Discrete Mathematics

<wWW.cl.cam.ac.uk/teaching/1819/DiscMath>

Prof Glynn Winskel

Glynn.Winskel@cl.cam.ac.uk

- 0 -

What is Discrete Mathematics?
from Discrete Mathematics (second edition) by N. Biggs
Discrete Mathematics is the branch of Mathematics in which we deal with questions involving finite or countably infinite sets. In particular this means that the numbers involved are either integers, or numbers closely related to them, such as fractions or 'modular' numbers.

```
What are we up to?
```

- Learn to read and write, and also work with, mathematical arguments.
- Doing some basic discrete mathematics.
- Getting a taste of computer science applications.

What is it that we do?

In general:

Build mathematical models and apply methods to analyse problems that arise in computer science.

In particular:

Make and study mathematical constructions by means of definitions and theorems. We aim at understanding their properties and limitations.

Lecture plan

I. Proofs.
II. Numbers.
III. Sets.
IV. Regular languages and finite automata.

Proofs in practice

We are interested in examining the following statement:
The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage.

Proofs

Objectives

- To develop techniques for analysing and understanding mathematical statements.
- To be able to present logical arguments that establish mathematical statements in the form of clear proofs.
- To prove Fermat's Little Theorem, a basic result in the theory of numbers that has many applications in computer science.

Proofs in practice

We are interested in examining the following statement:
The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage. For instance, it presupposes that you know:

- what a statement is;
- what the integers $(\ldots,-1,0,1, \ldots)$ are, and that amongst them there is a class of odd ones $(\ldots,-3,-1,1,3, \ldots)$;
- what the product of two integers is, and that this is in turn an integer.

More precisely put, we may write:

Even more precisely, we should write

```
For all integers m}\mathrm{ and }n\mathrm{ , if }m\mathrm{ and }n\mathrm{ are odd then so
is m\cdotn
```

which now additionally presupposes that you know:

- what
for all . . .
statements are, and how one goes about proving them.
Thus, in trying to understand and then prove the above statement, we are assuming quite a lot of mathematical jargon that one needs to learn and practice with to make it a useful, and in fact very powerful, tool.

More precisely put, we may write:
If m and n are odd integers then so is $m \cdot n$.
which further presupposes that you know:

- what variables are;
- what
if . . . then . . .
statements are, and how one goes about proving them;
- that the symbol "." is commonly used to denote the product operation.

Some mathematical jargon

Statement

A sentence that is either true or false - but not both.

Example 1

$$
{ }^{\prime} e^{i \pi}+1=0 \prime
$$

Non-example

Theorem

A very important true statement.

Proposition

A less important but nonetheless interesting true statement.

Lemma

A true statement used in proving other true statements.

Corollary

A true statement that is a simple deduction from a theorem or proposition.

Example 3

1.
2.

Fermat's Last Theorem
The Pumping Lemma
$-24-$

Proof

Logical explanation of why a statement is true; a method for establishing truth.

Example 4

1.

Goldbach's Conjecture
2.

The Riemann Hypothesis

Proof

Logical explanation of why a statement is true; a method for establishing truth.

Logic

The study of methods and principles used to distinguish good (correct) from bad (incorrect) reasoning.

Example 5

1.
2.
3.

Classical predicate logic
.
Hoare logic
Temporal logic

- 28-a

Definition
An explanation of the mathematical meaning of a word (or phrase).
The word (or phrase) is generally defined in terms of properties.

Axiom

A basic assumption about a mathematical situation.
Axioms can be considered facts that do not need to be proved (just to get us going in a subject) or they can be used in definitions.

Example 6

1.

Euclidean Geometry
2. Riemannian Geometry

Hyperbolic Geometry
$-29-$

Definition, theorem, intuition, proof in practice

Proposition 8 For all integers m and n , if m and n are odd then so is $\mathrm{m} \cdot \mathrm{n}$.

Warning: It is vitally important that you can recall definitions precisely. A common problem is not to be able to advance in some problem because the definition of a word is unknown.

Intuition:

Definition, theorem, intuition, proof in practice

Definition 7 An integer is said to be odd whenever it is of the form $2 \cdot i+1$ for some (necessarily unique) integer i.

Proposition 8 For all integers m and n, if m and n are odd then so is $\mathrm{m} \cdot \mathrm{n}$.

$-32-$

Simple and composite statements

A statement is simple (or atomic) when it cannot be broken into other statements, and it is composite when it is built by using several (simple or composite statements) connected by logical expressions (e.g., if. . . then. .. ; ...implies ...; ... if and only if ...; ... and... ; either ... or ... ; it is not the case that ... ; for all ... ; there exists ... ; etc.)

Examples:

' 2 is a prime number'
'for all integers m and n, if $m \cdot n$ is even then either n or m are even'

Implication

Theorems can usually be written in the form

> | if a collection of assumptions holds, |
| :--- |
| then so does some conclusion |

or, in other words,
a collection of assumptions implies some conclusion
or, in symbols,

```
a collection of hypotheses }\Longrightarrow\mathrm{ some conclusion
```

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.

The main proof strategy for implication:

To prove a goal of the form

$$
P \Longrightarrow Q
$$

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.

Scratch work:

Before using the strategy

Assumptions	Goal
$:$	$P \Longrightarrow \mathrm{Q}$

After using the strategy
Assumptions Goal

Proof pattern:

In order to prove that

$$
\mathrm{P} \Longrightarrow \mathrm{Q}
$$

1. Write: Assume P.
2. Show that Q logically follows.

Q

Proposition 8 If m and n are odd integers, then so is $\mathrm{m} \cdot \mathrm{n}$.
Proof:

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

Definition:

the contrapositive of ' P implies Q ' is 'not Q implies not P '

Scratch work:

Before using the strategy

Assumptions	Goal $>Q$

\vdots
After using the strategy

Assumptions Goal
not P

$$
\begin{gathered}
\vdots \\
\text { not Q }
\end{gathered}
$$

Definition 9 A real number is:

- rational if it is of the form m / n for a pair of integers m and n ; otherwise it is irrational.
- positive if it is greater than 0 , and negative if it is smaller than 0.
- nonnegative if it is greater than or equal 0 , and nonpositive if it is smaller than or equal 0.
- natural if it is a nonnegative integer.

Logical Deduction

- Modus Ponens -

A main rule of logical deduction is that of Modus Ponens:
From the statements P and $P \Longrightarrow Q$, the statement Q follows.
or, in other words,
If P and $P \Longrightarrow Q$ hold then so does Q.
or, in symbols,

Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x}.

Proof:

The use of implications:

To use an assumption of the form $P \Longrightarrow \mathrm{Q}$, aim at establishing P.
Once this is done, by Modus Ponens, one can conclude Q and so further assume it.

Theorem 11 Let P_{1}, P_{2}, and P_{3} be statements. If $P_{1} \Longrightarrow P_{2}$ and $P_{2} \Longrightarrow P_{3}$ then $P_{1} \Longrightarrow P_{3}$.

Proof:
Bi-implication
Some theorems can be written in the form
P is equivalent to Q
or, in other words,

> P implies Q, and vice versa
or
Q implies P, and vice versa
or
P if, and only if, Q
or, in symbols,

$-58-$

Proposition 12 Suppose that n is an integer. Then, n is even iff n^{2} is even.

Proof:

Proof pattern:

In order to prove that

$$
\mathrm{P} \Longleftrightarrow \mathrm{Q}
$$

1. Write: (\Longrightarrow) and give a proof of $P \Longrightarrow Q$.
2. Write: (\Longleftarrow) and give a proof of $Q \Longrightarrow P$.

Divisibility and congruence

Definition 13 Let d and n be integers. We say that divides n, and write $\mathrm{d} \mid \mathrm{n}$, whenever there is an integer k such that $\mathrm{n}=\mathrm{k} \cdot \mathrm{d}$.

Example 14 The statement $2 \mid 4$ is true, while $4 \mid 2$ is not.
Definition 15 Fix a positive integer m. For integers a and b , we say that a is congruent to b modulo m , and write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, whenever $m \mid(a-b)$.

Example 16

1. $18 \equiv 2(\bmod 4)$
2. $2 \equiv-2(\bmod 4)$
3. $18 \equiv-2(\bmod 4)$

Universal quantification

Universal statements are of the form

$$
\begin{aligned}
& \text { for all individuals } x \text { of the universe of discourse, } \\
& \text { the property } P(x) \text { holds }
\end{aligned}
$$

or, in other words,

```
no matter what individual x in the universe of discourse
one considers, the property P
```

or, in symbols,

Example 18

2. For every positive real number x, if x is irrrational then so is \sqrt{x}.
3. For every integer n, we have that n is even iff so is n^{2}.

Proof pattern:

In order to prove that

$$
\forall x . P(x)
$$

1. Write: Let x be an arbitrary individual.
2. Show that $P(x)$ holds.

The main proof strategy for universal statements:

To prove a goal of the form

$$
\forall x . P(x)
$$

let x stand for an arbitrary individual and prove $P(x)$.

