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What are we up to ?

◮ Learn to read and write, and also work with, mathematical
arguments.

◮ Doing some basic discrete mathematics.

◮ Getting a taste of computer science applications.
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What is Discrete Mathematics ?
from Discrete Mathematics (second edition) by N. Biggs

Discrete Mathematics is the branch of Mathematics in which we
deal with questions involving finite or countably infinite sets. In
particular this means that the numbers involved are either integers,
or numbers closely related to them, such as fractions or ‘modular’
numbers.
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What is it that we do ?

In general:

Build mathematical models and apply methods to analyse
problems that arise in computer science.

In particular:

Make and study mathematical constructions by means of
definitions and theorems. We aim at understanding their
properties and limitations.
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Lecture plan

I. Proofs.

II. Numbers.

III. Sets.

IV. Regular languages and finite automata.
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Proofs

Objectives

◮ To develop techniques for analysing and understanding
mathematical statements.

◮ To be able to present logical arguments that establish
mathematical statements in the form of clear proofs.

◮ To prove Fermat’s Little Theorem, a basic result in the
theory of numbers that has many applications in
computer science.
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Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage.
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Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage.
For instance, it presupposes that you know:

◮ what a statement is;

◮ what the integers (. . . ,−1, 0, 1, . . .) are, and that amongst them
there is a class of odd ones (. . . ,−3,−1, 1, 3, . . .);

◮ what the product of two integers is, and that this is in turn an
integer.
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More precisely put, we may write:

If m and n are odd integers then so is m · n.
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More precisely put, we may write:

If m and n are odd integers then so is m · n.

which further presupposes that you know:

◮ what variables are;

◮ what

if . . . then . . .

statements are, and how one goes about proving them;

◮ that the symbol “·” is commonly used to denote the product
operation.
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Even more precisely, we should write

For all integers m and n, if m and n are odd then so
is m · n.

which now additionally presupposes that you know:

◮ what

for all . . .

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement,
we are assuming quite a lot of mathematical jargon that one needs
to learn and practice with to make it a useful, and in fact very pow-
erful, tool.
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Some mathematical jargon

Statement

A sentence that is either true or false — but not both.

Example 1
‘ei π + 1 = 0’

Non-example

‘This statement is false’
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Predicate

A statement whose truth depends on the value of one
or more variables.

Example 2

1. ‘ei x = cos x+ i sin x’

2. ‘the function f is differentiable’
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Theorem
A very important true statement.

Proposition
A less important but nonetheless interesting true statement.

Lemma
A true statement used in proving other true statements.

Corollary
A true statement that is a simple deduction from a theorem
or proposition.

Example 3

1. Fermat’s Last Theorem

2. The Pumping Lemma
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Conjecture
A statement believed to be true, but for which we have no proof.

Example 4

1. Goldbach’s Conjecture

2. The Riemann Hypothesis

— 27 —

Proof
Logical explanation of why a statement is true; a method for
establishing truth.
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Proof
Logical explanation of why a statement is true; a method for
establishing truth.

Logic
The study of methods and principles used to distinguish
good (correct) from bad (incorrect) reasoning.

Example 5

1. Classical predicate logic

2. Hoare logic

3. Temporal logic

— 28-a —

Axiom
A basic assumption about a mathematical situation.

Axioms can be considered facts that do not need to be
proved (just to get us going in a subject) or they can be
used in definitions.

Example 6

1. Euclidean Geometry

2. Riemannian Geometry

3. Hyperbolic Geometry
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Definition
An explanation of the mathematical meaning of a word (or
phrase).

The word (or phrase) is generally defined in terms of prop-
erties.

Warning: It is vitally important that you can recall definitions
precisely. A common problem is not to be able to advance in
some problem because the definition of a word is unknown.

— 30 —

Definition, theorem, intuition, proof
in practice

Proposition 8 For all integers m and n, if m and n are odd then so
is m · n.
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Definition, theorem, intuition, proof
in practice

Definition 7 An integer is said to be odd whenever it is of the form
2 · i+ 1 for some (necessarily unique) integer i.

Proposition 8 For all integers m and n, if m and n are odd then so
is m · n.
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Intuition:

— 32 —

PROOF OF Proposition 8:
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Simple and composite statements

A statement is simple (or atomic) when it cannot be broken into
other statements, and it is composite when it is built by using several
(simple or composite statements) connected by logical expressions
(e.g., if. . . then. . . ; . . . implies . . . ; . . . if and only if . . . ; . . . and. . . ;
either . . . or . . . ; it is not the case that . . . ; for all . . . ; there exists . . . ;
etc.)

