	=	•		$2x_1$	_	3 <i>x</i> ₂	+	3 <i>x</i> 3]
	<i>Z</i> <i>X</i> 4	=	7	_		_		+++]
	Z X4 X5	=	7	_	2 <i>x</i> 1 <i>x</i> 1	_	3 <i>x</i> ₂	+++	3 <i>x</i> ₃ <i>x</i> ₃]
		=	7	_	2 <i>x</i> 1 <i>x</i> 1	_ _ +	3 <i>x</i> 2 <i>x</i> 2	+++	3 <i>x</i> ₃ <i>x</i> ₃]
	x 5	= = = _	7 -7	_	2x ₁ x ₁ x ₁	_ _ +	3x ₂ x ₂ x ₂	++	3 <i>x</i> 3 <i>x</i> 3 <i>x</i> 3]

Basic and Non-Basic Variables



Slack Form (Formal Definition) Slack form is given by a tuple (N, B, A, b, c, v) so that $z = v + \sum_{j \in N} c_j x_j$ $x_i = b_i - \sum_{j \in N} a_{ij} x_j$ for $i \in B$, and all variables are non-negative. Variables/Coefficients on the right hand side are indexed by *B* and *N*.

Slack Form (Example)

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

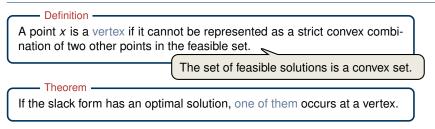
$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

$$v = 28$$

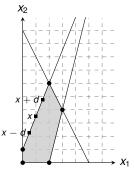
The Structure of Optimal Solutions



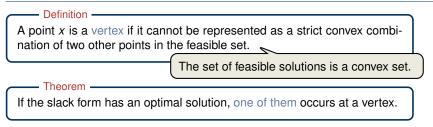
Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists *j* with $d_j < 0$
 - Increase λ from 0 to λ' until a new entry of x + λd becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d \ge 0$

$$c^{T}(x + \lambda^{T}d) = c^{T}x + c^{T}\lambda'd \geq c^{T}\lambda$$

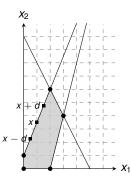


The Structure of Optimal Solutions



Proof Sketch (informal and non-examinable):

- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - \Rightarrow This contradicts the assumption that there exists an optimal solution.



Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm: Introduction

Simplex Algorithm -----

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

maximize subject to

$$3x_{1} + x_{2} + 2x_{3}$$

$$x_{1} + x_{2} + 3x_{3} \leq 30$$

$$2x_{1} + 2x_{2} + 5x_{3} \leq 24$$

$$4x_{1} + x_{2} + 2x_{3} \leq 36$$

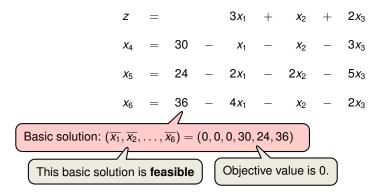
$$x_{1}, x_{2}, x_{3} \geq 0$$

$$\downarrow$$
Conversion into slack form
$$\downarrow$$

$$z = 30 - x_{1} - x_{2} - 3x_{3}$$

$$x_{5} = 24 - 2x_{1} - 2x_{2} - 5x_{3}$$

$$x_{6} = 36 - 4x_{1} - x_{2} - 2x_{3}$$



Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
The third constraint is the tightest and limits how much we can increase x_1 .

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$
$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$
$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{5x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$
The third constraint is the tightest and limits how much we can increase x_3 .

Extended Example: Iteration 3

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

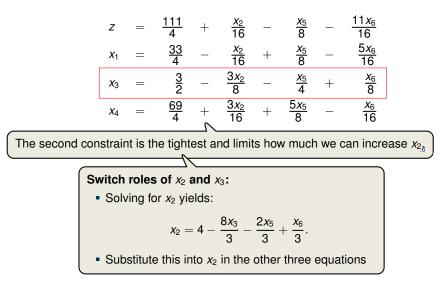
$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$
asic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

В

.5

Extended Example: Iteration 3



Extended Example: Iteration 4

All coefficients are negative, and hence this basic solution is optimal!