Proof pattern:

In order to prove that

$$
\forall x . \mathrm{P}(x)
$$

1. Write: Let x be an arbitrary individual.

Warning: Make sure that the variable x is new (also referred to as fresh) in the proof! If for some reason the variable x is already being used in the proof to stand for something else, then you must use an unused variable, say y, to stand for the arbitrary individual, and prove $P(y)$.
2. Show that $P(x)$ holds.

Scratch work:

Before using the strategy

Assumptions

Goal

$\forall x . P(x)$
:

After using the strategy
Assumptions
Goal
$P(x) \quad$ (for a new (or fresh) x) \vdots

Proposition 19 Fix a positive integer m. For integers a and b, we have that $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ if, and only if, for all positive integers n , we have that $\mathrm{n} \cdot \mathrm{a} \equiv \mathrm{n} \cdot \mathrm{b}(\bmod \mathrm{n} \cdot \mathrm{m})$.

Proof:

The use of universal statements:

To use an assumption of the form $\forall x . \mathrm{P}(\mathrm{x})$, you can plug in any value, say a, for x to conclude that $P(a)$ is true and so further assume it.

This rule is called universal instantiation.

Equality axioms

Just for the record, here are the axioms for equality.

- Every individual is equal to itself.

$$
\forall x . x=x
$$

- For any pair of equal individuals, if a property holds for one of them then it also holds for the other one.

$$
\forall x \cdot \forall y \cdot x=y \Longrightarrow(P(x) \Longrightarrow P(y))
$$

NB From these axioms one may deduce the usual intuitive properties of equality, such as

$$
\forall x \cdot \forall y \cdot x=y \Longrightarrow y=x
$$

and

$$
\forall x \cdot \forall y \cdot \forall z \cdot x=y \Longrightarrow(y=z \Longrightarrow x=z)
$$

However, in practice, you will not be required to formally do so; rather you may just use the properties of equality that you are already familiar with.

The proof strategy for conjunction:

To prove a goal of the form

$$
P \wedge Q
$$

first prove P and subsequently prove Q (or vice versa).

Conjunction

Conjunctive statements are of the form

```
P and Q
```

or, in other words,
both P and also Q hold
or, in symbols,

Proof pattern:

In order to prove

$$
P \wedge Q
$$

1. Write: Firstly, we prove P. and provide a proof of P.
2. Write: Secondly, we prove Q. and provide a proof of Q.

Scratch work:

Before using the strategy Assumptions	
	Goal
\vdots	

After using the strategy

Assumptions	Goal	Assumptions	Goal
\vdots	P		Q
		\vdots	

The use of conjunctions:

To use an assumption of the form $P \wedge Q$, treat it as two separate assumptions: P and Q .

Theorem 20 For every integer n , we have that $6 \mid \mathrm{n}$ iff $2 \mid \mathrm{n}$ and $3 \mid n$.

PROOF:

Existential quantification

Existential statements are of the form
there exists an individual x in the universe of discourse for which the property $\mathrm{P}(x)$ holds
or, in other words,
for some individual x in the universe of discourse, the property $\mathrm{P}(\mathrm{x})$ holds
or, in symbols,

$$
\exists x . P(x)
$$

Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval $[\mathrm{a}, \mathrm{b}]$. For every y in between $\mathrm{f}(\mathrm{a})$ and $f(b)$, there exists v in between a and b such that $f(v)=y$.

Intuition:

Example: The Pigeonhole Principle.
Let n be a positive integer. If $n+1$ letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

The main proof strategy for existential statements:

To prove a goal of the form

$$
\exists x . P(x)
$$

find a witness for the existential statement; that is, a value of x, say w, for which you think $P(x)$ will be true, and show that indeed $P(w)$, i.e. the predicate $P(x)$ instantiated with the value w, holds.

Proof pattern:

In order to prove

$$
\exists x . P(x)
$$

1. Write: Let $w=\ldots$ (the witness you decided on).
2. Provide a proof of $P(w)$.

Scratch work:

Before using the strategy
Assumptions
Goal
$\exists x . P(x)$

After using the strategy
Assumptions
Goals
$P(w)$
$w=\ldots$ (the witness you decided on)

Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k=i^{2}-j^{2}$.

Proof:

Theorem 24 For all integers $\mathrm{l}, \mathrm{m}, \mathrm{n}$, if $\mathrm{l} \mid \mathrm{m}$ and $\mathrm{m} \mid \mathrm{n}$ then $\mathrm{l} \mid \mathrm{n}$. Proof:

The use of existential statements:

To use an assumption of the form $\exists x . P(x)$, introduce a new variable x_{0} into the proof to stand for some individual for which the property $P(x)$ holds. This means that you can now assume $P\left(x_{0}\right)$ true.

Unique existence

The notation

Disjunction

$\exists!x . P(x)$
stands for
the unique existence of an x for which the property $\mathrm{P}(\mathrm{x})$ holds .

That is,

$$
\exists x \cdot \mathrm{P}(\mathrm{x}) \wedge(\forall y \cdot \forall z \cdot(\mathrm{P}(\mathrm{y}) \wedge \mathrm{P}(z)) \Longrightarrow y=z)
$$

The main proof strategy for disjunction:

To prove a goal of the form

$$
P \vee Q
$$

you may

1. try to prove P (if you succeed, then you are done); or
2. try to prove Q (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either P or Q .

Disjunctive statements are of the form
P or Q
or, in other words,
either P, Q, or both hold
or, in symbols,

$$
\mathrm{P} \vee \mathrm{Q}
$$

Proposition 25 For all integers n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.

Proof:

Scratch work:

The use of disjunction:

To use a disjunctive assumption

$$
P_{1} \vee P_{2}
$$

to establish a goal Q , consider the following two cases in turn: (i) assume P_{1} to establish Q, and (ii) assume P_{2} to establish Q.

```
Before using the strategy
\begin{tabular}{cc} 
Assumptions & Goal \\
\(\vdots\) & \(Q\) \\
\(P_{1} \vee P_{2}\) &
\end{tabular}
```

After using the strategy

Assumptions	Goal	Assumptions	Goal
\vdots	Q		Q
P_{1}		\vdots	
		P_{2}	

- 107 -

A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if $\mathrm{m}=0$ or $\mathrm{m}=\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 1(\bmod \mathrm{p})$.

Proof:

Lemma 28 For all integers p and m, if p is prime and $0<m<p$ then $\binom{p}{m} \equiv 0(\bmod p)$.

Proof:

Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{p}{m} \equiv 0(\bmod p)$ or $\binom{p}{m} \equiv 1(\bmod p)$.

Proof:

Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$
(m+1)^{p} \equiv m^{p}+1(\bmod p) .
$$

Proposition 35 (The Many Dropout Lemma) For all natural numbers m and i, and primes p,

$$
(m+i)^{p} \equiv \mathfrak{m}^{p}+i(\bmod p)
$$

Proof:

The Many Dropout Lemma (Proposition 35) gives the fist part of the following very important theorem as a corollary.

Theorem 36 (Fermat's Little Theorem) For all natural numbers i and primes p,

1. $\mathfrak{i}^{p} \equiv \mathfrak{i}(\bmod p)$, and
2. $\mathfrak{i}^{p-1} \equiv 1(\bmod p)$ whenever i is not a multiple of p.

The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .

$$
-121-
$$

Negation

Negations are statements of the form

or, in other words,

$$
\mathrm{P} \text { is not the case }
$$

or

$$
\mathrm{P} \text { is absurd }
$$

or
P leads to contradiction
or, in symbols,

Btw

1. Fermat's Little Theorem has applications to:
(a) primality testing ${ }^{\text {a }}$,
(b) the verification of floating-point algorithms, and
(c) cryptographic security.
${ }^{\text {a }}$ For instance, to establish that a positive integer m is not prime one may proceed to find an integer i such that $i^{m} \not \equiv i(\bmod m)$.

$$
\text { — } 122 \text { - }
$$

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent form and use instead this other statement.

Logical equivalences

$$
\begin{aligned}
& \neg(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longleftrightarrow \mathrm{P} \wedge \neg \mathrm{Q} \\
& \neg(\mathrm{P} \Longleftrightarrow \mathrm{Q}) \Longleftrightarrow \mathrm{P} \Longleftrightarrow \neg \mathrm{Q} \\
& \neg(\forall \mathrm{x} \cdot \mathrm{P}(\mathrm{x})) \Longleftrightarrow \exists \mathrm{x} \cdot \neg \mathrm{P}(\mathrm{x}) \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \Longleftrightarrow(\neg \mathrm{P}) \vee(\neg \mathrm{Q}) \\
& \neg(\exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x})) \Longleftrightarrow \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \Longleftrightarrow \mathrm{x} . \neg \mathrm{P}(\mathrm{x}) \\
& \neg(\neg \mathrm{P}) \Longleftrightarrow \mathrm{P} \\
&\neg \mathrm{P}) \wedge(\neg \mathrm{Q}) \\
& \Longleftrightarrow \\
&(\mathrm{P} \Rightarrow \text { false })
\end{aligned}
$$

Theorem 37 For all statements P and Q ,

$$
(P \Longrightarrow Q) \Longrightarrow(\neg Q \Longrightarrow \neg P)
$$

Proof:

Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg \mathrm{P} \Longrightarrow$ false

Proof pattern:

In order to prove
P

1. Write: We use proof by contradiction. So, suppose P is false.
2. Deduce a logical contradiction.
3. Write: This is a contradiction. Therefore, P must be true.

Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg \mathrm{P} \Longrightarrow$ false

Scratch work:

Before using the strategy

Assumptions Goal
P
\vdots

After using the strategy

Assumptions Goal contradiction
\vdots
$\neg P$

Theorem 39 For all statements P and Q ,

$$
(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}) \Longrightarrow(\mathrm{P} \Longrightarrow \mathrm{Q})
$$

Proof:

Numbers

Objectives

- Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- To understand and be able to proficiently use the Principle of Mathematical Induction in its various forms.

Lemma 41 A positive real number x is rational iff
\exists positive integers m, n :

$$
x=m / n \wedge \neg(\exists \text { prime } p: p|m \wedge p| n)
$$

Proof:

Natural numbers

In the beginning there were the natural numbers

```
N : 0, 1, ..., n, n+1, ...
```

generated from zero by successive increment; that is, put in ML:

```
datatype
    N = zero | succ of N
```

The basic operations of this number system are:

- Addition

- Multiplication

Also the multiplicative structure ($\mathbb{N}, 1, \cdot$) of natural numbers with one and multiplication is a commutative monoid:

- Monoid laws

$$
1 \cdot n=n=n \cdot 1, \quad(l \cdot m) \cdot n=l \cdot(m \cdot n)
$$

- Commutativity law

$$
m \cdot n=n \cdot m
$$

The additive structure $(\mathbb{N}, 0,+)$ of natural numbers with zero and addition satisfies the following:

- Monoid laws

$$
0+n=n=n+0, \quad(l+m)+n=l+(m+n)
$$

- Commutativity law

$$
m+n=n+m
$$

and as such is what in the mathematical jargon is referred to as a commutative monoid.

The additive and multiplicative structures interact nicely in that they satisfy the

- Distributive law

$$
l \cdot(m+n)=l \cdot m+l \cdot n
$$

and make the overall structure $(\mathbb{N}, 0,+, 1, \cdot)$ into what in the mathematical jargon is referred to as a commutative semiring.

Cancellation

The additive and multiplicative structures of natural numbers further satisfy the following laws.

- Additive cancellation

For all natural numbers k, m, n,

$$
\mathrm{k}+\mathrm{m}=\mathrm{k}+\mathrm{n} \Longrightarrow \mathrm{~m}=\mathrm{n} .
$$

- Multiplicative cancellation

For all natural numbers k, m, n,

$$
\text { if } k \neq 0 \text { then } k \cdot m=k \cdot n \Longrightarrow m=n .
$$

Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there exists a number y such that $x+y=0$
2. A number x is said to admit a multiplicative inverse whenever there exists a number y such that $x \cdot y=1$.

Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there exists a number y such that $x+y=0$.

$$
\text { — } 153-
$$

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for nonzero numbers yields two very interesting results:

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for nonzero numbers yields two very interesting results:
(i) the integers

$$
\mathbb{Z}: \ldots-n, \ldots,-1,0,1, \ldots, n, \ldots
$$

which then form what in the mathematical jargon is referred to as a commutative ring, and
(ii) the rationals \mathbb{Q} which then form what in the mathematical jargon is referred to as a field.

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.

Definition 44 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m,n) and $\operatorname{rem}(m, n)$.

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n , there exists a unique pair of integers q and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.

The Division Algorithm in ML:

```
fun divalg( m , n )
    = let
        fun diviter( q , r )
            = if r<n then ( q , r )
                else diviter( q+1 , r-n )
        in
            diviter( 0 , m )
        end
fun quo(m , n ) = #1( divalg(m, n ) )
fun rem( m , n ) = #2( divalg( m , n ) )
```

Theorem 45 For every natural number m and positive natural number n, the evaluation of divalg (m, n) terminates, outputing a pair of natural numbers $\left(q_{0}, r_{0}\right)$ such that $\mathrm{r}_{0}<\mathrm{n}$ and $\mathrm{m}=\mathrm{q}_{0} \cdot \mathrm{n}+\mathrm{r}_{0}$. Proof:

Corollary 47 Let m be a positive integer.

1. For every natural number n,

$$
n \equiv \operatorname{rem}(n, m) \quad(\bmod m)
$$

Proof:

Proposition 46 Let m be a positive integer. For all natural numbers k and l ,

$$
\mathrm{k} \equiv \mathrm{l}(\bmod \mathfrak{m}) \Longleftrightarrow \operatorname{rem}(\mathrm{k}, \mathfrak{m})=\operatorname{rem}(\mathrm{l}, \mathfrak{m})
$$

Proof:

Corollary 47 Let m be a positive integer.

1. For every natural number n,

$$
\mathfrak{n} \equiv \operatorname{rem}(n, m) \quad(\bmod m)
$$

2. For every integer k there exists a unique integer $[\mathrm{k}]_{\mathrm{m}}$ such that

$$
0 \leq[k]_{\mathfrak{m}}<m \text { and } k \equiv[k]_{m}(\bmod m)
$$

Proof:

Modular arithmetic

For every positive integer m, the integers modulo m are:

$$
\mathbb{Z}_{\mathrm{m}}: 0, \quad 1, \quad \cdots, \quad m-1
$$

with arithmetic operations of addition $+_{m}$ and multiplication $\cdot m$ defined as follows

$$
\begin{aligned}
& k+_{m} l=[k+l]_{m}=\operatorname{rem}(k+l, m), \\
& \mathrm{k} \cdot \mathrm{~m} \mathrm{l}=[\mathrm{k} \cdot \mathrm{l}]_{\mathrm{m}}=\operatorname{rem}(\mathrm{k} \cdot \mathrm{l}, \mathrm{~m})
\end{aligned}
$$

for all $0 \leq k, l<m$.

Example 50 The addition and multiplication tables for \mathbb{Z}_{5} are:

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$\cdot 5$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse
0	0
1	4
2	3
3	2
4	1

	multiplicative inverse
0	-
1	1
2	3
3	2
4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Important mathematical jargon: Sets

Very roughly, sets are the mathematicians' data structures. Informally, we will consider a set as a (well-defined, unordered) collection of mathematical objects, called the elements (or members) of the set.

Proposition 51 For all natural numbers $m>1$, the modular-arithmetic structure

$$
\left(\mathbb{Z}_{m}, 0,+_{m}, 1, \cdot{ }_{m}\right)
$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

$$
-170-
$$

Set membership

The symbol ' \in ' known as the set membership predicate is central to the theory of sets, and its purpose is to build statements of the form

$$
x \in A
$$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.

Defining sets

The set $\left|\begin{array}{c}\text { of even primes } \\ \text { of booleans } \\ {[-2 . .3]}\end{array}\right|$ is $\left|\begin{array}{c}\{2\} \\ \{\text { true, false }\} \\ \{-2,-1,0,1,2,3\}\end{array}\right|$

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set comprehension as follows

$$
D(n)=\{d \in \mathbb{N}: d \mid n\} .
$$

Example 53

1. $\mathrm{D}(0)=\mathbb{N}$
2. $\mathrm{D}(1224)=\left\{\begin{array}{c}1,2,3,4,6,8,9,12,17,18,24,34,36,51,68, \\ 72,102,136,153,204,306,408,612,1224\end{array}\right\}$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$
\{x \in A \mid P(x)\} \quad, \quad\{x \in A: P(x)\}
$$

Going a step further, what about the common divisors of pairs of natural numbers? That is, the set

$$
\mathrm{CD}(\mathrm{~m}, \mathrm{n})=\{\mathrm{d} \in \mathbb{N}: \mathrm{d}|\mathrm{~m} \wedge \mathrm{~d}| \mathrm{n}\}
$$

for $m, n \in \mathbb{N}$.

Example 54

$$
\mathrm{CD}(1224,660)=\{1,2,3,4,6,12\}
$$

Since $C D(n, n)=D(n)$, the computation of common divisors is as hard as that of divisors. But, what about the computation of the greatest common divisor?

Lemma 56 (Key Lemma) Let m and m^{\prime} be natural numbers and let n be a positive integer such that $\mathrm{m} \equiv \mathrm{m}^{\prime}(\bmod \mathfrak{n})$. Then,

$$
C D(m, n)=C D\left(m^{\prime}, n\right)
$$

Proof:

Lemma 58 For all positive integers m and n, m and n. This is

Euclid's Algorithm

Lemma 58 For all positive integers m and n,

$$
C D(m, n)= \begin{cases}D(n) & , \text { if } n \mid m \\ C D(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

$$
C D(m, n)= \begin{cases}D(n) & , \text { if } n \mid m \\ C D(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

Since a positive integer n is the greatest divisor in $D(n)$, the lemma suggests a recursive procedure:

$$
\operatorname{gcd}(\mathfrak{m}, n)= \begin{cases}n & , \text { if } n \mid m \\ \operatorname{gcd}(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

for computing the greatest common divisor, of two positive integers

$$
\operatorname{gcd}
$$

```
fun gcd( m , n )
    = let
        val ( q , r ) = divalg( m , n )
    in
        if r = 0 then n
        else gcd( n , r )
    end
```

Example $59(\operatorname{gcd}(13,34)=1)$

$$
\begin{aligned}
\operatorname{gcd}(13,34) & =\operatorname{gcd}(34,13) \\
& =\operatorname{gcd}(13,8) \\
& =\operatorname{gcd}(8,5) \\
& =\operatorname{gcd}(5,3) \\
& =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,1) \\
& =1
\end{aligned}
$$

Theorem 60 Euclid's Algorithm gcd terminates on all pairs of positive integers and, for such m and $n, \operatorname{gcd}(m, n)$ is the greatest common divisor of m and n in the sense that the following two properties hold:
(i) both $\operatorname{gcd}(m, n) \mid m$ and $\operatorname{gcd}(m, n) \mid n$, and
(ii) for all positive integers d such that $\mathrm{d} \mid \mathrm{m}$ and $\mathrm{d} \mid \mathrm{n}$ it necessarily follows that $\mathrm{d} \mid \operatorname{gcd}(\mathrm{m}, \mathrm{n})$.

