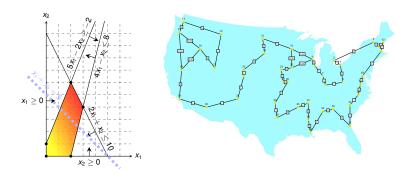
II. Linear Programming

Thomas Sauerwald

Easter 2020

Outline

Introduction


Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Introduction

- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

Linear Programming (informal definition) ———

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Linear Programming (informal definition) ————

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising (from CLRS3)

Imagine you are a politician trying to win an election

Linear Programming (informal definition) ——

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters

Linear Programming (informal definition) ——

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you

Linear Programming (informal definition) —

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- Possible Solution:
 - \$20,000 on advertising to building roads
 - \$0 on advertising to gun control
 - \$4,000 on advertising to farm subsidies
 - \$9,000 on advertising to a gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- Possible Solution:
 - \$20,000 on advertising to building roads
 - \$0 on advertising to gun control
 - \$4,000 on advertising to farm subsidies
 - \$9,000 on advertising to a gasoline tax
- Total cost: \$33,000

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- Possible Solution:
 - \$20,000 on advertising to building roads
 - \$0 on advertising to gun control
 - \$4,000 on advertising to farm subsidies
 - \$9,000 on advertising to a gasoline tax
- Total cost: \$33,000

What is the best possible strategy?

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$$

$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 > 50$$

•
$$5x_1 + 2x_2 + 0x_3 + 0x_4 > 100$$

$$3x_1 - 5x_2 + 10x_3 - 2x_4 > 25$$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$$

$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$$

$$3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25$$

Objective: Minimize
$$x_1 + x_2 + x_3 + x_4$$

Linear Program for the Advertising Problem —

Linear Program for the Advertising Problem -

The solution of this linear program yields the optimal advertising strategy.

Linear Program for the Advertising Problem -

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program ————

Linear Program for the Advertising Problem —

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

Given a₁, a₂,..., a_n and a set of variables x₁, x₂,..., x_n, a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

Linear Program for the Advertising Problem —

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

Given a₁, a₂,..., a_n and a set of variables x₁, x₂,..., x_n, a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

- Linear Equality: $f(x_1, x_2, ..., x_n) = b$
- Linear Inequality: $f(x_1, x_2, ..., x_n) \leq b$

Linear Program for the Advertising Problem -

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

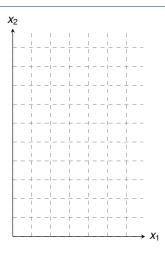
$$f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n.$$

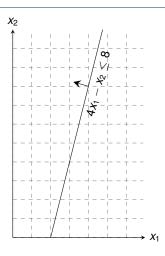
- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$

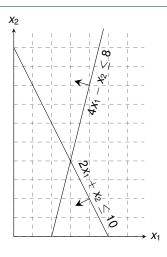
Linear Program for the Advertising Problem —

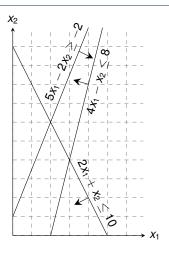
The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

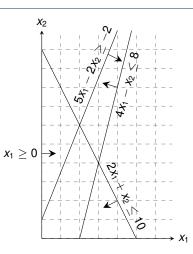

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

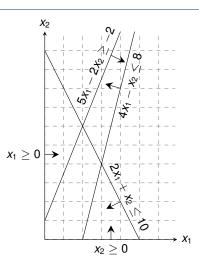

$$f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n.$$


- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$ Linear Constraints
- Linear-Progamming Problem: either minimize or maximize a linear function subject to a set of linear constraints

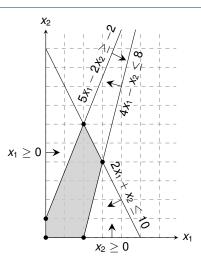

*X*₁

 X_2



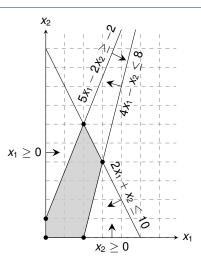

maximize subject to

$$x_1 + x_2$$


maximize subject to

$$x_1 + x_2$$

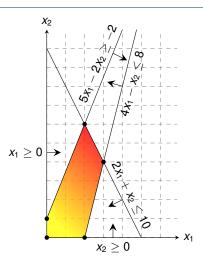
maximize subject to


$$x_1 + x_2$$

maximize subject to

$$x_1 + x_2$$

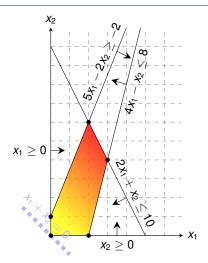
 $4x_1 - x_2 \le 8$
 $2x_1 + x_2 < 10$


Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

maximize subject to

$$x_1 + x_2$$
 $4x_1 - x_2 \le 8$
 $2x_1 + x_2 < 10$

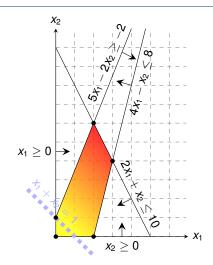
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



maximize subject to

*X*₂

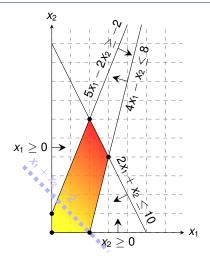
$$5x_1 - 2x_2 \ge -x_1, x_2 \ge -x_1$$


Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

maximize subject to

*X*₂

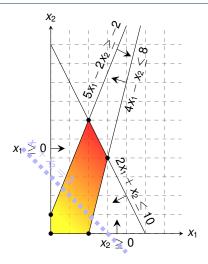
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.


