Ann Copestake

Computer Laboratory University of Cambridge

October 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Distributional semantics and deep learning: outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Neural networks in pictures

word2vec

Visualization of NNs

Visual question answering

Perspective

Some slides borrowed from Aurelie Herbelot

-Neural networks in pictures

#### Outline.

#### Neural networks in pictures

word2vec

Visualization of NNs

Visual question answering

Perspective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへ⊙

-Neural networks in pictures

#### Perceptron

 Early model (1962): no hidden layers, just a linear classifier, summation output.



Dot product of an input vector  $\vec{x}$  and a weight vector  $\vec{w}$ , compared to a threshold  $\theta$ 

-Neural networks in pictures

#### **Restricted Boltzmann Machines**

- Boltzmann machine: hidden layer, arbitrary interconnections between units. Not effectively trainable.
- Restricted Boltzmann Machine (RBM): one input and one hidden layer, no intra-layer links.



 $w_1, ..., w_6$  b (bias)

-Neural networks in pictures

# **Restricted Boltzmann Machines**

- Hidden layer (note one hidden layer can model arbitrary function, but not necessarily trainable).
- RBM layers allow for efficient implementation: weights can be described by a matrix, fast computation.
- One popular deep learning architecture is a combination of RBMs, so the output from one RBM is the input to the next.
- RBMs can be trained separately and then fine-tuned in combination.
- The layers allow for efficient implementations and successive approximations to concepts.

-Neural networks in pictures

#### Combining RBMs: deep learning





https://deeplearning4j.org/restrictedboltzmannmachine Copyright 2016. Skymind. DL4J is distributed under an Apache 2.0 License. -Neural networks in pictures



- Combined RBMs etc, cannot handle sequence information well (can pass them sequences encoded as vectors, but input vectors are fixed length).
- So different architecture needed for sequences and most language and speech problems.
- RNN: Recurrent neural network.
- Long short term memory (LSTM): development of RNN, more effective for (some?) language applications.

-Neural networks in pictures

#### Multimodal architectures

- Input to a NN is just a vector: we can combine vectors from different sources.
- e.g., features from a CNN for visual recognition concatenated with word embeddings.
- multimodal systems: captioning, visual question answering (VQA).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Outline.

Neural networks in pictures

#### word2vec

Visualization of NNs

Visual question answering

Perspective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへ⊙

# Embeddings

- embeddings: distributional models with dimensionality reduction, based on prediction
- word2vec: as originally described (Mikolov et al 2013), a NN model using a two-layer network (i.e., not deep!) to perform dimensionality reduction.
- two possible architectures:
  - given some context words, predict the target (CBOW)
  - given a target word, predict the contexts (Skip-gram)
- Very computationally efficient, good all-round model (good hyperparameters already selected).

# The Skip-gram model



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# Features of word2vec representations

- A representation is learnt at the reduced dimensionality straightaway: we are outputting vectors of a chosen dimensionality (parameter of the system).
- Usually, a few hundred dimensions: dense vectors.
- The dimensions are not interpretable: it is impossible to look into 'characteristic contexts'.
- For many tasks, word2vec (skip-gram) outperforms standard count-based vectors.
- But mainly due to the hyperparameters and these can be emulated in standard count models (see Levy et al).

#### What Word2Vec is famous for



BUT ... see Levy et al and Levy and Goldberg for discussion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# The actual components of word2vec

- A vocabulary. (Which words do I have in my corpus?)
- A table of word probabilities.
- Negative sampling: tell the network what not to predict.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Subsampling: don't look at all words and all contexts.

# Negative sampling

Instead of doing full softmax (final stage in a NN model to get probabilities, very expensive), word2vec is trained using logistic regression to discriminate between real and fake words:

- Whenever considering a word-context pair, also give the network some contexts which are not the actual observed word.
- Sample from the vocabulary. The probability to sample something more frequent in the corpus is higher.
- The number of negative samples will affect results.

# Subsampling

- Instead of considering all words in the sentence, transform it by randomly removing words from it: considering all sentence transform randomly words
- The subsampling function makes it more likely to remove a frequent word.
- Note that word2vec does not use a stop list.
- Note that subsampling affects the window size around the target (i.e., means word2vec window size is not fixed).
- Also: weights of elements in context window vary.

# Using word2vec

- predefined vectors or create your own
- can be used as input to NN model
- many researchers use the gensim Python library https://radimrehurek.com/gensim/
- Emerson and Copestake (2016) find significantly better performance on some tests using parsed data
- Levy et al's papers are very helpful in clarifying word2vec behaviour

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bayesian version: Barkan (2016)

https://arxiv.org/ftp/arxiv/papers/1603/1603.06571.pdf

# doc2vec: Le and Mikolov (2014)

- Learn a vector to represent a 'document': sentence, paragraph, short document.
- skip-gram trained by predicting context word vectors given an input word, distributed bag of words (dbow) trained by predicting context words given a document vector.
- order of document words ignored, but also dmpv, analogous to cbow: sensitive to document word order
- Options:
  - 1. start with random word vector initialization
  - 2. run skip-gram first
  - 3. use pretrained embeddings (Lau and Baldwin, 2016)

(ロ) (同) (三) (三) (三) (○) (○)

# doc2vec: Le and Mikolov (2014)

- Learned document vector effective for various tasks, including sentiment analysis.
- Lots and lots of possible parameters.
- Some initial difficulty in reproducing results, but Lau and Baldwin (2016) have a careful investigation of doc2vec, demonstrating its effectiveness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Visualization of NNs

#### Outline.

Neural networks in pictures

word2vec

Visualization of NNs

Visual question answering

Perspective

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めん⊙

Visualization of NNs

# Finding out what NNs are really doing

- Careful investigation of models (sometimes including going through code), describing as non-neural models (Omer Levy, word2vec).
- ▶ Building proper baselines (e.g., Zhou et al, 2015 for VQA).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Selected and targeted experimentation.
- Visualization.