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

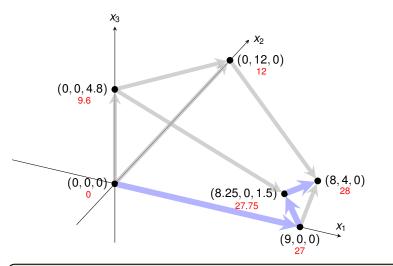
$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

E

.7

Extended Example: Visualization of SIMPLEX



Exercise: How many basic solutions (including non-feasible ones) are there?

Extended Example: Alternative Runs (1/2)

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃
<i>x</i> ₄	=	30	_	<i>x</i> ₁	-	<i>x</i> ₂	—	3 <i>x</i> ₃
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	-	2 <i>x</i> ₂	—	5 <i>x</i> ₃
<i>x</i> ₆	=	36	-	$4x_{1}$	-	<i>x</i> ₂	_	2 <i>x</i> ₃
				Sw	itch ro	les of x2	and	X 5
Z	=	12	+	♥ 2 <i>x</i> 1	_	$\frac{x_3}{2}$	_	$\frac{x_5}{2}$
<i>x</i> ₂	=	12	-	<i>x</i> ₁	_	$\frac{5x_{3}}{2}$	_	$\frac{x_5}{2}$
<i>x</i> ₄	=	18	-	<i>x</i> ₂	-	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$
<i>x</i> ₆	=	24	-	3 <i>x</i> 1	+	$\frac{x_3}{2}$	+	$\frac{x_{5}}{2}$
				Sw	itch ro	les of x	and	<i>x</i> ₆
z	=	28	_	$\frac{x_3}{6}$	-	$\frac{x_{5}}{6}$	_	$\frac{2x_{6}}{3}$
<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	$\frac{x_5}{6}$	_	$\frac{x_{6}}{3}$
<i>x</i> ₂	=	4	-	$\frac{8x_3}{3}$	_	$\frac{2x_5}{3}$	+	$\frac{x_6}{3}$
<i>x</i> ₄	=	18	-	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$		

Extended Example: Alternative Runs (2/2)

				Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	2 -	F	2 <i>x</i> ₃				
				<i>x</i> ₄	=	30	_	<i>x</i> ₁	_	<i>x</i> ₂	2 -	-	3 <i>x</i> 3				
				<i>x</i> 5	=	24	_	2 <i>x</i> ₁	_	$2x_{2}$	2 -	-	5 <i>x</i> 3				
				<i>x</i> ₆	=	36	_	4 <i>x</i> ₁	_	<i>x</i> ₂	2 -	-	2 <i>x</i> ₃				
								↓ Sw	itch ro	oles o	f <i>x</i> ₃ a	nd xe	5				
				Ζ	=	<u>48</u> 5	+	112 5	x ₁	+	$\frac{x_2}{5}$	-	2	2 <i>x</i> 5 5			
				<i>x</i> ₄	=	<u>78</u> 5	+	-	x ₁ 5	+	$\frac{x_2}{5}$	4	- 3	5 5			
				<i>x</i> ₃	=	<u>24</u> 5	_	22	x ₁	_	$\frac{2x_2}{5}$	-	-	$\frac{x_5}{5}$			
				x ₆	=	<u>132</u> 5	_	<u>16</u> 5		_	$\frac{x_2}{5}$	4	- 2	$\frac{2x_3}{5}$			
	S	witch	roles	of x_1 a	and x_{6}						Swi	tch ro	oles of	x ₂ an	d <i>x</i> 3		
=	<u>111</u> 4	+	<u>x₂</u> 16	_	$\frac{x_5}{8}$	-	$\frac{11x_{6}}{16}$		z	=	28	-	$\frac{x_3}{6}$	_	$\frac{x_5}{6}$	_	$\frac{2x_{6}}{3}$
=	<u>33</u> 4	-	$\frac{x_2}{16}$	+	$\frac{x_5}{8}$	-	$\frac{5x_{6}}{16}$		<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	$\frac{x_5}{6}$	-	$\frac{x_6}{3}$
=	<u>3</u> 2	-	$\frac{3x_2}{8}$	-	$\frac{x_5}{4}$	+	$\frac{x_6}{8}$		<i>x</i> ₂	=	4	_	$\frac{8x_3}{3}$	-	$\frac{2x_{5}}{3}$	+	$\frac{x_6}{3}$
=	<u>69</u> 4	+	$\frac{3x_2}{16}$	+	$\frac{5x_{5}}{8}$	-	$\frac{x_{6}}{16}$		<i>x</i> ₄	=	18	-	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$		