maximize subject to

*X*₂

$$5x_1 - 2x_2 \ge -$$

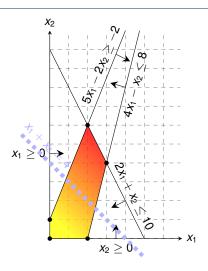
$$x_1, x_2 \ge$$


Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

maximize subject to

*X*₂

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

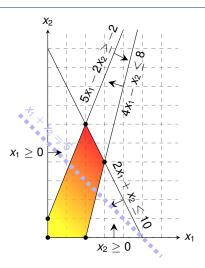


maximize subject to

$$4x_1 - x_2 \le 8$$

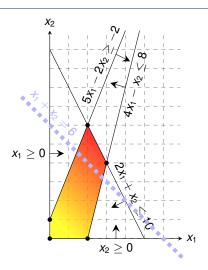
 $2x_1 + x_2 < 10$

*X*₂


Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

maximize subject to

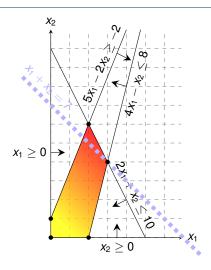
 $5x_1$ X_1, X_2


Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

maximize subject to

*X*₂

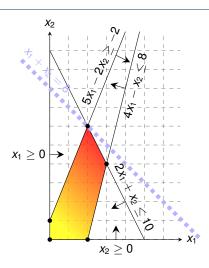
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



maximize subject to

*X*₂

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

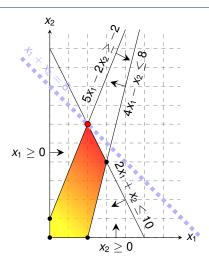

 X_1, X_2

maximize subject to

$$x_1 + x_2$$

 $4x_1 - x_2 \le 8$
 $2x_1 + x_2 < 10$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

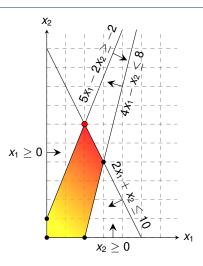


maximize subject to

*X*₂

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

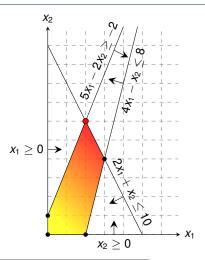
 X_1, X_2



maximize subject to

$$x_1 + x_2$$

$$4x_1 - x_2 \leq 8$$


Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

$$x_1 + x_2$$

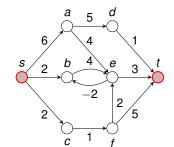
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Outline

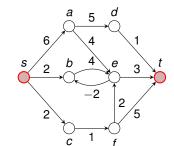
Introduction

Formulating Problems as Linear Programs


Standard and Slack Forms

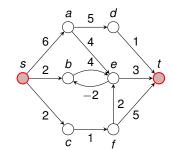
Simplex Algorithm

Finding an Initial Solution


Single-Pair Shortest Path Problem

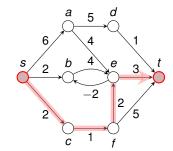
■ Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$

Single-Pair Shortest Path Problem


- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

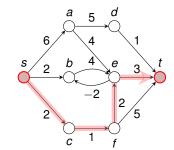
Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G


$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

- Single-Pair Shortest Path Problem

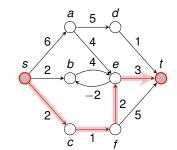
- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G


$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

- Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.


- Shortest Paths as LP -

subject to

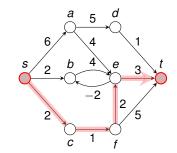
Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

Shortest Paths as LP -

subject to


$$d_v \le d_u + w(u,v)$$
 for each edge $(u,v) \in E$, $d_s = 0$.

Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

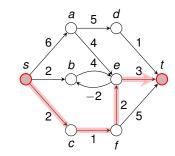
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

Shortest Paths as I P =

maximize subject to

$$d_t$$

$$egin{array}{lcl} d_v & \leq & d_u & + & w(u,v) & ext{for each edge } (u,v) \in E, \ d_s & = & 0. \end{array}$$


for each edge
$$(u, v) \in E$$
,

$$d_s = 0$$

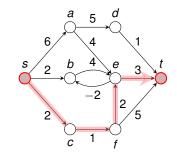
Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

Shortest Paths as I P =

maximize subject to dŧ


 $\leq d_u + w(u,v)$ for each edge $(u,v) \in E$, = 0.

this is a maximization problem!

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

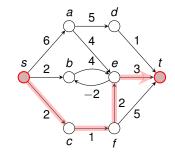
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

Shortest Paths as I P -

 d_t

maximize subject to

Recall: When Bellman-Ford terminates. all these inequalities are satisfied.

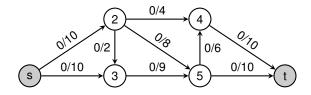

 $\leq d_u + w(u,v)$ for each edge $(u,v) \in E$,

this is a maximization problem!

Single-Pair Shortest Path Problem

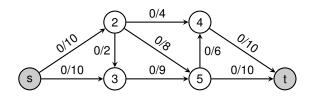
- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.


Shortest Paths as LP Recall: When Bellman-Ford terminates, all these inequalities are satisfied. Solution \overline{d} satisfies $\overline{d}_v = \min_{u : (u,v) \in E} \left\{ \overline{d}_u + w(u,v) \right\}$

- Maximum Flow Problem -

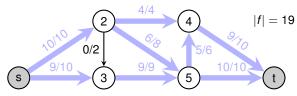
• Given: directed graph G=(V,E) with edge capacities $c:E\to\mathbb{R}^+$ (recall c(u,v)=0 if $(u,v)\not\in E$), pair of vertices $s,t\in V$


Maximum Flow Problem

• Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$


Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation


- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow Problem -

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow as LP

$$\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs}$$

$$\begin{array}{cccc} f_{uv} & \leq & c(u,v) & \text{ for each } u,v \in V, \\ \sum_{v \in V} f_{vu} & = & \sum_{v \in V} f_{uv} & \text{ for each } u \in V \setminus \{s,t\}, \\ f_{uv} & \geq & 0 & \text{ for each } u,v \in V. \end{array}$$

