
Programming in C and C++

Types, Variables, Expressions and Statements

Neel Krishnaswami and Alan Mycroft

Course Structure

Basics of C:

• Types, variables, expressions and statements

• Functions, compilation and the pre-processor

• Pointers and structures

• C programming tick hints and tips

C Programming Techniques:

• Pointer manipulation: linked lists, trees, and graph algorithms

• Memory management strategies: ownership and lifetimes,

reference counting, tracing, and arenas

• Cache-aware programming: array-of-struct to struct-of-array

transformations, blocking loops, intrusive data structures

• Unsafe behaviour and mitigations: eg, valgrind, asan, ubsan

1

Course Structure, continued

Course organization:

• Remaining lectures will be recorded and posted online

• Course hours will be in a lab format

• We will meet in the Intel lab during lecture hours for a

programming exercise (unmarked, but will be used for

supervisions)

• Virtual machine image with Linux and gcc installed available

from course website

Introduction to C++:

• Final 2 C++ lectures will be traditional lecture format

• Similarities and differences from C

• Extensions in C++: templates, classes, memory allocation

2

Textbooks

Recommendations for C:

• The C Programming Language. Brian W. Kernighan and

Dennis M. Ritchie.

• C: A Reference Manual. Samuel P. Harbison and Guy L.

Steele.

The majority of the class will be on C, but here are two

recommendations for C++ as well:

• The C++ Programming Language. Bjarne Stroustrup.

• Thinking in C++: : Introduction to Standard C++. Bruce

Eckel.

3

The History of C++

• 1966: Martin Richards develops BCPL

• 1969: Ken Thompson designs B

• 1972: Dennis Ricthie designs C

• 1979: Bjarne Stroustrup designs C with Classes

• 1983: C with Classes becomes C++

• 1989: Original C90 ANSI C standard (ISO 1990)

• 1998: ISO C++ standard

• 1999: C99 standard (ISO 1999, ANSI 2000)

• 2011: C++11 ISO standard, C11 ISO standard

• 2014, 2017: C++ standard updates

• 2020: C++20 standard expected

4

C is a low-level, unsafe language

• C’s primitive types are characters, numbers and addresses

• Operators work on these types

• No primitives on composite types (eg, strings, arrays, sets)

• Only static definition and stack-based locals built in (the heap

is implemented as a library)

• I/O and threading are also implemented as libraries (using OS

primitives)

• The language is unsafe: many erroneous uses of C features are

not checked (either statically or at runtime), so errors can

silently cause memory corruption and arbitrary code execution

5

The Classic First Program

1 #include <stdio.h>

2

3 int main(void) {

4 printf("Hello, world!\n");

5 return 0;

6 }

Compile with

$ cc example1.c

Execute with:

$./a.out

Hello, world!

$

Generate assembly with

$ cc -S example1.c

6

Basic Types

• C has a small set of basic types

type description

char characters (≥ 8 bits)

int integers (≥ 16 bits, usually 1 word)

float single-precision floating point number

double double-precision floating point number

• Precise size of types is architecture-dependent

• Various type operators alter meaning, including:

unsigned, short, long, const, volatile

• This lets us make types like long int and unsigned char

• C99 added fixed-size types int16_t, unit64_t etc.

7

Constants

• Numeric literals can be written in many ways:

type style example

char none none

int number, character 12 ’a’ ’\n’

or escape code

long int num w/ suffix l or L 1234L

float num with ’.’, ’e’, or ’E’ 1.234e3F 1234.0f

and suffix ’f’ or ’F’

double num with ’.’, ’e’, or ’E’ 1.234e3 1234.0

long double num with ’.’, ’e’, or ’E’ 1.23E3l 123.0L

and suffix ’l’ or ’L’

• Numbers can be expressed in octacl with ’0’ prefix and

hexadecimal with ’0x’ prefix: 52 = 064 = 0x34

8

Defining Constant Values

• An enumeration can specify a set of constants:

enum boolean {TRUE, FALSE}

• Enumeration default to allocating successive integers from 0

• It is possible to assign values to constants

enum months {JAN=1, FEB, MAR};

enum boolean {F,T,FALSE=0,TRUE, N=0, Y};

• Names in an enumeration must be distinct, but values need

not be.

