Solution Progress

Andrei Ivašković Petar Veličković Thomas Sauerwald

Iteration 1:

Objective value: $-641.000000,861$ variables, 945 constraints, 1809 iterations

Iteration 1: Eliminate Subtour 1, 2, 41, 42

Objective value: -641.000000 , 861 variables, 945 constraints, 1809 iterations

Iteration 1: Eliminate Subtour 1, 2, 41, 42
Objective value: $-641.000000,861$ variables, 945 constraints, 1809 iterations

Iteration 1: Eliminate Subtour 1, 2, 41, 42
Objective value: $-641.000000,861$ variables, 945 constraints, 1809 iterations

Iteration 2:

Objective value: $-676.000000,861$ variables, 946 constraints, 1802 iterations

Iteration 2: Eliminate Subtour 3 - 9

Objective value: $-676.000000,861$ variables, 946 constraints, 1802 iterations

Iteration 3:

Objective value: $-681.000000,861$ variables, 947 constraints, 1984 iterations

Iteration 3: Eliminate Subtour 24, 25, 26, 27
Objective value: $-681.000000,861$ variables, 947 constraints, 1984 iterations

Iteration 4:

Objective value: $-682.500000,861$ variables, 948 constraints, 1492 iterations

Iteration 4: Eliminate Cut 11 - 23

Objective value: -682.500000 , 861 variables, 948 constraints, 1492 iterations

Iteration 4: Eliminate Cut 11 - 23

Objective value: -682.500000 , 861 variables, 948 constraints, 1492 iterations

Iteration 5:

Objective value: $-686.000000,861$ variables, 949 constraints, 2446 iterations

Iteration 5: Eliminate Subtour 13 - 23

Objective value: -686.000000 , 861 variables, 949 constraints, 2446 iterations

Iteration 6:

Objective value: -694.500000 , 861 variables, 950 constraints, 1690 iterations

Iteration 6: Eliminate Cut 13-17
Objective value: $-694.500000,861$ variables, 950 constraints, 1690 iterations

Iteration 7:

Objective value: $-697.000000,861$ variables, 951 constraints, 2212 iterations

Iteration 7: Branch 1a $x_{18,15}=0$

Objective value: -697.000000 , 861 variables, 951 constraints, 2212 iterations

Iteration 8:

Objective value: $-698.000000,861$ variables, 952 constraints, 1878 iterations

Iteration 8: Branch 2a $x_{17,13}=0$
Objective value: $-698.000000,861$ variables, 952 constraints, 1878 iterations

Iteration 9:

Objective value: - $699.000000,861$ variables, 953 constraints, 2281 iterations

Iteration 9: Branch 2b $x_{17,13}=1$
Objective value: -699.000000 , 861 variables, 953 constraints, 2281 iterations

Iteration 10:

Objective value: -700.000000 , 861 variables, 954 constraints, 2398 iterations

Iteration 10:

Objective value: $-700.000000,861$ variables, 954 constraints, 2398 iterations

Iteration 10: Branch 1b $x_{18,15}=1$

Objective value: -700.000000 , 861 variables, 954 constraints, 2398 iterations

Iteration 11:

Objective value: $-701.000000,861$ variables, 953 constraints, 2506 iterations

Iteration 11: Branch \& Bound terminates

Objective value: $-701.000000,861$ variables, 953 constraints, 2506 iterations

Branch \& Bound Overview

1: LP solution 641

Branch \& Bound Overview

1: LP solution 641
Eliminate Subtour 1, 2, 41, 42

Branch \& Bound Overview

Iteration 8: Objective 697

Iteration 8: Objective 697

What about choosing a different branching variable?