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

Minimum-Cost Flow

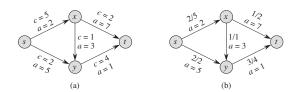
Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem -

• Given: directed graph G=(V,E) with capacities $c:E\to\mathbb{R}^+$, pair of vertices $s,t\in V$, cost function $a:E\to\mathbb{R}^+$, flow demand of d units

Minimum-Cost Flow

Extension of the Maximum Flow Problem


Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities c : E → R⁺, pair of vertices s, t ∈ V, cost function a : E → R⁺, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

Optimal Solution with total cost:
$$\sum_{(u,v)\in E} a(u,v)f_{uv} = (2\cdot2) + (5\cdot2) + (3\cdot1) + (7\cdot1) + (1\cdot3) = 27$$

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

(b)

(a)

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize
$$\sum_{(u,v)\in E} a(u,v)f_{uv}$$
 subject to
$$f_{uv} \leq c(u,v) \quad \text{for each } u,v\in V,$$

$$\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0 \quad \text{for each } u\in V\setminus \{s,t\},$$

$$\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d,$$

$$f_{uv} \geq 0 \quad \text{for each } u,v\in V.$$

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize
$$\sum_{(u,v)\in \mathcal{E}} a(u,v) f_{uv}$$
 subject to
$$f_{uv} \leq c(u,v) \quad \text{for each } u,v\in V,$$

$$\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0 \quad \text{for each } u\in V\setminus \{s,t\},$$

$$\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d,$$

$$f_{uv} \geq 0 \quad \text{for each } u,v\in V.$$

Real power of Linear Programming comes from the ability to solve **new problems**!

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

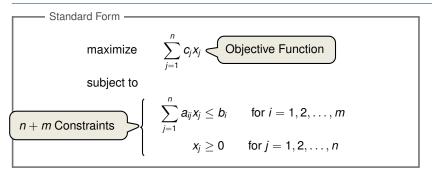
Finding an Initial Solution

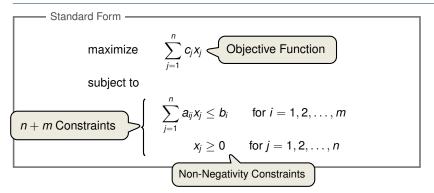
Standard Form -

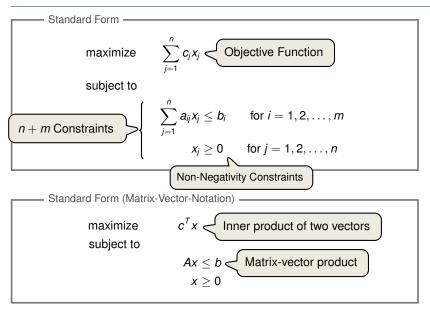
maximize
$$\sum_{j=1}^{n} c_{j} x_{j}$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m$$
$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$


$$x_j \ge 0$$
 for $j = 1, 2, \dots, r_j$


Standard Form -


maximize
$$\sum_{j=1}^{n} c_j x_j$$
 Objective Function

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m$$
$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

minimize	$-2x_{1}$	+	$3x_{2}$		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> ₁	_	$2x_2$	\leq	4
	<i>X</i> ₁			\geq	0

Reasons for a LP not being in standard form:

minimize
$$-2x_1 + 3x_2$$

subject to
$$\begin{array}{cccc}
x_1 + x_2 &= 7 \\
x_1 - 2x_2 &\leq 4 \\
x_1 &\geq 0
\end{array}$$
Negate objective function

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

maximize
$$2x_1 - 3x_2$$
 subject to
$$x_1 + x_2 = 7$$

$$x_1 - 2x_2 < 4$$

$$x_1 \qquad \geq 0$$

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize subject to

$$2x_{1} - 3x'_{2} + 3x''_{2}$$

$$x_{1} + x'_{2} - x''_{2} = 7$$

$$x_{1} - 2x'_{2} + 2x''_{2} \leq 4$$

$$x_{1}, x'_{2}, x''_{2} \geq 0$$

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize subject to

$$2x_1 - 3x_2' + 3x_2''$$
 $x_1 + x_2' - x_2'' = 7$
 $x_1 - 2x_2' + 2x_2'' \le 4$
 $x_1, x_2', x_2'' \ge 0$

Replace each equality

by two inequalities.

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

 $2x_1 -$

 $3x_{2}''$

 $3x_2'$

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to

Negate respective inequalities.

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Rename variable names (for consistency).

maximize subject to

It is always possible to convert a linear program into standard form.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

• Let $\sum_{i=1}^{n} a_{ij} x_j \leq b_i$ be an inequality constraint

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

$$s \ge 0$$
.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

s measures the slack between the two sides of the inequality.

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$s > 0.$$

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

s measures the slack between the two sides of the inequality.

$$\begin{array}{c}
s = b_i - \sum_{j=1}^n a_{ij} x_j \\
> s > 0.
\end{array}$$

• Denote slack variable of the *i*th inequality by x_{n+i}

Introduce slack variables

 $2x_1$

$$x_1 + x_2 - x_3 \le 7$$

 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$
Introduce slack variables

 $3x_3$

 $3x_2$

$$x_4 = 7 - x_1 - x_2 + x_3$$

 $2x_1 - 3x_2$

$$x_1 + x_2 - x_3 \le 7$$

 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$
Introduce slack variables

 $3x_{3}$

$$x_4 = 7 - x_1 - x_2 + x_3$$

 $x_5 = -7 + x_1 + x_2 - x_3$

 $2x_1 - 3x_2$

$$x_1 + x_2 - x_3 \le 7$$

 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$
Introduce slack variables

 $3x_3$

 $2x_1 - 3x_2 +$

$$x_1 + x_2 - x_3 \le 7$$

 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$
Introduce slack variables

 $3x_{3}$

 $2x_1$

 $-3x_{2}$

$$x_1 + x_2 - x_3 \leq 7$$

 $-x_1 - x_2 + x_3 \leq -7$
 $x_1 - 2x_2 + 2x_3 \leq 4$
 $x_1, x_2, x_3 \geq 0$
Introduce slack variables

 $3x_{3}$

maximize subject to

$$x_4 = 7 - x_1 - x_2 + x_3$$

 $x_5 = -7 + x_1 + x_2 - x_3$
 $x_6 = 4 - x_1 + 2x_2 - 2x_3$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

 $2x_1 - 3x_2 +$

 $3x_3$

 X_6

maximize subject to

$$2x_1 - 3x_2 + 3x_3$$

$$= 7 - x_1 - x_2 + x_3$$

$$= -7 + x_1 + x_2 - x_3$$

$$= 4 - x_1 + 2x_2 - 2x_3$$

 $X_1, X_2, X_3, X_4, X_5, X_6$ Use variable z to denote objective function and omit the nonnegativity constraints.