Proof:

Fractions in lowest terms

```
fun lowterms( m , n )
    = let
        val gcdval = gcd( m , n )
    in
        ( m div gcdval , n div gcdval )
    end
```

Lemma 62 For all positive integers l, m, and n ,

1. (Commutativity) $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m)$,
2. (Associativity) $\operatorname{gcd}(l, \operatorname{gcd}(m, n))=\operatorname{gcd}(\operatorname{gcd}(l, m), n)$,
3. $(\text { Linearity })^{a} \operatorname{gcd}(l \cdot m, l \cdot n)=l \cdot \operatorname{gcd}(m, n)$.

Proof:
${ }^{a}$ Aka (Distributivity).

$$
-200-
$$

Corollary 64 (Euclid's Theorem) For positive integers m and n , and prime p , if $\mathrm{p} \mid(\mathrm{m} \cdot \mathrm{n})$ then $\mathrm{p} \mid \mathrm{m}$ or $\mathrm{p} \mid \mathrm{n}$.

Now, the second part of Fermat's Little Theorem follows as a corollary of the first part and Euclid's Theorem.

Proof:

Theorem 63 For positive integers k, m, and n, if $k \mid(m \cdot n)$ and $\operatorname{gcd}(\mathrm{k}, \mathrm{m})=1$ then $\mathrm{k} \mid \mathrm{n}$.

Proof:

Fields of modular arithmetic

Corollary 66 For prime p, every non-zero element i of \mathbb{Z}_{p} has $\left[i^{\mathfrak{p}-2}\right]_{p}$ as multiplicative inverse. Hence, \mathbb{Z}_{p} is what in the mathematical jargon is referred to as a field.

Extended Euclid's Algorithm

Example 67

$$
\left.\begin{aligned}
& \quad \operatorname{gcd}(34,13) \\
& =\operatorname{gcd}(13,8) \\
& =\operatorname{gcd}(8,5) \\
& =\operatorname{gcd}(5,3) \\
& =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,1)
\end{aligned} \right\rvert\, \begin{array}{llll}
34 & =2 \cdot & 13+8 \\
13 & =1 \cdot & 8+5 \\
8 & =1 \cdot & 5+3 \\
5 & =1 \cdot & 3+2 \\
3 & =1 \cdot & 2+1 \\
2 & =2 \cdot & 1+0
\end{array}
$$

$$
=1
$$

Example 67

$$
=1
$$

$\operatorname{gcd}(34,13)$	$8=$	34	-2.	13
$=\operatorname{gcd}(13,8)$	$5=$	13	-1 .	8
$=\operatorname{gcd}(8,5)$	$3=$	8	-1.	5
$=\operatorname{gcd}(5,3)$	$2=$	5	-1.	3
$=\operatorname{gcd}(3,2)$	$1=$	3	-1 .	2

$\operatorname{gcd}(34,13)$	$8=$	34	-2.	13
$=\operatorname{gcd}(13,8)$	$5=$	13	-1.	8
	$=$	13	-1.	$\overbrace{(34-2 \cdot 13)}$
	$=$	$-1 \cdot 34+3 \cdot 13$		
$=\operatorname{gcd}(8,5)$	$3=$	8	-1.	5
$=\operatorname{gcd}(5,3)$	$2=$	5	-1.	3
$=\operatorname{gcd}(3,2)$	$1=$	3	-1.	2

- 21.5-b -

$\operatorname{gcd}(34,13)$	$8=$	34	-2.	13
$=\operatorname{gcd}(13,8)$	$5=$	13	-1.	8
		13	-1.	$\overbrace{(34-2 \cdot 13)}$
		$-1 \cdot 34+3 \cdot 13$		
$=\operatorname{gcd}(8,5)$	$3=$	8	-1.	5
		$\begin{gathered} \overbrace{(34-2 \cdot 13)} \\ 2 \cdot 34+(-5) \cdot 13 \end{gathered}$	-1.	$\overbrace{(-1 \cdot 34+3 \cdot 13)}$
$=\operatorname{gcd}(5,3)$	$2=$	5	-1.	3
		$\begin{gathered} \overbrace{-1 \cdot 34+3 \cdot 13} \\ -3 \cdot 34+8 \cdot 13 \end{gathered}$	-1 .	$\overbrace{(2 \cdot 34+(-5) \cdot 13)}$
$=\operatorname{gcd}(3,2)$	$1=$	${ }^{3}$	-1.	2
	-	$\overbrace{(2 \cdot 34+(-5) \cdot 13)}$	-1	$\overbrace{(-3 \cdot 34+8 \cdot 13)})$
		$5 \cdot 34+(-13) \cdot 13$		

$\operatorname{gcd}(34,13)$	$8=$	34	-2.	13
$=\operatorname{gcd}(13,8)$	$5=$	13	-1 .	8
	$=$	13	-1.	$\overbrace{(34-2 \cdot 13)}$
	$=$	$-1 \cdot 34+3 \cdot 13$		
$=\operatorname{gcd}(8,5)$	$3=$	8	-1.	5
	$=$	$\begin{gathered} \overbrace{(34-2 \cdot 13)} \\ 2 \cdot 34+(-5) \cdot 13 \end{gathered}$	-1.	$\overbrace{(-1 \cdot 34+3 \cdot 13)}$
$=\operatorname{gcd}(5,3)$	$2=$	5	-1.	3
	=	$\overbrace{-1 \cdot 34+3 \cdot 13}$		$\overbrace{(2 \cdot 34+(-5) \cdot 13)}$
		$-3 \cdot 34+8 \cdot 13$		
$=\operatorname{gcd}(3,2)$	$1=$	3	-1.	2

Linear combinations

Definition 68 An integer r is said to be a linear combination of a pair of integers m and n whenever
there exist a pair of integers s and t , referred to as the coefficients of the linear combination, such that

$$
\left[\begin{array}{ll}
s & t
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r
$$

that is

$$
\mathrm{s} \cdot \mathrm{~m}+\mathrm{t} \cdot \mathrm{n}=\mathrm{r}
$$

Proposition 70 For all integers m and n,

1. $\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=m \wedge\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=n ;$
2. $\operatorname{gcd}(m, n)$ is a linear combination of m and n, and
3. a pair $\mathrm{lc}_{1}(\mathrm{~m}, \mathrm{n}), \mathrm{lc}_{2}(\mathrm{~m}, \mathrm{n})$ of integer coefficients for it, i.e. such that

$$
\left[\begin{array}{ll}
l_{c_{1}}(m, n) & \operatorname{lc}_{2}(m, n)
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=\operatorname{gcd}(m, n)
$$

can be efficiently computed.

Proposition 70 For all integers m and n,

1. $\left[\begin{array}{ll}?_{1} & l_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=m \wedge\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=n ;$
2. for all integers s_{1}, t_{1}, r_{1} and s_{2}, t_{2}, r_{2},

$$
\left[\begin{array}{ll}
s_{1} & t_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{1} \wedge\left[\begin{array}{ll}
s_{2} & t_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{2}
$$

implies

$$
\left[\begin{array}{ll}
?_{1} & ?_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{1}+r_{2}
$$

Proposition 70 For all integers m and n,

1. $\left[\begin{array}{ll}?_{1} & l_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=m \wedge\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=n ;$
2. for all integers $\mathrm{s}_{1}, \mathrm{t}_{1}, \mathrm{r}_{1}$ and $\mathrm{s}_{2}, \mathrm{t}_{2}, \mathrm{r}_{2}$,

$$
\left[\begin{array}{ll}
s_{1} & t_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{1} \wedge\left[\begin{array}{ll}
s_{2} & t_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{2}
$$

implies

$$
\left[\begin{array}{ll}
?_{1} & ?_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{n}
\end{array}\right]=\mathrm{r}_{1}+\mathrm{r}_{2} \text {; }
$$

3. for all integers k and $\mathrm{s}, \mathrm{t}, \mathrm{r}$,
$\left[\begin{array}{ll}s & t\end{array}\right] \cdot\left[\begin{array}{l}m \\ n\end{array}\right]=r$ implies $\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=k \cdot r$.
gcd
```
fun gcd( m , n )
```

= let
fun gcditer (r1 , c as r2)
$=1 e t$
$\operatorname{val}(q, r)=\operatorname{divalg}(r 1, r 2) \quad(* r=r 1-q * r 2 *)$
in
if $r=0$
then c
else gcditer (c , r)
end
in
gcditer (m , n)
end
fun $\operatorname{egcd}(m, n)$
= let
fun egcditer (($(\mathrm{s} 1, \mathrm{t} 1), \mathrm{r} 1)$, lc as ($(\mathrm{s} 2, \mathrm{t} 2), \mathrm{r} 2)$)
= let
$\operatorname{val}(q, r)=\operatorname{divalg}(r 1, r 2) \quad(* r=r 1-q * r 2 *)$
in
if $r=0$
then lc
else egcditer (lc, ((s1-q*s2,t1-q*t2),r))
end
in
egcditer $(((1,0), m),((0,1), n))$
end

- 220-a -

Multiplicative inverses in modular arithmetic

Corollary 74 For all positive integers m and n,

1. $n \cdot l_{c_{2}}(m, n) \equiv \operatorname{gcd}(m, n)(\bmod m)$, and
2. whenever $\operatorname{gcd}(m, n)=1$,
$\left[\operatorname{lc}_{2}(m, n)\right]_{m}$ is the multiplicative inverse of $[n]_{m}$ in \mathbb{Z}_{m}.

