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Some slides borrowed from Aurelie Herbelot
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LNeural networks in pictures

Perceptron

» Early model (1962): no hidden layers, just a linear
classifier, summation output.
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LNeural networks in pictures

Restricted Boltzmann Machines

» Boltzmann machine: hidden layer, arbitrary
interconnections between units. Not effectively trainable.

» Restricted Boltzmann Machine (RBM): one input and one
hidden layer, no intra-layer links.
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LNeural networks in pictures

Restricted Boltzmann Machines

» Hidden layer (note one hidden layer can model arbitrary
function, but not necessarily trainable).

» RBM layers allow for efficient implementation: weights can
be described by a matrix, fast computation.

» One popular deep learning architecture is a combination of
RBMs, so the output from one RBM is the input to the next.

» RBMSs can be trained separately and then fine-tuned in
combination.

» The layers allow for efficient implementations and
successive approximations to concepts.
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Combining RBMs: deep learning
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https://deeplearning4j.org/restrictedboltzmannmachine
Copyright 2016. Skymind. DL4J is distributed under an Apache 2.0 License.
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Sequences

» Combined RBMs etc, cannot handle sequence information
well (can pass them sequences encoded as vectors, but
input vectors are fixed length).

» So different architecture needed for sequences and most
language and speech problems.

» RNN: Recurrent neural network.

» Long short term memory (LSTM): development of RNN,
more effective for (some?) language applications.
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Multimodal architectures

» Input to a NN is just a vector: we can combine vectors from
different sources.

» e.g., features from a CNN for visual recognition
concatenated with word embeddings.

» multimodal systems: captioning, visual question answering
(VQA).
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Embeddings

» embeddings: distributional models with dimensionality
reduction, based on prediction
» word2vec: as originally described (Mikolov et al 2013), a
NN model using a two-layer network (i.e., not deep!) to
perform dimensionality reduction.
» two possible architectures:
» given some context words, predict the target (CBOW)
» given a target word, predict the contexts (Skip-gram)
» Very computationally efficient, good all-round model (good
hyperparameters already selected).
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The Skip-gram model
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L word2vec

Features of word2vec representations

v

A representation is learnt at the reduced dimensionality
straightaway: we are outputting vectors of a chosen
dimensionality (parameter of the system).

Usually, a few hundred dimensions: dense vectors.

The dimensions are not interpretable: it is impossible to
look into ‘characteristic contexts’.

For many tasks, word2vec (skip-gram) outperforms
standard count-based vectors.

But mainly due to the hyperparameters and these can be
emulated in standard count models (see Levy et al).
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What Word2Vec is famous for
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The actual components of word2vec

v

A vocabulary. (Which words do | have in my corpus?)
A table of word probabilities.

Negative sampling: tell the network what not to predict.
Subsampling: don’t look at all words and all contexts.

v

v

v
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Negative sampling

Instead of doing full softmax (final stage in a NN model to get
probabilities, very expensive), word2vec is trained using logistic
regression to discriminate between real and fake words:

» Whenever considering a word-context pair, also give the
network some contexts which are not the actual observed
word.

» Sample from the vocabulary. The probability to sample
something more frequent in the corpus is higher.

» The number of negative samples will affect results.
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Subsampling

v

Instead of considering all words in the sentence, transform
it by randomly removing words from it:
considering all sentence transform randomly words

The subsampling function makes it more likely to remove a
frequent word.

Note that word2vec does not use a stop list.

Note that subsampling affects the window size around the
target (i.e., means word2vec window size is not fixed).

Also: weights of elements in context window vary.
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Using word2vec

» predefined vectors or create your own
» can be used as input to NN model

» many researchers use the gensim Python library
https://radimrehurek.com/gensim/

» Emerson and Copestake (2016) find significantly better
performance on some tests using parsed data

» Levy et al’s papers are very helpful in clarifying word2vec
behaviour

» Bayesian version: Barkan (2016)

https://arxiv.org/ftp/arxiv/papers/1603/1603.06571.pdf


https://radimrehurek.com/gensim/
https://arxiv.org/ftp/arxiv/papers/1603/1603.06571.pdf
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doc2vec: Le and Mikolov (2014)

» Learn a vector to represent a ‘document’: sentence,
paragraph, short document.

» skip-gram trained by predicting context word vectors given
an input word, distributed bag of words (dbow) trained by
predicting context words given a document vector.

» order of document words ignored, but also dmpv,
analogous to cbow: sensitive to document word order
» Options:
1. start with random word vector initialization

2. run skip-gram first
3. use pretrained embeddings (Lau and Baldwin, 2016)



Natural Language Processing: Part Il Overview of Natural Language Processing (L90): ACS Lecture 9

L word2vec

doc2vec: Le and Mikolov (2014)

» Learned document vector effective for various tasks,
including sentiment analysis.

» Lots and lots of possible parameters.