Solving Progress (Alternative Branch 1)

Solving Progress (Alternative Branch 1)

Alternative Branch 1: $x_{18,15}$, Objective 697

Alternative Branch 1: $x_{18,15}$, Objective 697

Alternative Branch 1a: $x_{18,15}=1$, Objective 701 (Valid Tour)

Alternative Branch 1b: $x_{18,15}=0$, Objective 698

Solving Progress (Alternative Branch 1)

Solving Progress (Alternative Branch 2)

1: LP solution 641	
	\downarrow Eliminate Subtour 1, 2, 41, 42
2: LP solution 676	
	Eliminate Subtour 3-9
3: LP solution 681	
	Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5	
	Eliminate Cut 13-17
5: LP solution 686	
	\downarrow Eliminate Subtour 10, 11, 12
6: LP solution 686	
	Eliminate Subtour 13-23
7: LP solution 688	
	\downarrow Eliminate Subtour 11 - 23
	8: LP solution 697

Solving Progress (Alternative Branch 2)

Alternative Branch 2: $x_{27,22}$, Objective 697

Alternative Branch 2: $x_{27,22}$, Objective 697

Alternative Branch 2a: $x_{27,22}=1$, Objective 708 (Valid tour)

Alternative Branch 2b: $x_{27,22}=0$, Objective 697.75

Solving Progress (Alternative Branch 2)

Solving Progress (Alternative Branch 3)

Solving Progress (Alternative Branch 3)

Alternative Branch 3: $x_{27,24}$, Objective 697

Alternative Branch 3: $x_{27,24}$, Objective 697

Alternative Branch 3a: $x_{27,24}=1$, Objective 697.75

Alternative Branch 3b: $x_{27,24}=0$, Objective 698

Solving Progress (Alternative Branch 3)

Solving Progress (Alternative Branch 3)

Not only do we have to explore (and branch further in) both subtrees, but also the optimal tour is in the subtree with larger LP solution!

Conclusion (1/2)

- How can one generate these constraints automatically?

Conclusion (1/2)

- How can one generate these constraints automatically? Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs

Conclusion (1/2)

- How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs

- Why don't we add all possible Subtour Eliminiation constraints to the LP?

Conclusion (1/2)

- How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs

- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!

Conclusion (1/2)

- How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs

- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!
- Should the search tree be explored by BFS or DFS?

Conclusion (1/2)

- How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!
- Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

Conclusion (1/2)

- How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs

- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!
- Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one might pose of a theoretical nature concerning the traveling-salesman problem; however, we hope that the feasibility of attacking problems involving a moderate number of points has been successfully demonstrated, and that perhaps some of the ideas can be used in problems of similar nature.

Conclusion (2/2)

- Eliminate Subtour 1, 2, 41, 42
- Eliminate Subtour 3-9
- Eliminate Subtour 10,11, 12
- Eliminate Subtour 11-23
- Eliminate Subtour 13-23
- Eliminate Cut 13 - 17
- Eliminate Subtour 24, 25, 26, 27

Conclusion (2/2)

- Eliminate Subtour 1, 2, 41, 42
- Eliminate Subtour 3-9
- Eliminate Subtour 10,11, 12
- Eliminate Subtour 11-23
- Eliminate Subtour 13-23
- Eliminate Cut 13-17
- Eliminate Subtour 24, 25, 26, 27

THE 49-CITY PROBLEM*

The optimal tour \bar{x} is shown in Fig. 16. The proof that it is optimal is given in Fig. 17. To make the correspondence between the latter and its programming problem clear, we will write down in addition to 42 relations in non-negative variables (2), a set of 25 relations which suffice to prove that $D(x)$ is a minimum for \bar{x}. We distinguish the following subsets of the 42 cities:

$$
\begin{aligned}
& S_{1}=\{1,2,41,42\} \\
& S_{2}=\{3,4, \cdots, 9\} \\
& S_{3}=\{1,2, \cdots, 9,29,30, \cdots, 42\} \\
& S_{4}=\{11,12, \cdots, 23\}
\end{aligned}
$$

$$
S_{5}=\{13,14, \cdots, 23\}
$$