Diffie-Hellman cryptographic method
Shared secret key

$-227-$
Diffie-Hellman cryptographic method Shared secret key

A
a
\vdots
$\left[c^{a}\right]_{p}=\alpha$

Diffie-Hellman cryptographic method

Shared secret key

(c, p)

B
b

— 227-a —
Diffie-Hellman cryptographic method Shared secret key

Diffie-Hellman cryptographic method
Shared secret key

Key exchange

Lemma 75 Let p be a prime and e a positive integer with $\operatorname{gcd}(p-1, e)=1$. Define

$$
d=\left[\operatorname{lc}_{2}(p-1, e)\right]_{p-1} .
$$

Then, for all integers k,

$$
\left(k^{e}\right)^{\mathrm{d}} \equiv \mathrm{k}(\bmod p)
$$

Proof:

A

A

(P)

B
$\left(e_{B}, d_{B}\right)$

A
$\left(e_{A}, d_{A}\right)$
$0 \leq k<p$
\vdots
$\left[k^{e_{A}}\right]_{p}=m_{1}$

A
$\begin{gathered} \left(e_{A}, d_{A}\right) \\ 0 \leq \mathrm{k}<\mathrm{p} \\ \vdots \\ {\left[k^{e_{A}}\right]_{p}=m_{1}} \end{gathered}$

$\xrightarrow\left[\left(m_{1}\right]{\substack{(P)}}\right.$

B
$\left(e_{B}, d_{B}\right)$
m_{1}
\vdots
$m_{2}=\left[m_{1}{ }^{e_{B}}\right]_{p}$

- 230-h -

(P) m_{1}	B
	$\left(e_{B}, d_{B}\right)$ m_{1}
	$m_{2}=\left[m_{1}^{e_{B}}\right]_{p}$ m_{3}

- 230-c -

A
$\left(e_{A}, d_{A}\right)$
$0 \leq k<p$
\vdots
$\left[k^{e_{A}}\right]_{p}=m_{1}$
m_{2}
\vdots
$\left[m_{2}{ }^{d_{A}}\right]_{p}=m_{3}$

Natural Numbers

and mathematical induction
We have mentioned in passing that the natural numbers are generated from zero by succesive increments. This is in fact the defining property of the set of natural numbers, and endows it with a very important and powerful reasoning principle, that of Mathematical Induction, for establishing universal properties of natural numbers.

Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the set of natural numbers \mathbb{N}.
If

- the statement $\mathrm{P}(0)$ holds, and
- the statement

$$
\forall n \in \mathbb{N} .(P(n) \Longrightarrow P(n+1))
$$

also holds
then

- the statement

$$
\forall \mathrm{m} \in \mathbb{N} . \mathrm{P}(\mathrm{~m})
$$

holds.

Binomial Theorem

Theorem 29 For all $n \in \mathbb{N}$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{n-k} \cdot y^{k} .
$$

Proof:

Principle of Induction
from basis ℓ
Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ.
If

- $P(\ell)$ holds, and
- $\forall \mathrm{n} \geq \ell$ in $\mathbb{N} .(\mathrm{P}(\mathrm{n}) \Longrightarrow \mathrm{P}(\mathrm{n}+1))$ also holds
then
- $\forall \mathrm{m} \geq \ell$ in $\mathbb{N} . \mathrm{P}(\mathrm{m})$ holds.

Principle of Strong Induction

from basis ℓ and Induction Hypothesis $P(m)$.
Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ. If both

- $P(\ell)$ and
- $\forall \mathrm{n} \geq \ell$ in $\mathbb{N} .((\forall k \in[\ell . . n] . P(k)) \Longrightarrow P(n+1))$
hold, then
- $\forall \mathrm{m} \geq \ell$ in $\mathbb{N} . \mathrm{P}(\mathrm{m})$ holds.

Theorem 77 (Fundamental Theorem of Arithmetic) For every positive integer n there is a unique finite ordered sequence of primes $\left(\mathrm{p}_{1} \leq \cdots \leq \mathrm{p}_{\ell}\right)$ with $\ell \in \mathbb{N}$ such that

$$
n=\prod\left(p_{1}, \ldots, p_{\ell}\right) .
$$

Proof:

Proposition 76 Every positive integer greater than or equal 2 is a prime or a product of primes.

Proof:

$$
-257-
$$

Euclid's infinitude of primes

Theorem 80 The set of primes is infinite.
Proof:

Sets

-275 -
Abstract sets
It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

$$
\begin{array}{|llll|}
\hline \bullet^{(1,1)} & \bullet(1,2) & \bullet(1,3) & \bullet(1,4) \\
\bullet \bullet^{(1,5)} \\
\bullet(2,1) & \bullet(2,2) & \bullet(2,3) & \bullet(2,4) \\
\bullet & \bullet(2,5) \\
\hline
\end{array}
$$

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as

```
\begin{tabular}{|llllllllll|}
\hline\((1,1)\) & \(\bullet(2,1)\) & \(\bullet^{(1,2)}\) & \(\bullet^{(2,2)}\) & \(\bullet(1,3)\) & \(\bullet(2,3)\) & \(\bullet^{(1,4)}\) & \(\bullet(2,4)\) & \(\bullet(1,5)\) & \(\bullet\) \\
\hline\((2,5)\) \\
\hline
\end{tabular}
```

or even simply as
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
for other considerations.

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$
\forall \text { sets } A, B . A=B \Longleftrightarrow(\forall x \cdot x \in A \Longleftrightarrow x \in B) .
$$

Example:

$\{0\} \neq\{0,1\}=\{1,0\} \neq\{2\}=\{2,2\}$

Lemma 83

1. Reflexivity.

For all sets $A, A \subseteq A$.
2. Transitivity.

For all sets $A, B, C,(A \subseteq B \wedge B \subseteq C) \Longrightarrow A \subseteq C$.
3. Antisymmetry.

For all sets $A, B,(A \subseteq B \wedge B \subseteq A) \Longrightarrow A=B$.

Separation principle
For any set A and any definable property P, there is a set containing precisely those elements of A for which the property P holds.

Russell's paradox

$$
\begin{aligned}
& \text { Empty set } \\
& \emptyset \text { or }\} \\
& \text { defined by } \\
& \forall x . x \notin \emptyset \\
& \text { or, equivalently, by } \\
& \neg(\exists x . x \in \emptyset)
\end{aligned}
$$

Cardinality

The cardinality of a set specifies its size. If this is a natural number, then the set is said to be finite.

Typical notations for the cardinality of a set S are $\# S$ or $|S|$.

Powerset axiom

For any set, there is a set consisting of all its subsets.

Example:

$$
\# \emptyset=0
$$

Proposition 84 For all finite sets U,

$$
\# \mathcal{P}(\mathrm{U})=2^{\# \mathrm{u}}
$$

Proof idea:

Venn diagrams ${ }^{\text {a }}$

${ }^{\text {a }}$ From http://en.wikipedia.org/wiki/Intersection_(set_theory)

- The union operation \cup and the intersection operation \cap are associative, commutative, and idempotent.

$$
\begin{array}{ll}
(A \cup B) \cup C=A \cup(B \cup C), & A \cup B=B \cup A, \\
(A \cup B) \cap C=A \cap(B \cap C), & A \cap B=B \cap A, \\
& A \cap A=A
\end{array}
$$

$-296-$

- The empty set \emptyset is an annihilator for \cap and the universal set U
is an annihilator for \cup.

$$
\begin{aligned}
& \emptyset \cap A=\emptyset \\
& u \cup A=u
\end{aligned}
$$

- The empty set \emptyset is a neutral element for \cup and the universal set U is a neutral element for \cap.

$$
\emptyset \cup A=A=U \cap A
$$

- The empty set \emptyset is an annihilator for \cap and the universal set U is an annihilator for \cup.

$$
\begin{aligned}
& \emptyset \cap A=\emptyset \\
& U \cup A=U
\end{aligned}
$$ intersection operation \cap are distributive and absorptive.

$$
\begin{gathered}
A \cap(B \cup C)=(A \cap B) \cup(A \cap C), \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
A \cup(A \cap B)=A=A \cap(A \cup B) \\
-297-a-
\end{gathered}
$$

Proposition 85 Let U be a set and let $A, B \in \mathcal{P}(\mathrm{U})$.

