Programming in C and C++

Types, Variables, Expressions and Statements

Neel Krishnaswami and Alan Mycroft

Course Structure

Basics of C:

e Types, variables, expressions and statements
e Functions, compilation and the pre-processor
e Pointers and structures

e C programming tick hints and tips
C Programming Techniques:

e Pointer manipulation: linked lists, trees, and graph algorithms

e Memory management strategies: ownership and lifetimes,
reference counting, tracing, and arenas

e Cache-aware programming: array-of-struct to struct-of-array
transformations, blocking loops, intrusive data structures

e Unsafe behaviour and mitigations: eg, valgrind, asan, ubsan

Course Structure, continued

Course organization:

e Remaining lectures will be recorded and posted online

e Course hours will be in a lab format

e We will meet in the Intel lab during lecture hours for a
programming exercise (unmarked, but will be used for
supervisions)

e Virtual machine image with Linux and gcc installed available

from course website
Introduction to C++:

e Final 2 C++ lectures will be traditional lecture format
e Similarities and differences from C
e Extensions in C++: templates, classes, memory allocation

Recommendations for C:

e The C Programming Language. Brian W. Kernighan and
Dennis M. Ritchie.

e C: A Reference Manual. Samuel P. Harbison and Guy L.
Steele.

The majority of the class will be on C, but here are two

recommendations for C++ as well:

e The C++ Programming Language. Bjarne Stroustrup.
e Thinking in C++: : Introduction to Standard C++. Bruce
Eckel.

The History of C++

e 1966: Martin Richards develops BCPL

e 1969: Ken Thompson designs B

e 1972: Dennis Ricthie designs C

e 1979: Bjarne Stroustrup designs C with Classes
e 1983: C with Classes becomes C++

e 1989: Original C90 ANSI C standard (ISO 1990)
e 1998: ISO C++ standard

e 1999: C99 standard (ISO 1999, ANSI 2000)

e 2011: C++11 ISO standard, C11 ISO standard
e 2014, 2017: C++ standard updates

e 2020: C++420 standard expected

C is a low-level, unsafe language

e C's primitive types are characters, numbers and addresses
e Operators work on these types
e No primitives on composite types (eg, strings, arrays, sets)

e Only static definition and stack-based locals built in (the heap
is implemented as a library)

e /O and threading are also implemented as libraries (using OS
primitives)
e The language is unsafe: many erroneous uses of C features are

not checked (either statically or at runtime), so errors can
silently cause memory corruption and arbitrary code execution

The Classic First Program

Compile with

$ cc examplel.c

1 #include <stdio.h> .
Execute with:

$./a.out
Hello, world!

3 int main(void) {
4 printf ("Hello, world!\n");

5 return O;

Generate assembly with

$ cc -S examplel.c

Basic Types

e C has a small set of basic types

type description
char characters (> 8 bits)
int integers (> 16 bits, usually 1 word)

float | single-precision floating point number

double | double-precision floating point number

Precise size of types is architecture-dependent

Various type operators alter meaning, including:

unsigned, short, long, const, volatile

e This lets us make types like long int and unsigned char

C99 added fixed-size types int16_t, unit64_t etc.

e Numeric literals can be written in many ways:

type style example

char none none

int number, character 12 ’a’ ’\n’
or escape code

long int num w/ suffix 1 or L 1234L

float num with >.?, ’e’, or ’E’ | 1.234e3F 1234.0f
and suffix £’ or ’F’

double num with >.’, ’e’, or ’E’ | 1.234e3 1234.0

long double | num with >.?, ’e’, or ’E’> | 1.23E31 123.0L

and suffix 17 or ’L°
e Numbers can be expressed in octacl with '0" prefix and
hexadecimal with '0Ox’ prefix: 52 = 064 = 0x34

Defining Constant Values

e An enumeration can specify a set of constants:
enum boolean {TRUE, FALSE}

e Enumeration default to allocating successive integers from 0

e |t is possible to assign values to constants

enum months {JAN=1, FEB, MAR};
enum boolean {F,T,FALSE=0,TRUE, N=0, Y};

e Names in an enumeration must be distinct, but values need
not be.