-Visualization of NNs

#### t-SNE example: Lau and Baldwin (2016



arxiv.org/abs/1607.05368

- Visualization of NNs

# Heatmap example: Li et al (2015)



Embeddings for sentences obtained by composing embeddings for words. Heatmap shows values for dimensions. arxiv.org/abs/1506.01066

-Visual question answering

#### Outline.

Neural networks in pictures

word2vec

Visualization of NNs

Visual question answering

Perspective

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

-Visual question answering

#### Multimodal architectures

- Input to a NN is just a vector: we can combine vectors from different sources.
- e.g., features from a CNN for visual recognition concatenated with word embeddings.
- multimodal systems: captioning, visual question answering (VQA).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Visual question answering

#### **Visual Question Answering**

- System is given a picture and a question about the picture which it has to answer.
- Best known dataset: COCO VQA (Agrawal et al, 2016).
- Questions and answers for images from Amazon Mechanical Turk.
- Task: provide questions which humans can easily answer but can "stump the smart robot" (cf Turing Test!)
- Three questions per image.
- Answers from 10 different people.
- Also asked for answers without seeing the image (22%).

Visual question answering

| Why does this male<br>have his arms in this<br>position? | balance<br>for balance<br>for balance | angry<br>he's carrying bags<br>hug |
|----------------------------------------------------------|---------------------------------------|------------------------------------|
| Are the clouds<br>high in the sky?                       | yes<br>yes<br>yes                     | no<br>no<br>yes                    |

#### -Visual question answering



Visual question answering



| Is this person trying to hit a ball?      | yes<br>yes<br>yes                 | yes<br>yes<br>yes    |
|-------------------------------------------|-----------------------------------|----------------------|
| What is the person hitting the ball with? | frisbie<br>racket<br>round paddle | bat<br>bat<br>racket |

-Visual question answering



- Visual question answering

# VQA architecture (Agrawal et al, 2016)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

0

-Visual question answering

#### **Baseline system**



http://visualqa.csail.mit.edu/

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ● ● ●

Visual question answering

# Learning commonsense knowledge?

- Zhou et al's baseline system (no hidden layers) performs as well as systems with much more complex architectures (55.7%).
- Correlates input words and visual concepts with the answer.
- Systems are much better than humans at answering without seeing the image (BOW model is at 48%).
- To an extent, the systems are discovering biases in the dataset.
- Systems make errors no human would ever make on unexpected questions: e.g., 'Is there an aardvark?'

Visual question answering

#### Adversarial examples

- For image recognition, images that are correctly recognised are perturbed in a manner imperceptible to a human and are then not recognised. https://arxiv.org/pdf/1312.6199.pdf
- Systematically find adversarial examples via low probability 'pockets' (because the space is not smooth): these can't be found efficiently by random sampling around a given example.
- Not clear whether anything directly comparable for NLP: though https://arxiv.org/pdf/1707.07328.pdf for reading comprehension.
- also 'Build it, Break it: the language edition' https://bibinlp.umiacs.umd.edu/

Visual question answering



https://arxiv.org/pdf/1312.6199.pdf

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Visual question answering



https://arxiv.org/pdf/1312.6199.pdf

◆□> < □> < □> < □> < □> < □> < □</p>

# Outline.

Neural networks in pictures

word2vec

Visualization of NNs

Visual question answering

Perspective

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

# Artificial vs biological NNs

- ANNs and BNNs both take input from many neurons and carry out simple processing (e.g., summation), then output to many neurons.
- ANNs are still tiny: biggest c160 billion parameters. Human brain has tens of billions of neurons, each with up to 100,000 synapses.
- Brain connections are much slower than ANNs: chemical transmission across synapse. Bigger size and greater parallelism (more than) makes up for this.
- Neurotransmitters are complex and not well understood: biological neurons are only crudely approximated by on/off firing.

# Artificial vs biological NNs (continued)

- Brains grow new synapses and lose old ones: individual brains evolve (Hebbian Learning: "Neurons which fire together wire together").
- Brains are embodied: processing sensory information, controlling muscles. There is no hard division between these parts of the brain and concepts/reasoning (e.g., experiments with kick vs hit).
- Brains have evolved over (about) 600 million years (more if we include nerve nets, as in jellyfish).
- Brains are expensive (about 20% of a person's energy), but much more efficient than ANNs.
- and ...

# Deep learning: positives

- Really important change in state-of-the-art for some applications: e.g., language models for speech.
- Multi-modal experiments are now much more feasible.
- Models are learning structure without hand-crafting of features.
- Structure learned for one task (e.g., prediction) applicable to others with limited training data.
- Lots of toolkits etc
- Huge space of new models, far more research going on in NLP, far more industrial research ...

# Deep Learning: negatives

- Models are made as powerful as possible to the point they are "barely possible to train or use" (http://www.deeplearningbook.org 16.7).
- Tuning hyperparameters is a matter of much experimentation.
- Statistical validity of results often questionable.
- Many myths, massive hype and almost no publication of negative results: but there are some NLP tasks where deep learning is not giving much improvement in results.
- Weird results: e.g., '33rpm' normalized to 'thirty two revolutions per minute'

https://arxiv.org/ftp/arxiv/papers/1611/1611.00068.pdf

Adversarial examples.