1. $\forall X \in \mathcal{P}(U) . A \cup B \subseteq X \Longleftrightarrow(A \subseteq X \wedge B \subseteq X)$.
2. $\forall X \in \mathcal{P}(U) . X \subseteq A \cap B \Longleftrightarrow(X \subseteq A \wedge X \subseteq B)$.

Proof:

- The complement operation $(\cdot)^{\mathrm{c}}$ satisfies complementation laws.

$$
A \cup A^{c}=U, \quad A \cap A^{c}=\emptyset
$$

Corollary 86 Let U be a set and let $A, B, C \in \mathcal{P}(\mathrm{U})$.

1. $C=A \cup B$

$$
\begin{aligned}
& {[A \subseteq C \wedge B \subseteq C]} \\
& \wedge \\
& {[\forall X \in \mathcal{P}(U) \cdot(A \subseteq X \wedge B \subseteq X) \Longrightarrow C \subseteq X]}
\end{aligned}
$$

2.

$$
C=A \cap B
$$

iff

$$
\wedge
$$

$$
\begin{aligned}
& {[C \subseteq A \wedge C \subseteq B]} \\
& {[\forall X \in \mathcal{P}(U) \cdot(X \subseteq A \wedge X \subseteq B) \Longrightarrow X \subseteq C]}
\end{aligned}
$$

Pairing axiom

Sets and logic

$\mathcal{P}(\mathrm{U})$	$\{$ false, true $\}$
\emptyset	false
U	true
\cup	\vee
\cap	\wedge
$(\cdot)^{\mathrm{c}}$	$\neg(\cdot)$

For every a and b, there is a set with a and b as its only elements.
defined by

$$
\forall x . x \in\{a, b\} \Longleftrightarrow(x=a \vee x=b)
$$

NB The set $\{a, a\}$ is abbreviated as $\{a\}$, and referred to as a singleton.

Ordered pairing

For every pair a and b, the set

$$
\{\{a\},\{a, b\}\}
$$

is abbreviated as

$$
\langle a, b\rangle
$$

and referred to as an ordered pair.

Proposition 87 (Fundamental property of ordered pairing)

For all a, b, x, y,

$$
\langle\mathrm{a}, \mathrm{~b}\rangle=\langle\mathrm{x}, \mathrm{y}\rangle \Longleftrightarrow(\mathrm{a}=\mathrm{x} \wedge \mathrm{~b}=\mathrm{y}) .
$$

Proof:

Proposition 89 For all finite sets A and B,

$$
\#(A \times B)=\# A \cdot \# B .
$$

PROOF IDEA:

Products

The product $A \times B$ of two sets A and B is the set

$$
A \times B=\{x \mid \exists a \in A, b \in B \cdot x=(a, b)\}
$$

where

$$
\begin{aligned}
& \forall a_{1}, a_{2} \in A, b_{1}, b_{2} \in B . \\
& \quad\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) \Longleftrightarrow\left(a_{1}=a_{2} \wedge b_{1}=b_{2}\right) .
\end{aligned}
$$

Thus,

$$
\forall x \in A \times B . \exists!a \in A . \exists!b \in B . x=(a, b) .
$$

$$
\text { - } 309 \text { - }
$$

Big unions

Definition 90 Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathrm{U}))$, we let the big union (relative to U) be defined as

$$
\bigcup \mathcal{F}=\{x \in \mathrm{U} \mid \exists A \in \mathcal{F} . x \in \mathcal{A}\} \in \mathcal{P}(\mathrm{U}) .
$$

Proposition 91 For all $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathrm{U})))$,

$$
\cup(U \mathcal{F})=\bigcup\{\cup \mathcal{A} \in \mathcal{P}(\mathrm{U}) \mid \mathcal{A} \in \mathcal{F}\} \in \mathcal{P}(\mathrm{U}) .
$$

Proof:

Big intersections

Definition 92 Let U be a set. For a collection of sets $\mathcal{F} \subseteq \mathcal{P}(\mathrm{U})$, we let the big intersection (relative to U) be defined as

$$
\bigcap \mathcal{F}=\{x \in \mathrm{U} \mid \forall A \in \mathcal{F} . x \in \mathcal{A}\}
$$

Theorem 93 Let

$$
\mathcal{F}=\{S \subseteq \mathbb{R} \mid(0 \in S) \wedge(\forall x \in \mathbb{R} . x \in S \Longrightarrow(x+1) \in S)\}
$$

Then, $(i) \mathbb{N} \in \mathcal{F}$ and $(i i) \mathbb{N} \subseteq \bigcap \mathcal{F}$. Hence, $\bigcap \mathcal{F}=\mathbb{N}$.
Proof:

Union axiom
Every collection of sets has a union.
$\bigcup \mathcal{F}$

$$
x \in \bigcup \mathcal{F} \Longleftrightarrow \exists X \in \mathcal{F} . x \in X
$$

Disjoint unions

For non-empty \mathcal{F} we also have

$$
\bigcap \mathcal{F}
$$

defined by

$$
\forall x . x \in \cap \mathcal{F} \Longleftrightarrow(\forall X \in \mathcal{F} . x \in X)
$$

Proposition 96 For all finite sets A and B,

$$
A \cap B=\emptyset \Longrightarrow \#(A \cup B)=\# A+\# B
$$

Proof idea:

Definition $99 A$ (binary) relation R from a set A to a set B

$$
R: A \longrightarrow B \quad \text { or } \quad R \in \operatorname{Rel}(A, B)
$$

is

$$
R \subseteq A \times B \quad \text { or } \quad R \in \mathcal{P}(A \times B)
$$

Notation 100 One typically writes $a R b$ for $(a, b) \in R$.
Definition 94 The disjoint union $A \uplus B$ of two sets A and B is the set

$$
A \uplus B=(\{1\} \times A) \cup(\{2\} \times B) .
$$

Thus,
$\forall x \cdot x \in(A \uplus B) \Longleftrightarrow(\exists \mathrm{a} \in A \cdot x=(1, a)) \vee(\exists \mathrm{b} \in \mathrm{B} \cdot \mathrm{x}=(2, \mathrm{~b}))$.

Relations

Notation 100 One typicaly wites a b (a, b)

Corollary 97 For all finite sets A and B,

$$
\#(A \uplus B)=\# A+\# B .
$$

Examples:

Informal examples:

- Computation.
- Typing.
- Program equivalence.
- Networks.
- Databases.

$$
\text { — } 331 \text { — }
$$

Internal diagrams

Example:
 $R=\{(0,0),(0,-1),(0,1),(1,2),(1,1),(2,1)\}: \mathbb{N} \longrightarrow \mathbb{Z}$
 $$
S=\{(1,0),(1,2),(2,1),(2,3)\}: \mathbb{Z} \longrightarrow \mathbb{Z}
$$

- Empty relation.
$\emptyset: A \rightarrow B$
($\mathrm{a} \emptyset \mathrm{b} \Longleftrightarrow$ false)
- Full relation.
$(A \times B): A \longrightarrow B$
$(\mathrm{a}(\mathrm{A} \times \mathrm{B}) \mathrm{b} \Longleftrightarrow$ true)
- Identity (or equality) relation.
$\operatorname{id}_{\mathcal{A}}=\{(a, a) \mid a \in A\}: A \longrightarrow A \quad\left(a \operatorname{id}_{A} a^{\prime} \Longleftrightarrow a=a^{\prime}\right)$
- Integer square root.
$R_{2}=\left\{(m, n) \mid m=n^{2}\right\}: \mathbb{N} \longrightarrow \mathbb{Z} \quad\left(m R_{2} n \Longleftrightarrow m=n^{2}\right)$

Relational extensionality

$$
\begin{aligned}
& \mathrm{R}=\mathrm{S}: A \longrightarrow B \\
& \text { iff } \\
& \forall a \in A \cdot \forall b \in B \cdot a R b \Longleftrightarrow a S b
\end{aligned}
$$

Relational composition

Theorem 102 Relational composition is associative and has the identity relation as neutral element.

- Associativity.

$$
\text { For all } \mathrm{R}: \mathrm{A} \longrightarrow \mathrm{~B}, \mathrm{~S}: \mathrm{B} \longrightarrow \mathrm{C} \text {, and } \mathrm{T}: \mathrm{C} \longrightarrow \mathrm{D} \text {, }
$$

$$
(T \circ S) \circ R=T \circ(S \circ R)
$$

- Neutral element.

For all $R: A \longrightarrow B$,

$$
R \circ \operatorname{id}_{A}=R=\operatorname{id}_{B} \circ R .
$$

-335 -

Relations and matrices

Definition 103

1. For positive integers m and n, an $(m \times n)$-matrix M over a semiring $(S, 0, \oplus, 1, \odot)$ is given by entries $M_{i, j} \in S$ for all $0 \leq i<m$ and $0 \leq j<n$.
$-336-$

Relations from $[\mathrm{m}]$ to $[\mathrm{n}]$ and $(\mathrm{m} \times \mathrm{n})$-matrices over Booleans provide two alternative views of the same structure.
This carries over to identities and to composition/multiplication .