 $3x_3$

 $2x_1$

$$2x_1 - 3x_2 + 3x_3$$

Use variable z to denote objective function $\frac{1}{2}$ and omit the nonnegativity constraints.

This is called slack form.

Basic Variables: $B = \{4, 5, 6\}$

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Slack Form (Formal Definition) ——

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$z = v + \sum_{j \in N} c_j x_j$$

 $x_i = b_i - \sum_{i \in N} a_{ij} x_j$ for $i \in B$,

and all variables are non-negative.

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Slack Form (Formal Definition) —

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$z = v + \sum_{j \in N} c_j x_j$$
 $x_i = b_i - \sum_{i \in N} a_{ij} x_j$ for $i \in B$,

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by *B* and *N*.

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{3} + \frac{x_5}{3}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix},$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

v = 28

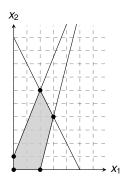
Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.


Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

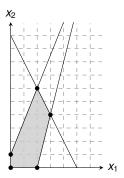
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.


The set of feasible solutions is a convex set.

Theorem

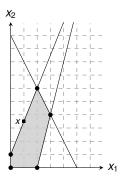
If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

• Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.


The set of feasible solutions is a convex set.

Theorem

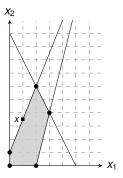
If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

• Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.


The set of feasible solutions is a convex set.

Theorem

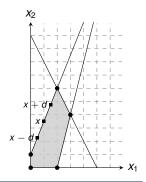
If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

■ Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x - d and x + d are feasible

Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.


The set of feasible solutions is a convex set.

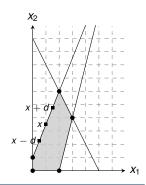
Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

■ Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x - d and x + d are feasible

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

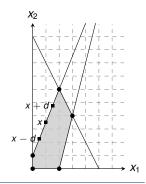
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

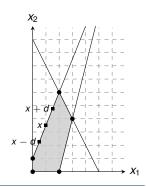
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

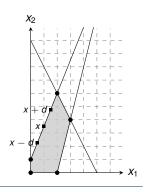
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

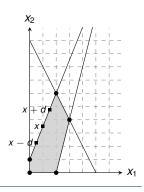
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with $d_j < 0$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

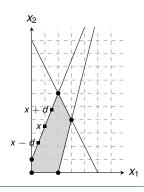
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with d_i < 0</p>
 - Increase λ from 0 to λ' until a new entry of $x + \lambda d$ becomes zero

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

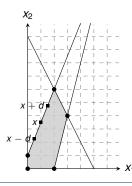
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with d_i < 0</p>
 - Increase λ from 0 to λ' until a new entry of $x + \lambda d$ becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d > 0$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

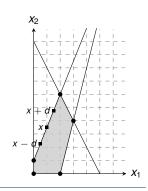
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with $d_j < 0$
 - Increase λ from 0 to λ' until a new entry of $x + \lambda d$ becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d \ge 0$
 - $c^T(x + \overline{\lambda'}d) = c^Tx + c^T\lambda'd \ge c^Tx$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

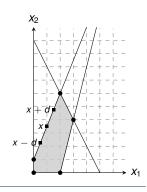
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all j, $d_j \ge 0$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

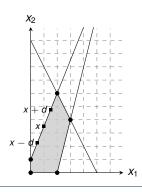
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all j, $d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d > x > 0$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

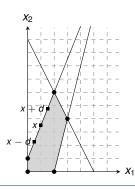
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all j, $d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$ _
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

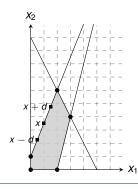
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all j, $d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - This contradicts the assumption that there exists an optimal solution.

Definition


A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all j, $d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - ⇒ This contradicts the assumption that there exists an optimal solution.

Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm: Introduction

Simplex Algorithm ———

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm: Introduction

- Simplex Algorithm ———
- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Simplex Algorithm: Introduction

- Simplex Algorithm —
- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Extended Example: Conversion into Slack Form

Extended Example: Conversion into Slack Form

Extended Example: Conversion into Slack Form

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

Basic solution: $(\overline{x_1},\overline{x_2},\ldots,\overline{x_6})=(0,0,0,30,24,36)$

This basic solution is feasible

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$
This basic solution is **feasible**
Objective value is 0.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

Basic solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

This basic solution is feasible

Objective value is 0.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Solving for x₁ yields:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Solving for x₁ yields:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
.

• Substitute this into x_1 in the other three equations

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Solving for x₃ yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}$$

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Solving for x₃ yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}.$$

• Substitute this into x_3 in the other three equations

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$
.