» Some initial difficulty in reproducing results, but Lau and
Baldwin (2016) have a careful investigation of doc2vec,
demonstrating its effectiveness.
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Finding out what NNs are really doing

v

Careful investigation of models (sometimes including going
through code), describing as non-neural models (Omer
Levy, word2vec).

v

Building proper baselines (e.g., Zhou et al, 2015 for VQA).
Selected and targeted experimentation.
Visualization.

v

v



I—Visualization of NNs

Natural Language Processing: Part Il Overview of Natural Language Processing (L90): ACS Lecture 9

t-SNE example: Lau and Baldwin (2016

tech capital bangalore costliest indian city to live in :
Ul
bangalof - (survey]
=
2 . >
0
EJ\ 0 S
* N
~ .
" s
-20 15 10 05 00 05 0 15 20
arxiv.org/abs/1607.05368



arxiv.org/abs/1607.05368

Natural Language Processing: Part Il Overview of Natural Language Processing (L90): ACS Lecture 9
LVisualization of NNs

Heatmap example: Li et al (2015)
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Embeddings for sentences obtained by composing embeddings
for words. Heatmap shows values for dimensions.
arxiv.org/abs/1506.01066
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LVisual question answering

Multimodal architectures

» Input to a NN is just a vector: we can combine vectors from
different sources.

» e.g., features from a CNN for visual recognition
concatenated with word embeddings.

» multimodal systems: captioning, visual question answering
(VQA).
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Visual Question Answering

» System is given a picture and a question about the picture
which it has to answer.

» Best known dataset: COCO VQA (Agrawal et al, 2016).

» Questions and answers for images from Amazon
Mechanical Turk.

» Task: provide questions which humans can easily answer
but can “stump the smart robot” (cf Turing Test!)

» Three questions per image.
» Answers from 10 different people.
» Also asked for answers without seeing the image (22%).
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:

Why does this male

have his arms in this

balance angry
e for balance  he's carrying bags
position? for balance hug
Are the clouds yes
high in the sky? yes

no
no
yes
from Aarawal et al (2016)

yes
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o

from Aarawal et al (2016)
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Is this person trying yes yes
i yes yes

to hit a ball? ee ee
frisbie bat

What is the person

V) - racket bat
hitting the ball with? round paddle  racket

from Aarawal et al (2016)
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from Aarawal et al (20186)
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VQA architecture (Agrawal et al, 2016)
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Baseline system

Image feature

CNN
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http://visualga.csail.mit.edu/


http://visualqa.csail.mit.edu/
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Learning commonsense knowledge?

» Zhou et al’s baseline system (no hidden layers) performs
as well as systems with much more complex architectures
(55.7%).

» Correlates input words and visual concepts with the
answer.

» Systems are much better than humans at answering
without seeing the image (BOW model is at 48%).

» To an extent, the systems are discovering biases in the
dataset.

» Systems make errors no human would ever make on
unexpected questions: e.g., ‘Is there an aardvark?’
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Adversarial examples

» For image recognition, images that are correctly
recognised are perturbed in a manner imperceptible to a
human and are then not recognised.
https://arxiv.org/pdf/1312.6199.pdf

» Systematically find adversarial examples via low probability
‘pockets’ (because the space is not smooth): these can’t
be found efficiently by random sampling around a given
example.

» Not clear whether anything directly comparable for NLP:
though https://arxiv.org/pdf/1707.07328.pdf
for reading comprehension.

» also ‘Build it, Break it: the language edition’
https://bibinlp.umiacs.umd.edu/


https://arxiv.org/pdf/1312.6199.pdf
https://arxiv.org/pdf/1707.07328.pdf
https://bibinlp.umiacs.umd.edu/
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Artificial vs biological NNs

» ANNs and BNNs both take input from many neurons and
carry out simple processing (e.g., summation), then output
to many neurons.

» ANNSs are still tiny: biggest ¢160 billion parameters.
Human brain has tens of billions of neurons, each with up
to 100,000 synapses.

» Brain connections are much slower than ANNs: chemical
transmission across synapse. Bigger size and greater
parallelism (more than) makes up for this.

» Neurotransmitters are complex and not well understood:

biological neurons are only crudely approximated by on/off
firing.



Natural Language Processing: Part Il Overview of Natural Language Processing (L90): ACS Lecture 9

L Perspective

Artificial vs biological NNs (continued)

» Brains grow new synapses and lose old ones: individual
brains evolve (Hebbian Learning: “Neurons which fire
together wire together”).

» Brains are embodied: processing sensory information,
controlling muscles. There is no hard division between
these parts of the brain and concepts/reasoning (e.g.,
experiments with kick vs hit).

» Brains have evolved over (about) 600 million years (more if
we include nerve nets, as in jellyfish).

» Brains are expensive (about 20% of a person’s energy),
but much more efficient than ANNSs.

» and ...



Natural Language Processing: Part Il Overview of Natural Language Processing (L90): ACS Lecture 9

LPerspective
Deep learning: positives

» Really important change in state-of-the-art for some
applications: e.g., language models for speech.

» Multi-modal experiments are now much more feasible.

» Models are learning structure without hand-crafting of
features.

» Structure learned for one task (e.g., prediction) applicable
to others with limited training data.

» Lots of toolkits etc

» Huge space of new models, far more research going on in
NLP, far more industrial research ...
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Deep Learning: negatives

» Models are made as powerful as possible to the point they
are“barely possible to train or use”
(http://www.deeplearningbook.org 16.7).

» Tuning hyperparameters is a matter of much
experimentation.

» Statistical validity of results often questionable.

» Many myths, massive hype and almost no publication of
negative results: but there are some NLP tasks where
deep learning is not giving much improvement in results.

» Weird results: e.g., ‘33rpm’ normalized to ‘thirty two
revolutions per minute’

https://arxiv.org/ftp/arxiv/papers/1611/1611.00068.pdf

» Adversarial examples.


http://www.deeplearningbook.org
https://arxiv.org/ftp/arxiv/papers/1611/1611.00068.pdf