Examples:

‘2 is a prime number’

‘for all integers m and n, if m ·n is even then either n or m are even’
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Implication

Theorems can usually be written in the form

if a collection of assumptions holds,
then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of hypotheses =⇒ some conclusion

NB Identifying precisely what the assumptions and conclusions are
is the first goal in dealing with a theorem.

— 41 —

The main proof strategy for implication:

To prove a goal of the form

P =⇒ Q

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to
the same thing as adding it to your list of hypotheses.

— 42 —

Proof pattern:
In order to prove that

P =⇒ Q

1. Write: Assume P.

2. Show that Q logically follows.

— 43 —

Scratch work:

Before using the strategy

Assumptions Goal

P =⇒ Q
...

After using the strategy

Assumptions Goal

Q
...

P
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Proposition 8 If m and n are odd integers, then so is m · n.

PROOF:

— 45 —

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent
statement given by its contrapositive.

Definition:

the contrapositive of ‘P implies Q’ is ‘not Q implies not P’

— 47 —

Proof pattern:
In order to prove that

P =⇒ Q

1. Write: We prove the contrapositive; that is, . . . and state
the contrapositive.

2. Write: Assume ‘the negation of Q’.

3. Show that ‘the negation of P’ logically follows.

— 48 —

Scratch work:

Before using the strategy

Assumptions Goal

P =⇒ Q
...

After using the strategy

Assumptions Goal

not P
...

not Q
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Definition 9 A real number is:

◮ rational if it is of the form m/n for a pair of integers m and n;
otherwise it is irrational.

◮ positive if it is greater than 0, and negative if it is smaller than 0.

◮ nonnegative if it is greater than or equal 0, and nonpositive if it
is smaller than or equal 0.

◮ natural if it is a nonnegative integer.

— 50 —

Proposition 10 Let x be a positive real number. If x is irrational
then so is

√
x.

PROOF:
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Logical Deduction

− Modus Ponens −

A main rule of logical deduction is that of Modus Ponens:

From the statements P and P =⇒ Q,
the statement Q follows.

or, in other words,

If P and P =⇒ Q hold then so does Q.

or, in symbols,

P P =⇒ Q

Q

— 53 —

The use of implications:

To use an assumption of the form P =⇒ Q,
aim at establishing P.
Once this is done, by Modus Ponens, one can
conclude Q and so further assume it.
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Theorem 11 Let P1, P2, and P3 be statements. If P1 =⇒ P2 and
P2 =⇒ P3 then P1 =⇒ P3.

PROOF:
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Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

Q implies P, and vice versa

or

P if, and only if, Q P iff Q

or, in symbols,

P ⇐⇒ Q
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Proof pattern:
In order to prove that

P ⇐⇒ Q

1. Write: (=⇒) and give a proof of P =⇒ Q.

2. Write: (⇐=) and give a proof of Q =⇒ P.

— 59 —

Proposition 12 Suppose that n is an integer. Then, n is even iff n2

is even.

PROOF:
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Divisibility and congruence

Definition 13 Let d and n be integers. We say that d divides n,
and write d | n, whenever there is an integer k such that n = k · d.

Example 14 The statement 2 | 4 is true, while 4 | 2 is not.

Definition 15 Fix a positive integer m. For integers a and b, we
say that a is congruent to b modulo m, and write a ≡ b (mod m),
whenever m | (a− b).

Example 16

1. 18 ≡ 2 (mod 4)

2. 2 ≡ −2 (mod 4)

3. 18 ≡ −2 (mod 4)
— 62 —

Proposition 17 For every integer n,

1. n is even if, and only if, n ≡ 0 (mod 2), and

2. n is odd if, and only if, n ≡ 1 (mod 2).

PROOF:
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The use of bi-implications:

To use an assumption of the form P ⇐⇒ Q, use it as two
separate assumptions P =⇒ Q and Q =⇒ P.
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Universal quantification

Universal statements are of the form

for all individuals x of the universe of discourse,
the property P(x) holds

or, in other words,

no matter what individual x in the universe of discourse
one considers, the property P(x) for it holds

or, in symbols,

∀x. P(x)

— 66 —



Example 18

2. For every positive real number x, if x is irrrational then so is
√
x.

3. For every integer n, we have that n is even iff so is n2.

— 67 —

The main proof strategy for universal statements:

To prove a goal of the form

∀x. P(x)
let x stand for an arbitrary individual and prove P(x).