• Substitute this into x_2 in the other three equations

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

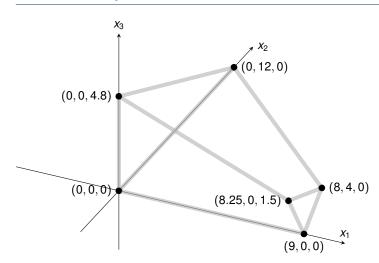
$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

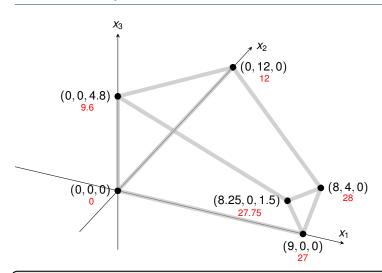
$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

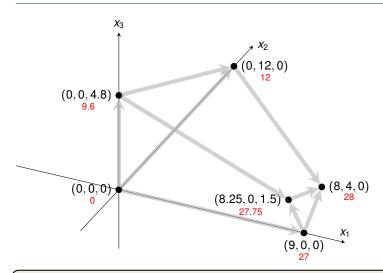
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

All coefficients are negative, and hence this basic solution is **optimal!**

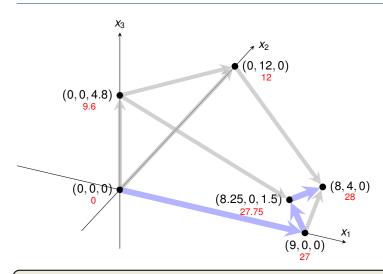

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$


$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$


$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28



Exercise: How many basic solutions (including non-feasible ones) are there?

Exercise: How many basic solutions (including non-feasible ones) are there?

Exercise: How many basic solutions (including non-feasible ones) are there?

$$z$$
 = $3x_1 + x_2 + 2x_3$
 x_4 = 30 - x_1 - x_2 - $3x_3$
 x_5 = 24 - $2x_1$ - $2x_2$ - $5x_3$
 x_6 = 36 - $4x_1$ - x_2 - $2x_3$

$$z$$
 = $3x_1 + x_2 + 2x_3$
 x_4 = 30 - x_1 - x_2 - $3x_3$
 x_5 = 24 - $2x_1$ - $2x_2$ - $5x_3$
 x_6 = 36 - $4x_1$ - x_2 - $2x_3$

Switch roles of x_1 and x_6 _____

Switch roles of x_1 and x_{6----}

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{8}$$

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Switch roles of x_3 and x_5

$$z = \frac{48}{5} + \frac{11x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} + \frac{3x_5}{5}$$

$$x_3 = \frac{24}{5} - \frac{2x_1}{5} - \frac{2x_2}{5} - \frac{x_5}{5}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_1 and x_6

$$x_6 = \frac{132}{5} - \frac{11x_6}{16}$$

$$x_6 = \frac{x_5}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_6 = \frac{x_5}{16} - \frac{x_5}{8} - \frac{x_5}{16}$$

$$x_6 = \frac{x_5}{16} - \frac{x_5}{8} - \frac{x_5}{16} - \frac{x_5}{16}$$

$$x_6 = \frac{x_5}{16} - \frac{x_5}{8} - \frac{x_5}{16} - \frac{$$

<u>69</u>

*X*₁

*X*₃

x₂

Switch roles of x_1 and x_6 _____

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Switch roles of
$$x_2$$
 and x_3

$$z = 28 - \frac{x_3}{6} - \frac{x_6}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_6}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

 X_4

18

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
 2 let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
 4 for each j \in N - \{e\}
      \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
 7 // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
     \hat{b}_i = b_i - a_{ie}\hat{b}_e
10 for each j \in N - \{e\}
                 \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
    \hat{a}_{il} = -a_{ie}\hat{a}_{el}
      // Compute the objective function.
14 \hat{v} = v + c_a \hat{b}_a
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
17 \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```



```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
 4 for each j \in N - \{e\}
       \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
     for each j \in N - \{e\}
                 \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
      // Compute the objective function.
14 \hat{\mathbf{v}} = \mathbf{v} + c_a \hat{\mathbf{h}}_a
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
17 \hat{c}_i = -c_a \hat{a}_{ai}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```


Rewrite "tight" equation

for enterring variable x_e .

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \hat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                                   Rewrite "tight" equation
 4 for each j \in N - \{e\}
      \hat{a}_{ei} = a_{li}/a_{le}
                                                                                  for enterring variable x_e.
 6 \hat{a}_{el} = 1/a_{le}
    // Compute the coefficients of the remaining constraints.
    for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
                                                                                   Substituting x_e into
     for each j \in N - \{e\}
                                                                                     other equations.
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
      // Compute the objective function.
14 \hat{\mathbf{v}} = \mathbf{v} + c_a \hat{\mathbf{h}}_a
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
17 \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

```
PIVOT(N, B, A, b, c, v, l, e)
     // Compute the coefficients of the equation for new basic variable x_e.
     let \hat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                                Rewrite "tight" equation
   for each j \in N - \{e\}
      \hat{a}_{ei} = a_{li}/a_{le}
                                                                               for enterring variable x_e.
 6 \hat{a}_{el} = 1/a_{le}
    // Compute the coefficients of the remaining constraints.
    for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
                                                                                Substituting x_e into
     for each j \in N - \{e\}
                                                                                 other equations.
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{\mathbf{v}} = \mathbf{v} + c_a \hat{\mathbf{h}}_a
                                                                                Substituting x<sub>e</sub> into
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
                                                                                objective function.
17 \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
```

21 **return** $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \hat{A} be a new $m \times n$ matrix $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation **for** each $j \in N - \{e\}$ $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ // Compute the coefficients of the remaining constraints. for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ Substituting x_e into **for** each $j \in N - \{e\}$ other equations. $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ $\hat{a}_{il} = -a_{ia}\hat{a}_{al}$ // Compute the objective function. $\hat{v} = v + c_a \hat{b}_a$ Substituting x_e into 15 **for** each $j \in N - \{e\}$ $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ objective function. 17 $\hat{c}_l = -c_e \hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ Update non-basic

21 **return** $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

20 $\hat{B} = B - \{l\} \cup \{e\}$

and basic variables

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                              Rewrite "tight" equation
    for each j \in N - \{e\} Need that a_{le} \neq 0!
          \hat{a}_{ei} = a_{li}/a_{le}
                                                                             for enterring variable x_e.
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
     for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
                                                                              Substituting x_e into
     for each j \in N - \{e\}
                                                                               other equations.
               \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
    \hat{v} = v + c_a \hat{b}_a
                                                                              Substituting xe into
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
                                                                              objective function.
17 \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
                                                                               Update non-basic
20 \hat{B} = B - \{l\} \cup \{e\}
                                                                             and basic variables
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_i = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie} \widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \hat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_i = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{X}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$
.

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

The formal procedure SIMPLEX