Theorem 104 Matrix multiplication is associative and has the identity matrix as neutral element.

Directed graphs

Definition 108 A directed graph (A, R) consists of a set A and a relation R on A (i.e. a relation from A to A).

Paths

Proposition 113 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A, s R^{\circ n} t$ iff there exists a path of length n in R with source s and target t .

Proof:

Corollary 110 For every set A, the structure

$$
\left(\operatorname{Rel}(A), \operatorname{id}_{A}, 0\right)
$$

is a monoid.

Definition 111 For $\mathrm{R} \in \operatorname{Rel}(\mathrm{A})$ and $\mathrm{n} \in \mathbb{N}$, we let

$$
R^{\circ n}=\underbrace{R \circ \cdots \circ R}_{n \text { times }} \in \operatorname{Rel}(A)
$$

be defined as id_{A} for $\mathrm{n}=0$, and as $\mathrm{R} \circ \mathrm{R}^{\circ \mathrm{m}}$ for $\mathrm{n}=\mathrm{m}+1$.

Definition 114 For $R \in \operatorname{Rel}(A)$, let

$$
R^{\circ *}=\bigcup\left\{R^{\circ n} \in \operatorname{Rel}(A) \mid n \in \mathbb{N}\right\}=\bigcup_{n \in \mathbb{N}} R^{\circ n}
$$

Corollary 115 Let (A, R) be a directed graph. For all $s, t \in A$, $s R^{\circ *} t$ iff there exists a path with source s and target t in R .

Preorders

The $(n \times n)$-matrix $M=\operatorname{mat}(R)$ of a finite directed graph ($[n], R)$ for n a positive integer is called its adjacency matrix.

The adjacency matrix $M^{*}=\operatorname{mat}\left(\mathrm{R}^{0 *}\right)$ can be computed by matrix multiplication and addition as M_{n} where

$$
\left\{\begin{aligned}
M_{0} & =I_{n} \\
M_{k+1} & =I_{n}+\left(M \cdot M_{k}\right)
\end{aligned}\right.
$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

Examples:

- (\mathbb{R}, \leq) and (\mathbb{R}, \geq).
- $(\mathcal{P}(A), \subseteq)$ and $(\mathcal{P}(A), \supseteq)$.
- (\mathbb{Z}, \mid).

Definition 116 A preorder $(\mathrm{P}, \sqsubseteq)$ consists of a set P and a relation \sqsubseteq on P (i.e. $\sqsubseteq \in \mathcal{P}(\mathrm{P} \times \mathrm{P})$) satisfying the following two axioms.

- Reflexivity.

$$
\forall x \in \text { P. } x \sqsubseteq x
$$

- Transitivity.

$$
\forall x, y, z \in P .(x \sqsubseteq y \wedge y \sqsubseteq z) \Longrightarrow x \sqsubseteq z
$$

Theorem 118 For $R \subseteq A \times A$, let

$$
\mathcal{F}_{\mathrm{R}}=\{\mathrm{Q} \subseteq A \times A \mid \mathrm{R} \subseteq \mathrm{Q} \wedge \mathrm{Q} \text { is a preorder }\}
$$

Then, (i) $\mathrm{R}^{\circ *} \in \mathcal{F}_{\mathrm{R}}$ and (ii) $\mathrm{R}^{\circ *} \subseteq \bigcap \mathcal{F}_{\mathrm{R}}$. Hence, $\mathrm{R}^{\circ *}=\bigcap \mathcal{F}_{\mathrm{R}}$.
Proof:

Definition 119 A relation $R: A \longrightarrow B$ is said to be functional, and called a partial function, whenever it is such that

$$
\forall a \in A . \forall b_{1}, b_{2} \in \text { B. } a R b_{1} \wedge a R b_{2} \Longrightarrow b_{1}=b_{2}
$$

Example: The following defines a partial function $\mathbb{Z} \times \mathbb{Z} \rightharpoonup \mathbb{Z} \times \mathbb{N}$:

- for $\mathrm{n} \geq 0$ and $\mathrm{m}>0$,
$(n, m) \mapsto(\operatorname{quo}(n, m), \operatorname{rem}(n, m))$
- for $n \geq 0$ and $m<0$,
$(\mathrm{n}, \mathrm{m}) \mapsto(-\operatorname{quo}(\mathrm{n},-\mathrm{m}), \operatorname{rem}(\mathrm{n},-\mathrm{m}))$
- for $n<0$ and $m>0$,

$$
(n, m) \mapsto(-\operatorname{quo}(-n, m)-1, \operatorname{rem}(m-\operatorname{rem}(-n, m), m))
$$

- for $\mathrm{n}<0$ and $\mathrm{m}<0$,
$(n, m) \mapsto(\operatorname{quo}(-n,-m)+1, \operatorname{rem}(-m-\operatorname{rem}(-n,-m),-m))$
Its domain of definition is $\{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid m \neq 0\}$.

Theorem 121 The identity relation is a partial function, and the composition of partial functions yields a partial function.

NB

$$
f=g: A \rightharpoonup B
$$

iff

$$
\forall a \in A .(f(a) \downarrow \Longleftrightarrow g(a) \downarrow) \wedge f(a)=g(a)
$$

Proposition 122 For all finite sets A and B,

$$
\#(A \Rightarrow B)=(\# B+1)^{\# A}
$$

Proof idea:

Functions (or maps)
Definition 123 A partial function is said to be total, and referred to as a (total) function or map, whenever its domain of definition coincides with its source.

Proposition 125 For all finite sets A and B,

$$
\#(A \Rightarrow B)=\# B^{\# A} .
$$

Proof idea:

Bijections

Definition 127 A function $\mathrm{f}: A \rightarrow B$ is said to be bijective, or a bijection, whenever there exists a (necessarily unique) function
$\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ (referred to as the inverse of f) such that

1. g is a retraction (or left inverse) for f :

$$
\mathrm{g} \circ \mathrm{f}=\mathrm{id}_{\mathrm{A}},
$$

2. g is a section (or right inverse) for f :

$$
\mathrm{f} \circ \mathrm{~g}=\mathrm{id} \mathrm{~d}_{\mathrm{B}} .
$$

function $g \circ f: A \rightarrow C$ is given by the rule

$$
(g \circ f)(a)=g(f(a)) .
$$

Proposition 129 For all finite sets A and B,

$$
\# \operatorname{Bij}(A, B)= \begin{cases}0 & , \text { if } \# A \neq \# B \\ n! & , \text { if } \# A=\# B=n\end{cases}
$$

Proof idea:

Theorem 130 The identity function is a bijection, and the composi-
tion of bijections yields a bijection.

- Equivalence relations.

Equivalence relations and set partitions
 - 374 -

Definition 131 Two sets A and B are said to be isomorphic (and to have the same cardinatity) whenever there is a bijection between them; in which case we write

$$
A \cong B \quad \text { or } \quad \# A=\# B
$$

Examples:

1. $\{0,1\} \cong\{$ false, true $\}$.
2. $\mathbb{N} \cong \mathbb{N}^{+}, \quad \mathbb{N} \cong \mathbb{Z}, \quad \mathbb{N} \cong \mathbb{N} \times \mathbb{N}, \quad \mathbb{N} \cong \mathbb{Q}$.

- Set partitions.

Calculus of bijections

- $A \cong A, A \cong B \Longrightarrow B \cong A,(A \cong B \wedge B \cong C) \Longrightarrow A \cong C$
- If $A \cong X$ and $B \cong Y$ then

$$
\begin{gathered}
\mathcal{P}(A) \cong \mathcal{P}(X), \quad A \times B \cong X \times Y, \quad A \uplus B \cong X \uplus Y, \\
\operatorname{Rel}(A, B) \cong \operatorname{Rel}(X, Y) \quad, \quad(A=B) \cong(X \doteq Y), \\
(A \Rightarrow B) \cong(X \Rightarrow Y) \quad, \quad \operatorname{Bij}(A, B) \cong \operatorname{Bij}(X, Y)
\end{gathered}
$$

Theorem 134 For every set A,

$$
\operatorname{EqRel}(\mathcal{A}) \cong \operatorname{Part}(\mathcal{A})
$$

Proof:

- $A \cong[1] \times A,(A \times B) \times C \cong A \times(B \times C), A \times B \cong B \times A$
- $[0] \uplus A \cong A, \quad(A \uplus B) \uplus C \cong A \uplus(B \uplus C), A \uplus B \cong B \uplus A$
- $[0] \times A \cong[0],(A \uplus B) \times C \cong(A \times C) \uplus(B \times C)$
- $(A \Rightarrow[1]) \cong[1],(A \Rightarrow(B \times C)) \cong(A \Rightarrow B) \times(A \Rightarrow C)$
- $([0] \Rightarrow A) \cong[1],((A \uplus B) \Rightarrow C) \cong(A \Rightarrow C) \times(B \Rightarrow C)$
- $([1] \Rightarrow A) \cong A,((A \times B) \Rightarrow C) \cong(A \Rightarrow(B \Rightarrow C))$
- $(A \Rightarrow B) \cong(A \Rightarrow(B \uplus[1]))$
- $\mathcal{P}(A) \cong(A \Rightarrow[2])$

Characteristic (or indicator) functions

$$
\mathcal{P}(\mathcal{A}) \cong(\mathcal{A} \Rightarrow[2])
$$

Finite cardinality

Definition $136 A$ set A is said to be finite whenever $A \cong[n]$ for some $n \in \mathbb{N}$, in which case we write $\# A=n$.