— 68 —

Proof pattern:
In order to prove that

∀x. P(x)

1. Write: Let x be an arbitrary individual.

2. Show that P(x) holds.

— 69 —

Proof pattern:
In order to prove that

∀x. P(x)

1. Write: Let x be an arbitrary individual.

Warning: Make sure that the variable x is new (also
referred to as fresh) in the proof! If for some reason the
variable x is already being used in the proof to stand for
something else, then you must use an unused variable,
say y, to stand for the arbitrary individual, and prove
P(y).

2. Show that P(x) holds.
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Scratch work:

Before using the strategy

Assumptions Goal

∀x. P(x)
...

After using the strategy

Assumptions Goal

P(x) (for a new (or fresh) x)
...
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The use of universal statements:

To use an assumption of the form ∀x. P(x), you can plug in
any value, say a, for x to conclude that P(a) is true and so
further assume it.

This rule is called universal instantiation.

— 71 —

Proposition 19 Fix a positive integer m. For integers a and b, we
have that a ≡ b (mod m) if, and only if, for all positive integers n, we
have that n · a ≡ n · b (mod n ·m).

PROOF:
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Equality axioms

Just for the record, here are the axioms for equality.

◮ Every individual is equal to itself.

∀ x. x = x

◮ For any pair of equal individuals, if a property holds for one of
them then it also holds for the other one.

∀ x.∀y. x = y =⇒
(
P(x) =⇒ P(y)

)
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NB From these axioms one may deduce the usual intuitive
properties of equality, such as

∀ x.∀y. x = y =⇒ y = x

and

∀ x.∀y.∀ z. x = y =⇒ (y = z =⇒ x = z) .

However, in practice, you will not be required to formally do so;
rather you may just use the properties of equality that you are
already familiar with.
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Conjunction

Conjunctive statements are of the form

P and Q

or, in other words,

both P and also Q hold

or, in symbols,

P ∧ Q or P & Q
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The proof strategy for conjunction:

To prove a goal of the form

P ∧ Q

first prove P and subsequently prove Q (or vice versa).

— 77 —

Proof pattern:
In order to prove

P ∧ Q

1. Write: Firstly, we prove P. and provide a proof of P.

2. Write: Secondly, we prove Q. and provide a proof of Q.
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Scratch work:

Before using the strategy

Assumptions Goal

P ∧ Q
...

After using the strategy

Assumptions Goal Assumptions Goal

P Q
...

...
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The use of conjunctions:

To use an assumption of the form P ∧ Q,
treat it as two separate assumptions: P and Q.

— 80 —

Theorem 20 For every integer n, we have that 6 | n iff 2 | n and
3 | n.

PROOF:
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Existential quantification

Existential statements are of the form

there exists an individual x in the universe of
discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the
property P(x) holds

or, in symbols,

∃x. P(x)
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Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n

pigeonholes then there will be a pigeonhole with more than
one letter.

— 84 —

Theorem 21 (Intermediate value theorem) Let f be a real-valued
continuous function on an interval [a, b]. For every y in between f(a)

and f(b), there exists v in between a and b such that f(v) = y.

Intuition:

— 85 —

The main proof strategy for existential statements:

To prove a goal of the form

∃x. P(x)
find a witness for the existential statement; that is, a value
of x, say w, for which you think P(x) will be true, and show
that indeed P(w), i.e. the predicate P(x) instantiated with
the value w, holds.

— 86 —

Proof pattern:
In order to prove

∃x. P(x)

1. Write: Let w = . . . (the witness you decided on).

2. Provide a proof of P(w).
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Scratch work:

Before using the strategy

Assumptions Goal

∃x. P(x)
...

After using the strategy

Assumptions Goals

P(w)
...

w = . . . (the witness you decided on)
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Proposition 22 For every positive integer k, there exist natural
numbers i and j such that 4 · k = i2 − j2.

PROOF:
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The use of existential statements:

To use an assumption of the form ∃x. P(x), introduce a new
variable x0 into the proof to stand for some individual for
which the property P(x) holds. This means that you can
now assume P(x0) true.

— 94 —

Theorem 24 For all integers l, m, n, if l | m and m | n then l | n.

PROOF:
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Unique existence

The notation

∃! x. P(x)

stands for

the unique existence of an x for which the property P(x) holds .

That is,

∃x. P(x) ∧
(
∀y.∀z.

(
P(y) ∧ P(z)

)
=⇒ y = z

)

— 97 —

Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

P ∨ Q

— 98 —

The main proof strategy for disjunction:

To prove a goal of the form

P ∨ Q

you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);
otherwise

3. break your proof into cases; proving, in each case,
either P or Q.