z x₁ x₃ x₄

The Pivot Step Formally

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation for each $j \in N - \{e\}$ [Need that $a_{le} \neq 0$] 4 5 $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 Substituting x_e into for each $j \in N - \{e\}$ 10 other equations. $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 11 12 $\hat{a}_{il} = -a_{ia}\hat{a}_{al}$ 13 // Compute the objective function. $\hat{v} = v + c_a \hat{h}_a$ 14 Substituting xe into 15 for each $i \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ objective function. 17 $\hat{c}_{l} = -c_{e}\hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ Update non-basic 20 $\hat{B} = B - \{l\} \cup \{e\}$ and basic variables 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Effect of the Pivot Step (extra material, non-examinable)

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

1.
$$\overline{x}_i = 0$$
 for each $j \in \widehat{N}$.

2.
$$\overline{x}_e = b_l/a_{le}$$
.

3. $\overline{x}_i = b_i - a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \widehat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \widehat{b}_e = b_l / a_{le}$.

3. After substituting into the other constraints, we have

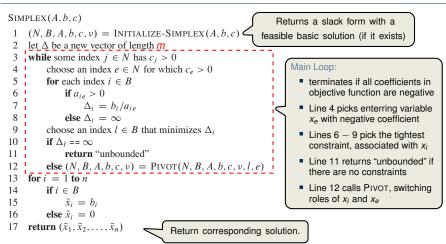
$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