```
SIMPLEX(A, b, c)
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
     let \Delta be a new vector of length m
     while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
10
          if \Delta_I == \infty
11
                return "unbounded"
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

The formal procedure SIMPLEX

```
SIMPLEX(A, b, c)
                                                                            Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                        feasible basic solution (if it exists)
     let \Delta be a new vector of length m
     while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
                return "unbounded"
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in B
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                             Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                         feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
                return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                          Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                     feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
                                                                              Main Loop:
          choose an index e \in N for which c_e > 0
          for each index i \in B
               if a_{ie} > 0
                    \Delta_i = b_i/a_{ie}
               else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
               return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
```

return $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$

```
SIMPLEX(A, b, c)
                                                                             Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                         feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ia} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
                return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in R
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

Main Loop:

- terminates if all coefficients in objective function are negative
- Line 4 picks enterring variable x_e with negative coefficient
- Lines 6 9 pick the tightest constraint, associated with x1 Line 11 returns "unbounded" if
- there are no constraints Line 12 calls PIVOT, switching roles of x_i and x_e

```
SIMPLEX(A, b, c)
                                                                         Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                     feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
                                                                             Main Loop:
          choose an index e \in N for which c_e > 0
          for each index i \in B

    terminates if all coefficients in

                                                                                  objective function are negative
               if a_{ia} > 0
                    \Delta_i = b_i/a_{ie}
                                                                               Line 4 picks enterring variable
               else \Delta_i = \infty
                                                                                  x<sub>e</sub> with negative coefficient
          choose an index l \in B that minimizes \Delta_i
                                                                               ■ Lines 6 — 9 pick the tightest
          if \Delta_I == \infty
10
                                                                                  constraint, associated with x1
11
               return "unbounded"
                                                                               Line 11 returns "unbounded" if
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
                                                                                  there are no constraints
     for i = 1 to n

    Line 12 calls PIVOT, switching

14
          if i \in R
                                                                                  roles of x_i and x_e
15
               \bar{x}_i = b_i
          else \bar{x}_i = 0
16
```

return $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$

Return corresponding solution.

```
SIMPLEX(A, b, c)
                                                                           Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                       feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
          choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                    \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
        if \Delta_I == \infty
10
11
                return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in R
     \bar{x}_i = h_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

- Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.


```
SIMPLEX (A,b,c)

1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A,b,c)

2 \underline{\det \Delta} be a new vector of length \underline{m}

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 else \Delta_i = \infty

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l = \infty

11 return "unbounded"
```

Proof is based on the following three-part loop invariant:

Lemma 29 2 =

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

II. Linear Programming

```
SIMPLEX (A,b,c)

1 (N,B,A,b,c,\nu) = INITIALIZE-SIMPLEX (A,b,c)

2 \underbrace{\det\Delta}_i \underbrace{b \text{ a new vector of length } \underline{m}}_{}

3 \underbrace{\text{while some index } j \in N \text{ has } c_j > 0}_{}

4 \underbrace{\text{choose an index } e \in N \text{ for which } c_e > 0}_{}

5 \underbrace{\text{for each index } i \in B}_{}

6 \underbrace{\text{if } a_{ie} > 0}_{}

7 \underbrace{\Delta_i = b_i/a_{ie}}_{}

8 \underbrace{\text{else } \Delta_i = \infty}_{}

9 \underbrace{\text{choose an ininex } l \in B \text{ that minimizes } \Delta_i}_{}

10 \underbrace{\text{if } \Delta_l = \infty}_{}

11 \underbrace{\text{return "unbounded"}}_{}
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,
- 3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 -

Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if Simplex returns a solution, it is a feasible solution. If Simplex returns "unbounded", the linear program is unbounded.

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$X_5 = X_2 - X_3$$

$$z$$
 = x_1 + x_2 + x_3
 x_4 = 8 - x_1 - x_2
 x_5 = x_2 - x_3
Pivot with x_1 entering and x_4 leaving

$$z = x_1 + x_2 + x_3$$

 $x_4 = 8 - x_1 - x_2$
 $x_5 = x_2 - x_3$
 $x_4 = x_5 = x_5$
 $x_5 = x_5$
 $x_6 = x_6$
 $x_1 = x_2$
 $x_2 = x_3$
 $x_1 = x_2$
 $x_2 = x_3$
 $x_3 = x_4$
 $x_1 = x_2$
 $x_2 = x_3$
 $x_3 = x_4$
 $x_4 = x_4$
 $x_5 = x_2$
 $x_5 = x_5$
 $x_6 = x_5$
 $x_7 = x_8$

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$

$$Pivot with x_1 entering and x_4 leaving$$

$$z = 8 + x_3 - x_4$$

$$x_1 = 8 - x_2 - x_3$$

$$x_2 - x_3 - x_4$$

$$x_3 - x_4$$

$$x_4 - x_5 - x_4$$

$$x_5 = x_2 - x_3$$

$$Pivot with x_3 entering and x_5 leaving$$

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

 X_3

Cycling: If additionally slack form at two iterations are identical, SIMPLEX fails to terminate!

*X*5

Pivot with x_3 entering and x_5 leaving

$$z = 8 + x_2 - x_4 - x_5$$

 $x_1 = 8 - x_2 - x_4$
 $x_3 = x_2 - x_5$

 X_2

Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

Cycling: SIMPLEX may fail to terminate.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

— Anti-Cycling Strategies

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

1. Bland's rule: Choose entering variable with smallest index

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\widehat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

- Lemma 29.7 -

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming Initialize-Simplex returns a slack form for which the basic solution is feasible, Simplex either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

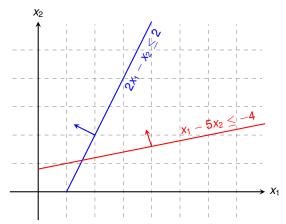
Outline

Introduction

Formulating Problems as Linear Programs

Standard and Slack Forms

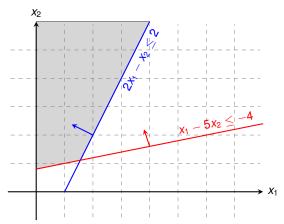
Simplex Algorithm


maximize
$$2x_1 - x_2$$
 subject to
$$2x_1 - x_2 \le 2 \\ x_1 - 5x_2 \le -4 \\ x_1, x_2 \ge 0$$

maximize
$$2x_1 - x_2$$
 subject to
$$2x_1 - x_2 \leq 2 \\ x_1 - 5x_2 \leq -4 \\ x_1, x_2 \geq 0$$
 Conversion into slack form

Geometric Illustration

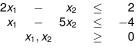
maximize subject to


$$2x_1 - x_2$$

Geometric Illustration

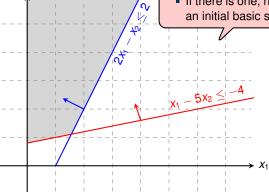
maximize subject to

$$2x_1 - x_2$$



Geometric Illustration

maximize subject to


$$2x_1 - x_2$$

 X_2

Questions:

- How to determine whether there is any feasible solution?
- If there is one, how to determine an initial basic solution?

$$\sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \text{for } i = 1, 2, \dots, m,$$

$$x_j \geq 0 \quad \text{for } j = 1, 2, \dots, n$$

$$\sum_{j=1}^{n} c_j x_j$$

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$
 Formulating an Auxiliary Linear Program maximize subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{i} \geq 0 \quad \text{for } j=0,1,\ldots,n$$

maximize subject to
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$
 Formulating an Auxiliary Linear Program maximize subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{i} > 0 \quad \text{for } j=0,1,\ldots,n$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

maximize subject to
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$
 Formulating an Auxiliary Linear Program maximize subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{i} > 0 \quad \text{for } j=0,1,\ldots,n$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof.

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

maximize $-x_0$ subject to

$$\sum_{j=1}^{n} a_{ij} x_j - x_0 \leq b_i \text{ for } i = 1, 2, ..., m, \\ x_i \geq 0 \text{ for } j = 0, 1, ..., n$$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof.

• " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$

maximize
$$\sum_{j=1}^{n}$$
 subject to

$$\sum_{j=1}^{n} c_j x_j$$

 $-x_0$

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$
 Formulating an Auxiliary Linear Program

maximize subject to

$$\sum_{j=1}^{n} a_{ij} x_j - x_0 \leq b_i \text{ for } i = 1, 2, ..., m, \\ x_i \geq 0 \text{ for } j = 0, 1, ..., n$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
- Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- "←": Suppose that the optimal objective value of Laux is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L.

$$\sum_{j=1}^{n} c_j x_j$$

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\sum_{j=1}^{n} a_{ij} x_j - x_0 \leq b_i \quad \text{for } i = 1, 2, \dots, m,$$

$$x_i \geq 0 \quad \text{for } j = 0, 1, \dots, n$$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- "←": Suppose that the optimal objective value of Laux is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L. \square


```
INITIALIZE-SIMPLEX (A, b, c)
     let k be the index of the minimum b_i
 2 if b_k > 0
                                  // is the initial basic solution feasible?
 3
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
 5 let (N, B, A, b, c, v) be the resulting slack form for L_{mv}
 6 l = n + k
    //L_{\text{any}} has n+1 nonbasic variables and m basic variables.
 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
    // The basic solution is now feasible for L_{aux}.
10 iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{\text{ann}} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
13
               perform one (degenerate) pivot to make it nonbasic
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
```


else return "infeasible"

```
Test solution with N = \{1, 2, \dots, n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                    \{2,\ldots,n+m\},\ \overline{x}_i=b_i\ \text{for}\ i\in B,\ \overline{x}_i=0\ \text{otherwise}.
     let k be the index of the minimum b_i
    if h_k > 0
                                   // is the initial basic solution feasible?
 3
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
    let (N, B, A, b, c, \nu) be the resulting slack form for L_{min}
    l = n + k
    //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
     // The basic solution is now feasible for L_{aux}.
    iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{\text{ann}} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
13
               perform one (degenerate) pivot to make it nonbasic
14
          from the final slack form of L_{\text{max}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
```

variable in this objective function by the right-hand side of its

** B ** *** * 8 *

15

else return "infeasible"

associated constraint

return the modified final slack form

INITIALIZE-SIMPLEX (A, b, c)

Test solution with $N = \{1, 2, ..., n\}$, $B = \{n + 1, n + 2, ..., n + m\}$, $\overline{x}_i = b_i$ for $i \in B$, $\overline{x}_i = 0$ otherwise.

 ℓ will be the leaving variable so

that x_{ℓ} has the most negative value.

- 1 let k be the index of the minimum b_i
 - if $b_k \ge 0$ // is the initial basic solution feasible?
- 3 **return** $\{1, 2, ..., n\}, \{n+1, n+2, ..., n+m\}, A, b, c, 0\}$
- 4 form L_{aux} by adding $-x_0$ to the left-hand side of each constraint and setting the objective function to $-x_0$
- 5 let (N, B, A, b, c, ν) be the resulting slack form for L_{aux}
- 6 l = n + k
 7 // L_{aux} has n + 1 nonbasic variables and m basic variables.
- 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
- 9 // The basic solution is now feasible for L_{aux} .
- 10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution to L_{mm} is found
- 11 **if** the optimal solution to L_{aux} sets \bar{x}_0 to 0
- 12 **if** \bar{x}_0 is basic

13

- perform one (degenerate) pivot to make it nonbasic
- from the final slack form of L_{aux}, remove x₀ from the constraints and restore the original objective function of L, but replace each basic
 - restore the original objective function of L, but replace each bas variable in this objective function by the right-hand side of its associated constraint
- 15 return the modified final slack form
- 16 else return "infeasible"