e Variables must be declared before use

e Variables must be defined (i.e., storage allocated) exactly
once. (A definition counts as a declaration.)

e A variable name consists of letters, digits and underscores (_);
a name must start with a letter or underscore

e Variables are defined by prefixing a name with a type, and can
optionally be initialised: long int i = 28L;

e Multiple variables of the same basic type can be declared or
defined together: char c,d,e;

10

e All operators (including assignment) return a result

e Similar to those found in Java:

type operators

arithmetic | + - x / ++ —= 7,

logic = l=>>=< <= || && !

bitwise | & << >> ~ ~

assignment | = +- -= *= /= <<= >>= &= "=Y=
other sizeof

11

Type Conversion

e Automatic type conversion may occur when two operands to a
binary operator are of different type

e Generally, conversion “widens” a value (e.g., short — int)
e However, “narrowing” is possible and may not generate a
warning:
int 1 = 1234;
char c;
c = i+1; // i overflows c

e Type conversion can be forced via a cast, which is written as
(type) exp — for example, ¢ = (char) 1234L;

12

Expressions and Statements

e An expression is created when one or more operators are
combined: e.g. x *=y - z
e Every expression (even assignment) has a type and result

e Operator precedence gives an unambiguous parse for every
expresion

e An expression (e.g., x = 0) becomes a statement when
followed by a semicolon (i.e., x = 03;)

e Several expression can be separated using a comma ’," and
expressions are then evaluated left-to-right: e.g., x=0,y=1.0

e The type and value of a comma-separated expression is the
type and value of the result of the right-most expression

13

Blocks and Compound Statements

A block or compound statement is formed when multiple
statementsare surrounded with braces (e.g. {s1; s2; s3;3})

A block of statements is then equivalent to a single statement

In C90, variables can only be declared or defined at the start
of a block, but this restriction was lifted in C99

Blocks are usually used in function definitions or control flow
statements, but can appear anywhere a statement can

14

Variable Definition vs Declaration

e A variable can be declared without defining it using the
extern keyword; for example extern int a;

e The declaration tells the compiler that storage has been
allocated elsewhere (usually in another source file)

e |f a variable is declared and used in a program, but not
defined, this will result in a link error (more on this later)

ii5)

Scope and Type Example

#include <stdio.h>
int a; /* what value does a have? */
unsigned char b = ’A’; /% safe to use this? */

extern int alpha;

int main(void) {

extern unsigned char b; /* 1s this needed? */
double a = 3.4;
{
extern a; /* ts this sloppy? */
printf ("%d %d\n",b,a+1); /* what will this print? */
}
return O;

16

Arrays and Strings

e One or more items of the same type can be grouped into an
array; for example: long int i[10];

e The compiler will allocate a contiguous block of memory for
the relevant number of values

e Array items are indexed from zero, and there is no bounds
checking

e Strings in C are represented as an array of char terminated
with the special character *\0’

e There is language support for this string representation in
string contstants with double-quotes; for example
char s[]="two strings mer" "ged and terminated"
(note the implicit concatenation of string literals)

e String functions are in the string.h library

17

Control Flow

e Control flow is similar to Java:

e The jump statements break and continue also exist

exp 7 exp : exp
if (exp) stmtl else stmt2
switch(exp) {

case expl : stmtl

case expn : stmtn
default : default_stmt
}

while (exp) stmt
for (expl; exp2; exp3) stmt
do stmt while (exp);

18

Control Flow and String Example

1 #include <stdio.h>

2 #include <string.h>
4 char s[]="University of Cambridge Computer Laboratory";

¢ int main(void) {

7 char c;

s int i, j;

9 for (i=0,j=strlen(s)-1;i<j;i++,j--) { // strlen(s)-1 ?
10 c=s[i], slil=s[j]l, sljl=c;

11 }

12 printf ("%s\n",s);

13 return O;

14 }

19

Goto (often considered harmful)

e The goto statement is never required
e |t often results in difficult-to-understand code

e Exception handling (where you wish to exit from two or more
loops) is one case where goto may be justified:

1 for (...) {
2 for (...) {

4 if (big_error) goto error;

5 }

s error: // handle error here

20