The formal procedure SIMPLEX



The formal procedure SIMPLEX

```
SIMPLEX(A, b, c)
     (N, B, A, b, c, v) = INITIALIZE-SIMPLEX(A, b, c)
 2
     let \Delta be a new vector of length m
 3
     while some index j \in N has c_i > 0
          choose an index e \in N for which c_e > 0
 4
 5
          for each index i \in B
               if a_{ie} > 0
 6
 7
                    \Delta_i = b_i / a_{ie}
 8
               else \Delta_i = \infty
 9
          choose an index l \in B that minimizes \Delta_i
          if \Delta_l == \infty
10
               return "unbounded"
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,

Lemma 29.2 -----

3. the basic solution associated with the (current) slack form is feasible.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$
Pivot with x_1 entering and x_4 leaving
$$y$$

$$z = 8 + x_3 - x_4$$

$$x_1 = 8 - x_2 - x_3$$
Pivot with x_3 entering and x_5 leaving
$$y$$

$$z = 8 + x_2 - x_3$$
Pivot with x_3 entering and x_5 leaving
$$z = 8 + x_2 - x_4$$

$$x_5 = x_2 - x_3$$
Pivot with x_3 entering and x_5 leaving
$$z = 8 + x_2 - x_4 - x_5$$

$$x_1 = 8 - x_2 - x_4$$

$$x_3 = x_2 - x_4$$

ite

Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

Termination and Running Time

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7 ·

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

Introduction

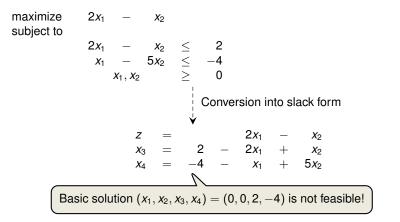
Formulating Problems as Linear Programs

Standard and Slack Forms

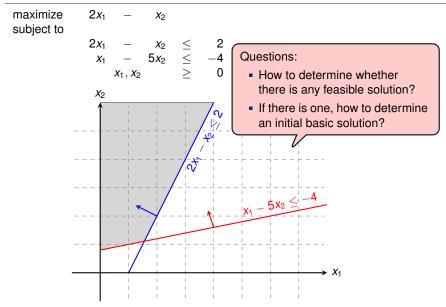
Simplex Algorithm

Finding an Initial Solution

Finding an Initial Solution



Geometric Illustration



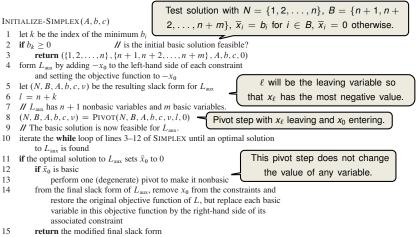
Formulating an Auxiliary Linear Program

maximize subject to	$\sum_{j=1}^{n}$	$C_j X_j$							
		$\sum_{j=1}^{n} a_{ij} x_j x_j$	≤ ≥	<i>b</i> i 0	for $i = 1, 2,, m$, for $j = 1, 2,, n$				
		· · · · · · · · · · · · · · · · · · ·	Formu	lating	g an Auxiliary Linear Program				
maximize subject to	- <i>X</i> ₀								
,		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	\leq	bi	for $i = 1, 2,, m$,				
		$\sum_{j=1}^{j=1}$ x_j	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$				
Lemma 29.11									
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.									

Proof.

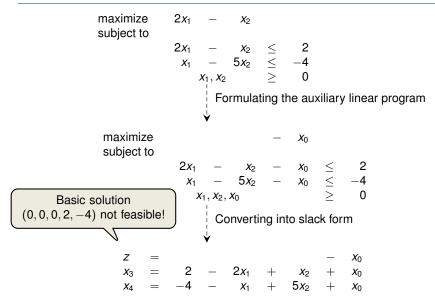
- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy *L*. \Box

INITIALIZE-SIMPLEX



16 else return "infeasible"

Example of INITIALIZE-SIMPLEX (1/3)



Example of INITIALIZE-SIMPLEX (2/3)

$$z = -4 - x_{1} + x_{2} + x_{0}$$

$$x_{4} = -4 - x_{1} + 5x_{2} + x_{0}$$
Pivot with x_{0} entering and x_{4} leaving
$$x_{1} = -4 - x_{1} + 5x_{2} - x_{4}$$
Pivot with x_{0} entering and x_{4} leaving
$$x_{0} = 4 + x_{1} - 5x_{2} + x_{4}$$

$$x_{3} = 6 - x_{1} - 4x_{2} + x_{4}$$
Basic solution (4, 0, 0, 6, 0) is feasible!
Pivot with x_{2} entering and x_{0} leaving
$$x_{2} = 45 - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$
Optimal solution has $x_{0} = 0$, hence the initial problem was feasible!

Example of INITIALIZE-SIMPLEX (3/3)

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$z_{1} - x_{2} = 2x_{1} - (\frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5})$$

$$y = 0 \text{ and express objective function}$$
by non-basic variables
$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{4}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$
Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12

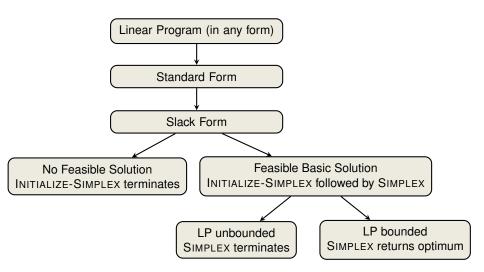
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

Theorem 29.13 (Fundamental Theorem of Linear Programming) Any linear program *L*, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

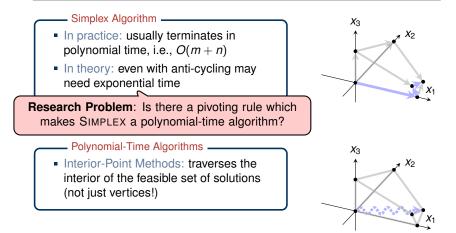
If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)



Linear Programming and Simplex: Summary and Outlook

- Linear Programming _____
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures



Which of the following statements are true?

- 1. In each iteration of the Simplex algorithm, the objective function increases.
- 2. There exist linear programs that have exactly two optimal solutions.
- 3. There exist linear programs that have infinitely many optimal solutions.
- 4. The Simplex algorithm always runs in worst-case polynomial time.