9

Variables

• Variables must be declared before use

• Variables must be defined (i.e., storage allocated) exactly

once. (A definition counts as a declaration.)

• A variable name consists of letters, digits and underscores ();

a name must start with a letter or underscore

• Variables are defined by prefixing a name with a type, and can

optionally be initialised: long int i = 28L;

• Multiple variables of the same basic type can be declared or

defined together: char c,d,e;

10

Operators

• All operators (including assignment) return a result

• Similar to those found in Java:
type operators

arithmetic + - * / ++ -- %

logic == != > >= < <= || && !

bitwise | & << >> ^ ~

assignment = +- -= *= /= <<= >>= &= ^= %=

other sizeof

11

Type Conversion

• Automatic type conversion may occur when two operands to a

binary operator are of different type

• Generally, conversion “widens” a value (e.g., short → int)

• However, “narrowing” is possible and may not generate a

warning:

int i = 1234;

char c;

c = i+1; // i overflows c

• Type conversion can be forced via a cast, which is written as

(type) exp — for example, c = (char) 1234L;

12

Expressions and Statements

• An expression is created when one or more operators are

combined: e.g. x *= y - z

• Every expression (even assignment) has a type and result

• Operator precedence gives an unambiguous parse for every

expresion

• An expression (e.g., x = 0) becomes a statement when

followed by a semicolon (i.e., x = 0;)

• Several expression can be separated using a comma ’,’ and

expressions are then evaluated left-to-right: e.g., x=0,y=1.0

• The type and value of a comma-separated expression is the

type and value of the result of the right-most expression

13

Blocks and Compound Statements

• A block or compound statement is formed when multiple

statementsare surrounded with braces (e.g. {s1; s2; s3;})

• A block of statements is then equivalent to a single statement

• In C90, variables can only be declared or defined at the start

of a block, but this restriction was lifted in C99

• Blocks are usually used in function definitions or control flow

statements, but can appear anywhere a statement can

14

Variable Definition vs Declaration

• A variable can be declared without defining it using the

extern keyword; for example extern int a;

• The declaration tells the compiler that storage has been

allocated elsewhere (usually in another source file)

• If a variable is declared and used in a program, but not

defined, this will result in a link error (more on this later)

15

Scope and Type Example

#include <stdio.h>

int a; /* what value does a have? */

unsigned char b = ’A’; /* safe to use this? */

extern int alpha;

int main(void) {

extern unsigned char b; /* is this needed? */

double a = 3.4;

{

extern a; /* is this sloppy? */

printf("%d %d\n",b,a+1); /* what will this print? */

}

return 0;

}
16

Arrays and Strings

• One or more items of the same type can be grouped into an

array; for example: long int i[10];

• The compiler will allocate a contiguous block of memory for

the relevant number of values

• Array items are indexed from zero, and there is no bounds

checking

• Strings in C are represented as an array of char terminated

with the special character ’\0’

• There is language support for this string representation in

string contstants with double-quotes; for example

char s[]="two strings mer" "ged and terminated"

(note the implicit concatenation of string literals)

• String functions are in the string.h library

17

Control Flow

• Control flow is similar to Java:

• exp ? exp : exp

• if (exp) stmt1 else stmt2

• switch(exp) {

case exp1 : stmt1

...

case expn : stmtn

default : default_stmt

}

• while (exp) stmt

• for (exp1; exp2; exp3) stmt

• do stmt while (exp);

• The jump statements break and continue also exist

18

Control Flow and String Example

1 #include <stdio.h>

2 #include <string.h>

3

4 char s[]="University of Cambridge Computer Laboratory";

5

6 int main(void) {

7 char c;

8 int i, j;

9 for (i=0,j=strlen(s)-1;i<j;i++,j--) { // strlen(s)-1 ?

10 c=s[i], s[i]=s[j], s[j]=c;

11 }

12 printf("%s\n",s);

13 return 0;

14 }
19

Goto (often considered harmful)

• The goto statement is never required

• It often results in difficult-to-understand code

• Exception handling (where you wish to exit from two or more

loops) is one case where goto may be justified:

1 for (...) {

2 for (...) {

3 ...

4 if (big_error) goto error;

5 }

6 }

7 ...

8 error: // handle error here

20

