Notes for Programming in C Lab Session \#8

October 22, 2018

1 Introduction

The purpose of this lab session is to write matrix manipulation code to see how different memory access patterns can affect performance.

2 Overview

A matrix is a rectangular array of numbers, and also one of the fundamental concepts of mathematics. Matrices can represent linear transformations between vector spaces, extensive-form games in game theory, graph connectivity in graph theory, the systems of differential equations arising in control theory, just to list a few applications. As a result, high-performance implementations of matrices and operations on them are of great importance to a wide variety of scientific and engineering domains.

In this lab, we will work use the following datatype for matrices:

```
typedef struct matrix matrix_t;
struct matrix {
    int rows;
    int cols;
    double *elts;
};
```

Here, a matrix is represented by a structure containing a number of rows, a number of columns, and an array of doubles elts containing the elements of the array. As programmers, we immediately face a choice in how to represent arrays. An array is a two-dimensional object like:

$$
A \equiv\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right]
$$

However, a C array is one-dimensional. So we have to decide how to place the 12 elements of the 4×3 matrix A in memory. In C, it is typical to represent arrays in row-major order. This means that the elts array will have the following shape:

$$
\text { elts } \mapsto \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{array}
$$

So the elts array stores the rows of A one after another in memory. ${ }^{1}$
As a result, if we have a matrix B of size $n \times m$, and we want to find $B(i, j)-$ the j-th column of the i-th row will be the $(n \times i)+j$-th element of the array.

[^0]One of the most important matrix operations is matrix multiplication. Given an $n \times m$ matrix A, and an $m \times o$ matrix B, we define the following $n \times o$ matrix $A \times B$ as the product:

$$
(A \times B)(i, j)=\sum_{k \in\{0 \ldots n\}} A(i, k) \times B(k, j)
$$

In the calculation of $A(i, j)$, we will touch the following entries:

$$
\left.\left(\begin{array}{llll}
A_{(0,0)} & \ldots & \ldots & A_{(0, m-1)} \\
\vdots & & & \vdots \\
A_{A_{i, 0)}} & \ldots & \ldots & A_{(i, m-1)} \\
\vdots & & & \vdots \\
A_{(n-1,0)} & \ldots & \ldots & A_{(n-1, m-1)}
\end{array}\right) \times\left(\begin{array}{ll}
B_{(0,0)} & \ldots \\
\vdots & \\
\vdots \\
B_{(m-1,0)} & \ldots \\
B_{(m-j)} \\
B_{(m-1, j)}
\end{array}\right) \ldots \ldots B_{(m-1, o-1)}\right)
$$

Note that we are accessing the elements of $A_{(i, k)}$ in a row-wise order, but accessing the elements of $B_{(k, j)}$ in a column-wise order. As a result, we risk a cache miss on each access to B !

However, if B were transposed - i.e., if rows and columns were interchanged - then we would be accessing the elements of B in a row-wise order as well. In equational form, we can make the following observation (writing B^{T} for the transpose of B):

$$
\begin{aligned}
\left(A \times B^{T}\right)(i, j) & =\sum_{k \in\{0 \ldots n\}} A(i, k) \times B^{T}(k, j) \\
& =\sum_{k \in\{0 \ldots n\}} A(i, k) \times B(j, k)
\end{aligned}
$$

By making use of the observation that $B^{T}(k, j)=B(j, k)$, we can replace a column-wise traversal with a row-wise traversal.

So in this exercise, you will implement naive multiplication, transpose, and transposed multiplication, and compare the performance of naive multiplication to building a transpose and then doing a transposed multiplication.

3 Instructions

1. Download the lab8.tar.gz file from the class website.
2. Extract the file using the command tar xvzf lab8.tar.gz.
3. This will extract the lab8/ directory. Change into this directory using the cd lab8/command.
4. In this directory, there will be files lab8.c, matrix.h, and matrix.c.
5. There will also be a file Makefile, which is a build script which can be invoked by running the command make (without any arguments). It will automatically invoke the compiler and build the lab8 executable.
6. There is a test routine to check if you have implemented matrix multiplication probably works, together with expected correct output in the lab8.c file.
7. Once it works, run the timing functions on your two matrix multiplication routines to see which one is faster.

4 The Types and Functions to Implement

- matrix_t matrix_create(int rows, int cols);

Given integer arguments rows and cols, return a new matrix of size rows \times cols. Initializing the elements of the array is optional, but may help you debug.

- void matrix_free(matrix_t m);

Deallocate the storage associated with the matrix m.

- void matrix_print(matrix_t m);

You don't have to implement this - it comes for free to help you test your code.

- double matrix_get (matrix_t m, int r, int c);

Return the value in the r-th row and c-th column of m.

- void matrix_set(matrix_t m, int r, int c, double d);

Modify the value in the r-th row and c-th column of m to d.

- matrix_t matrix_multiply(matrix_t m1, matrix_t m2);

Given an $n \times m$ matrix $m 1$ and an $m \times k$ matrix $m 2$, return the $n \times k$ matrix that is the matrix product of m1 and m2.

You should be able to implement this with a simple triply-nested for-loop.

- matrix_t matrix_transpose(matrix_t m);

Given an $n \times m$ matrix m as an argument, return the $m \times n$ transposed matrix. (That is, if A is the argument and B is the return value, then $A(i, j)=B(j, i)$.)

- matrix_t matrix_multiply_transposed(matrix_t m1, matrix_t m2);

Given an $n \times m$ matrix $m 1$ and an $k \times m$ matrix $m 2$, return the $n \times k$ matrix that corresponds to m 1 times the transpose of m 2 .

- matrix_t matrix_multiply_fast(matrix_t m1, matrix_t m2);

This function should also implement matrix multiplication, but do it by constructing the transpose of m2, and then passing that to matrix_multiply_fast. Don't forget to free the transposed matrix when you are done!

[^0]: ${ }^{1}$ The choice of row-major order is purely conventional; historically Fortran has made the opposite choice!