```
Test solution with N = \{1, 2, ..., n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                  2, \ldots, n+m, \overline{x}_i = b_i for i \in B, \overline{x}_i = 0 otherwise.
     let k be the index of the minimum b_i
    if h_k > 0
                                  // is the initial basic solution feasible?
 3
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
                                                                               \ell will be the leaving variable so
     let (N, B, A, b, c, v) be the resulting slack form for L_{min}
    l = n + k
                                                                           that x_{\ell} has the most negative value.
     //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
   (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
                                                                Pivot step with x_{\ell} leaving and x_0 entering.
     // The basic solution is now feasible for L_{aux}.
     iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{\text{ann}} is found
     if the optimal solution to L_{aux} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
13
               perform one (degenerate) pivot to make it nonbasic
14
          from the final slack form of L_{\text{max}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
     else return "infeasible"
```

```
Test solution with N = \{1, 2, \dots, n\}, B = \{n + 1, n + 1
INITIALIZE-SIMPLEX (A, b, c)
                                                                                                                        \{2,\ldots,n+m\}, \ \overline{x}_i=b_i \ \text{for} \ i\in B, \ \overline{x}_i=0 \ \text{otherwise}.
            let k be the index of the minimum b_i
          if h_k > 0
                                                                                 // is the initial basic solution feasible?
   3
                        return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
            form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
                        and setting the objective function to -x_0
                                                                                                                                                                                            \ell will be the leaving variable so
           let (N, B, A, b, c, v) be the resulting slack form for L_{min}
          l = n + k
                                                                                                                                                                                   that x_{\ell} has the most negative value.
            //L_{any} has n+1 nonbasic variables and m basic variables.
  8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
                                                                                                                                                          Pivot step with x_{\ell} leaving and x_0 entering.
            // The basic solution is now feasible for L_{aux}.
            iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
                        to L_{\text{ann}} is found
            if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
                                                                                                                                                                                      This pivot step does not change
12
                        if \bar{x}_0 is basic
                                                                                                                                                                                               the value of any variable.
13
                                   perform one (degenerate) pivot to make it nonbasic
14
                        from the final slack form of L_{\text{max}}, remove x_0 from the constraints and
                                    restore the original objective function of L, but replace each basic
                                    variable in this objective function by the right-hand side of its
                                    associated constraint
15
                        return the modified final slack form
            else return "infeasible"
```


$$2x_1 - x_2$$
 $2x_1 - x_2 \le 2$
 $x_1 - 5x_2 \le -4$
 $x_1, x_2 \ge 0$
Formulating the auxiliary linear program
 $-x_0$

maximize subject to

 X_4

 $2x_1$

 X_2

maximize subject to

 X_0

$$x_1, x_2, x_0$$

Converting into slack form

Basic solution (0,0,0,2,-4) not feasible!

$$z = x_3 = 2 - 2x_1 + x_2 + x_0$$

 $x_4 = -4 - x_1 + 5x_2 + x_0$

$$z = x_3 = 2 - 2x_1 + x_2 + x_0$$

 $x_4 = -4 - x_1 + 5x_2 + x_0$
Pivot with x_0 entering and x_4 leaving

Basic solution (4,0,0,6,0) is feasible!

Pivot with x_2 entering and x_0 leaving

$$z = -4 - x_1 + 5x_2 - x_1$$

 $x_0 = 4 + x_1 - 5x_2 + x_2$
 $x_3 = 6 - x_1 - 4x_2 + x_2$

Basic solution (4,0,0,6,0) is feasible!

Optimal solution has $x_0 = 0$, hence the initial problem was feasible!

$$\begin{array}{rclcrcr}
 z & = & - & x_0 \\
 x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_4}{5} \\
 x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_4}{5} \\
 \end{array}$$

$$z = -x_0$$

 $x_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$
 $x_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$
Set $x_0 = 0$ and express objective function by non-basic variables

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$Set x_{0} = 0 \text{ and express objective function}$$
by non-basic variables
$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{4}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$\Rightarrow Set x_{0} = 0 \text{ and express objective function}$$

$$\Rightarrow by \text{ non-basic variables}$$

$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{4}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$2x_{1} - x_{2} = 2x_{1} - (\frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5})$$

$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{4}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)

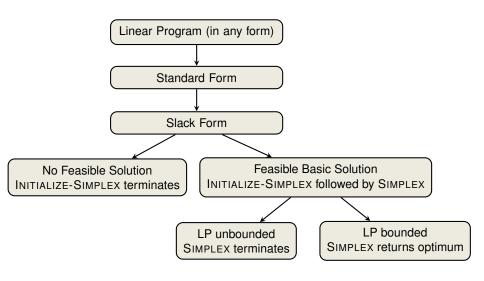
Any linear program L, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)


Any linear program L, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

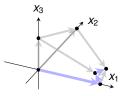
Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

Workflow for Solving Linear Programs

Linear Programming -			
Linoai i rogrammig			

extremely versatile tool for modelling problems of all kinds

Linear Programming

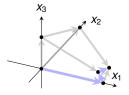

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm -

• In practice: usually terminates in polynomial time, i.e., O(m+n)

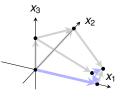


Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time


Linear Programming ——

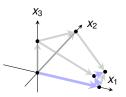
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

Linear Programming ————


- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

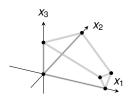
- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?


Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

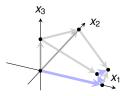
Simplex Algorithm


- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

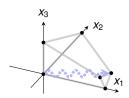
Polynomial-Time Algorithms —

 Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)


Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm


- In practice: usually terminates in polynomial time, i.e., O(m + n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms ____

 Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)

Test your Understanding

Which of the following statements are true?

- 1. In each iteration of the Simplex algorithm, the objective function increases.
- 2. There exist linear programs that have exactly two optimal solutions.
- 3. There exist linear programs that have infinitely many optimal solutions.
- 4. The Simplex algorithm always runs in worst-case polynomial time.