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Outline of today’s lecture

Lecture 3: Prediction and part-of-speech tagging
Corpora in NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging

First of three lectures that concern syntax (i.e., how words fit
together). This lecture: ‘shallow’ syntax: word sequences and
POS tags. Next lectures: more detailed syntactic structures.
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Corpora

» corpus: text that has been collected for some purpose.

» balanced corpus: texts representing different genres
genre is a type of text (vs domain)

» tagged corpus: a corpus annotated with POS tags

» treebank: a corpus annotated with parse trees

> specialist corpora — e.g., collected to train or evaluate
particular applications
» Movie reviews for sentiment classification
» Data collected from simulation of a dialogue system
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Uses of prediction

>

>

v

unsupervised training for various models (esp. neural
networks, lecture 9).

language modelling for broad-coverage speech recognition
to disambiguate results from signal processing: e.g., using
n-grams or (recently) LSTMs.

word prediction for communication aids:
e.g., to help enter text that’s input to a synthesiser

text entry on mobile phones and similar devices
spelling correction, text segmentation
estimation of entropy
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bigrams (n-gram with N=2)

A probability is assigned to a word based on the previous word:
P(wn|wp_1)

where w, is the nth word in a sentence.
Probability of a sequence of words (assuming independence):

P(WP) ~ ] P(wklwi—1)
P
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bigrams: probability estimation

Probability is estimated from counts in a training corpus:

C(wp_1wp)  C(wp_1wp)
2w C(Wn_1w) T C(Wh)

i.e. count of a particular bigram in the corpus divided by the
count of all bigrams starting with the prior word.
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(s) good morning (/s) (s) good afternoon (/s) (s) good
afternoon (/s) (s) itis very good (/s) (s) it is good (/s)

sequence count bigram probability
(s) 5

(s) good 3 .6
(s) it 2 4
good 5

good morning 1 .2
good afternoon 2 4
good (/s) 2 4
(/s) 5

(Is) (s) 4 1
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Sentence probabilities

Probability of (s) it is good afternoon (/s) is estimated as:
P(it|(s)) P(is|it) P(good|is) P(afternoon|good)P(({/s)|afternoon)
=4x1x.5x.4x1=.08

What about the probability of (s) very good (/s) ?
P(very|(s))?
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Sentence probabilities

Problems because of sparse data:
» smoothing: distribute ‘extra’ probability between rare and
unseen events (e.g., add-one smoothing)
> backoff: approximate unseen probabilities by a more
general probability, e.g. unigrams
cf Chomsky: Colorless green ideas sleep furiously
smoothing means unseen phrases have a non-zero probability
estimate.
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Practical application

» Word prediction: guess the word from initial letters. User
confirms each word, so we predict on the basis of
individual bigrams consistent with letters.

» Speech recognition: given an input which is a lattice of
possible words, we find the sequence with maximum
likelihood.

Implemented efficiently using dynamic programming
(Viterbi algorithm).
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Part of speech tagging

They can fish.

» They_pronoun can_modal fish_verb.
(‘can’ meaning ‘are able to’)

» They_pronoun can_verb fish_plural-noun.
(‘can’ meaning ‘put into cans’)
Ambiguity
can: modal verb, verb, singular noun
fish: verb, singular noun, plural noun
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Tagset (CLAWS 5)

tagset: standardized codes for fine-grained parts of speech.
CLAWS 5: over 60 tags, including:

NN1 singular noun NN2 plural noun
PNP personal pronoun | VMO modal auxiliary verb
VVB base form of verb | VVI infinitive form of verb

» They_PNP can_VMO fish_VVI._PUN

» They_PNP can_VVB fish_NN2 ._PUN

» They_PNP can_VMO fish_NN2 ._ PUN no full parse
> etc
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Why POS tag?

Coarse-grained syntax / word sense disambiguation: fast, so
applicable to very large corpora.

» Some linguistic research and lexicography: e.g., how often
is tango used as a verb? dog?

» Named entity recognition and similar tasks (finite state
patterns over POS tagged data).

» Features for machine learning e.g., sentiment
classification. (e.g., stink_V vs stink_N).

» Fast preliminary processing for full parsing: provide
guesses at unknown words, cut down search space.
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Stochastic part of speech tagging using Hidden
Markov Models (HMM)

1. Start with untagged text.

2. Assign all possible tags to each word in the text on the
basis of a lexicon that associates words and tags.

3. Find the most probable sequence (or n-best sequences) of
tags, based on probabilities from the training data.

> lexical probability: e.g., is can most likely to be VMO, VVB,
VVI or NN1?

» and tag sequence probabilities: e.g., is VMO or NN1 more
likely after PNP?
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Assigning probabilities

Estimate tag sequence: n tags with the maximum probability,
given n words:
t{! = argmax P(t{'|wy)
tf

By Bayes theorem:

P(w?|t7)P(t7)
P(t"w™) = 11 1
( 1 | 1 ) P(W1n)
but P(w{’) is constant:

' = argmax P(w]|tM) P(t])
tn

1
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Bigrams

Bigram assumption: probability of a tag depends on previous
tag, hence product of bigrams:

n

P(th) =~ [ ] P(tilti-1)

i=1
Probability of word estimated on basis of its tag alone:

n

PwiIt) ~ [ | P(wilt)
i—1

Hence:
n
f = argrnnaXH P(wilt;) P(ti|ti—+)

B i
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Example

Tagging: they fish (ignoring punctuation)
Assume PNP is the only tag for they, and that fish could be
NN2 or VVB.
Then the estimate for PNP NN2 will be:
P(they|PNP) P(NN2|PNP) P(fish|NN2)
and for PNP VVB:

P(they|PNP) P(VVB|PNP) P(fish|VVB)
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Training stochastic POS tagging

They_PNP used_VVD to_TOO0 can_VVI fish_NN2 in_PRP
those DTO0 towns_ NN2 . PUN But_CJC now_AV0 few DTO
people_NN2 fish_VVB in_PRP these_DTO0 areas_NN2
._PUN

sequence count bigram probability

NN2 4

NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25

Also lexicon: fish NN2 VVB
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Assigning probabilities, more details

» Maximise the overall tag sequence probability — e.g., use
Viterbi.

> Actual systems use trigrams — smoothing and backoff are
critical.

» Unseen words: these are not in the lexicon, so use all
possible open class tags, possibly restricted by
morphology.
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Evaluation of POS tagging

» percentage of correct tags

> one tag per word (some systems give multiple tags when
uncertain)

» over 95% for English on normal corpora (but note
punctuation is unambiguous)

» performance plateau about 97% on most commonly used
test set for English

» baseline of taking the most common tag gives 90%
accuracy

» different tagsets give slightly different results: utility of tag
to end users vs predictive power
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Evaluation in general

» Training data and test data Test data must be kept unseen,
often 90% training and 10% test data.

» Baseline

» Ceiling Human performance on the task, where the ceiling
is the percentage agreement found between two
annotators (interannotator agreement)

» Error analysis Error rates are nearly always unevenly
distributed.

» Reproducibility
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Representative corpora and data sparsity

> test corpora have to be representative of the actual
application

» POS tagging and similar techniques are not always very
robust to differences in genre

» balanced corpora may be better, but still don’t cover all text
types

» communication aids: extreme difficulty in obtaining data,
text corpora don’t give good prediction for real data
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