Theorem 137 For all $m, n \in \mathbb{N}$,

1. $\mathcal{P}([n]) \cong\left[2^{n}\right]$
2. $[m] \times[n] \cong[m \cdot n]$
3. $[m] \uplus[n] \cong[m+n]$
4. $([m] \Rightarrow[n]) \cong\left[(n+1)^{m}\right]$
5. $([\mathrm{m}] \Rightarrow[\mathrm{n}]) \cong\left[\mathrm{n}^{\mathrm{m}}\right]$
6. $\operatorname{Bij}([n],[n]) \cong[n!]$

There is an infinite set, containing \emptyset and closed under successor.

Infinity axiom

Bijections

Proposition 138 For a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, the following are equivalent.

1. f is bijective.
2. $\forall b \in B . \exists!a \in A . f(a)=b$.
3. $(\forall b \in B . \exists a \in A \cdot f(a)=b)$
\wedge

$$
\left(\forall a_{1}, a_{2} \in A . f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}\right)
$$

140 The identity function is a surjection, and the composition of surjections yields a surjection.

The set of surjections from A to B is denoted

$$
\operatorname{Sur}(A, B)
$$

and we thus have
$\operatorname{Bij}(A, B) \subseteq \operatorname{Sur}(A, B) \subseteq \operatorname{Fun}(A, B) \subseteq \operatorname{PFun}(A, B) \subseteq \operatorname{Rel}(A, B)$.

Surjections

Definition 139 A function $f: A \rightarrow B$ is said to be surjective, or a surjection, and indicated $f: A \rightarrow B$ whenever
$\forall b \in B . \exists a \in A . f(a)=b$.

Enumerability

Definition 142

1. A set A is said to be enumerable whenever there exists a surjection $\mathbb{N} \rightarrow A$, referred to as an enumeration.
2. A countable set is one that is either empty or enumerable.

Examples:

1. A bijective enumeration of \mathbb{Z}.

\cdots	-3	-2	-1	0	1	2	3	\cdots

Proposition 143 Every non-empty subset of an enumerable set is enumerable.

Proof:

2. A bijective enumeration of $\mathbb{N} \times \mathbb{N}$.

Countability

Proposition 144

1. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable sets.
2. The product and disjoint union of countable sets is countable.
3. Every finite set is countable.
4. Every subset of a countable set is countable.

Axiom of choice

Injections

Every surjection has a section.

Theorem 146 The identity function is an injection, and the composition of injections yields an injection.

The set of injections from A to B is denoted

$$
\operatorname{Inj}(A, B)
$$

and we thus have

with

$$
\operatorname{Bij}(A, B)=\operatorname{Sur}(A, B) \cap \operatorname{Inj}(A, B)
$$

Definition 145 A function $f: A \rightarrow B$ is said to be injective, or an injection, and indicated $\mathrm{f}: \mathrm{A} \hookrightarrow \mathrm{B}$ whenever

$$
\forall a_{1}, a_{2} \in A .\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow a_{1}=a_{2}
$$

$$
-401 \text { - }
$$

Proposition 147 For all finite sets A and B,

$$
\# \operatorname{Inj}(A, B)= \begin{cases}\binom{\# B}{\# A} \cdot(\# A)! & , \text { if } \# A \leq \# B \\ 0 & , \text { otherwise }\end{cases}
$$

Proof idea:

Relational images

Definition 150 Let $R: A \longrightarrow B$ be a relation.

- The direct image of $X \subseteq A$ under R is the set $\vec{R}(X) \subseteq B$, defined as

$$
\vec{R}(X)=\{b \in B \mid \exists x \in X \cdot x R b\} .
$$

NB This construction yields a function $\vec{R}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$.

$$
-407-
$$

Replacement axiom
The direct image of every definable functional property on a set is a set.

- The inverse image of $Y \subseteq B$ under R is the set $\overleftarrow{R}(Y) \subseteq A$, defined as

$$
\overleftarrow{R}(Y)=\{a \in A \mid \forall b \in B \cdot a R b \Longrightarrow b \in Y\}
$$

NB This construction yields a function $\overleftarrow{R}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)$.

$$
\text { - } 408 \text { - }
$$

Set-indexed constructions

For every mapping associating a set A_{i} to each element of a set I, we have the set

$$
\bigcup_{i \in I} A_{i}=\bigcup\left\{A_{i} \mid i \in I\right\}=\left\{a \mid \exists i \in I . a \in A_{i}\right\} .
$$

Examples:

1. Indexed disjoint unions:

$$
\biguplus_{i \in \mathrm{I}} A_{i}=\bigcup_{i \in \mathrm{I}}\{i\} \times A_{i}
$$

2. Finite sequences on a set A :

$$
A^{*}=\biguplus_{\mathrm{n} \in \mathbb{N}} A^{n}
$$

3. Finite partial functions from a set A to a set B :

$$
\left(A \rightleftharpoons_{\text {fin }} B\right)=\biguplus_{S \in \mathcal{P}_{\text {fin }}(A)}(S \Rightarrow B)
$$

Proposition 153 An enumerable indexed disjoint union of enumerable sets is enumerable.

Proof:

$$
\mathcal{P}_{\text {fin }}(A)=\{S \subseteq A \mid S \text { is finite }\}
$$

4. Non-empty indexed intersections: for $I \neq \emptyset$,

$$
\bigcap_{i \in I} A_{i}=\left\{x \in \bigcup_{i \in I} A_{i} \mid \forall i \in I . x \in A_{i}\right\}
$$

5. Indexed products:

$$
\prod_{i \in \mathrm{I}} A_{i}=\left\{\alpha \in\left(\mathrm{I} \Rightarrow \bigcup_{i \in \mathrm{I}} A_{i}\right) \mid \forall i \in \mathrm{I} . \alpha(i) \in A_{i}\right\}
$$

THEOREM OF THE DAY

Cantor's Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: $S_{1}, S_{2}, S_{3}, \ldots$, and denote by $S_{i}(j)$ the j-th entry of sequence S_{i}. Now define a new sequence, S, whose i-th entry is $S_{i}(i)+1(\bmod 2)$. So S is $S_{1}(1)+1, S_{2}(2)+1, S_{3}(3)+1, S_{4}(4)+1, \ldots$, with all entries remaindered modulo $2 . S$ is certainly an infinite sequence of 0 and 1 s. So it must appear in our list: it is, say, S_{k}, so its k-th entry is $S_{k}(k)$. But this is, by
definition, $S_{k}(k)+1(\bmod 2) \neq S_{k}(k)$. So we have contradicted the possibility of forming our enumeration. QED.
 $(1,2,3, \ldots)$. To see this informally, consider the infinite sequences of 0 s and 1 s to be the binary expansions of fractions (e.g. $0.010011 \ldots=$ $0 / 2+1 / 4+0 / 8+0 / 16+1 / 32+1 / 64+\ldots)$. More generally, it says that he set of subset of a countably infinite set is uncountable, and to see that, imagine every $0-1$ sequence being a different recipe for building a subset: the i-th entry tells you whether to include the $i-$-h element (1) or de it (0)
Georg Cantor (1845-1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new were then new and controversial concepts: 'ses'

Web link: www.math.hawawii.edu/~dale/godel/godel.htm. There is an interesting uscassion on maisoreffow.net about the history of diagonalisation:
type 'earliest diagonal' into their search box.
$\Rightarrow \longrightarrow$

Corollary 155 If X and A are countable sets then so are A^{*}, $\mathcal{P}_{\text {fin }}(A)$, and $\left(X \Rightarrow_{\text {fin }} A\right)$.

$$
-414-
$$

Unbounded cardinality

Theorem 156 (Cantor's diagonalisation argument) For every set A, no surjection from A to $\mathcal{P}(A)$ exists.

Proof:

Definition 157 A fixed-point of a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is an element $x \in X$ such that $\mathrm{f}(\mathrm{x})=\mathrm{x}$.

Theorem 158 (Lawvere's fixed-point argument) For sets A and X, if there exists a surjection $A \rightarrow(A \Rightarrow X)$ then every function $X \rightarrow X$ has a fixed-point; and hence X is a singleton. Proof:

Corollary 159 The sets

$$
\mathcal{P}(\mathbb{N}) \cong(\mathbb{N} \Rightarrow[2]) \cong[0,1] \cong \mathbb{R}
$$

are not enumerable.

Corollary 160 There are non-computable infinite sequences of bits.

Foundation axiom

The membership relation is well-founded.

Thereby, providing a
Principle of \in-Induction .