— 99 —

Proposition 25 For all integers n, either n2 ≡ 0 (mod 4) or
n2 ≡ 1 (mod 4).

PROOF:
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The use of disjunction:

To use a disjunctive assumption

P1 ∨ P2

to establish a goal Q, consider the following two cases in
turn: (i) assume P1 to establish Q, and (ii) assume P2 to
establish Q.

— 106 —

Scratch work:

Before using the strategy

Assumptions Goal
Q

...
P1 ∨ P2

After using the strategy

Assumptions Goal Assumptions Goal
Q Q

...
...

P1 P2

— 107 —

Proof pattern:
In order to prove Q from some assumptions amongst which there
is

P1 ∨ P2

write: We prove the following two cases in turn: (i) that assuming

P1, we have Q; and (ii) that assuming P2, we have Q. Case (i):

Assume P1. and provide a proof of Q from it and the other as-
sumptions. Case (ii): Assume P2. and provide a proof of Q from
it and the other assumptions.

— 108 —

A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if
m = 0 or m = p then

(
p
m

)
≡ 1 (mod p).

PROOF:
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Lemma 28 For all integers p and m, if p is prime and 0 < m < p

then
(
p
m

)
≡ 0 (mod p).

PROOF:

— 111 —

Proposition 29 For all prime numbers p and integers 0 ≤ m ≤ p,
either

(
p
m

)
≡ 0 (mod p) or

(
p
m

)
≡ 1 (mod p).

PROOF:
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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,

(m+ n)p ≡ mp + np (mod p) .

PROOF:
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Corollary 34 (The Dropout Lemma) For all natural numbers m and
primes p,

(m+ 1)p ≡ mp + 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-
bers m and i, and primes p,

(m+ i)p ≡ mp + i (mod p) .

PROOF:
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The Many Dropout Lemma (Proposition 35) gives the fist part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the
second one will be proved later on .

— 121 —

Btw

1. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im 6≡ i (mod m).

— 122 —

Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P

— 124 —

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences

¬
(
P =⇒ Q

)
⇐⇒ P ∧ ¬Q

¬
(
P ⇐⇒ Q

)
⇐⇒ P ⇐⇒ ¬Q

¬
(
∀x. P(x)

)
⇐⇒ ∃x.¬P(x)

¬
(
P ∧ Q

)
⇐⇒ (¬P) ∨ (¬Q)

¬
(
∃x. P(x)

)
⇐⇒ ∀x.¬P(x)

¬
(
P ∨ Q

)
⇐⇒ (¬P) ∧ (¬Q)

¬
(
¬P

)
⇐⇒ P

¬P ⇐⇒ (P ⇒ false)
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Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

PROOF:
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Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement ¬P =⇒ false

— 131 —

Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement ¬P =⇒ false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.

— 131-a —

Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P
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Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

PROOF:

— 134 —

Lemma 41 A positive real number x is rational iff

∃positive integers m,n :

x = m/n ∧ ¬
(
∃prime p : p | m ∧ p | n

) (†)

PROOF:
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Numbers
Objectives

◮ Get an appreciation for the abstract notion of number system,
considering four examples: natural numbers, integers,
rationals, and modular integers.

◮ Prove the correctness of three basic algorithms in the theory of
numbers: the division algorithm, Euclid’s algorithm, and the
Extended Euclid’s algorithm.

◮ Exemplify the use of the mathematical theory surrounding
Euclid’s Theorem and Fermat’s Little Theorem in the context of
public-key cryptography.

◮ To understand and be able to proficiently use the Principle of
Mathematical Induction in its various forms.

— 145 —

Natural numbers

In the beginning there were the natural numbers

N : 0 , 1 , . . . , n , n+ 1 , . . .

generated from zero by successive increment; that is, put in ML:

datatype

N = zero | succ of N
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The basic operations of this number system are:

◮ Addition
m︷ ︸︸ ︷∗ · · · ∗

n︷ ︸︸ ︷∗ · · · · · · ∗︸ ︷︷ ︸
m+n

◮ Multiplication

m

{ n︷ ︸︸ ︷∗ · · · · · · · · · · · · ∗
... m · n ...
∗ · · · · · · · · · · · · ∗

— 147 —

The additive structure (N, 0,+) of natural numbers with zero and
addition satisfies the following:

◮ Monoid laws

0+ n = n = n+ 0 , (l+m) + n = l+ (m+ n)

◮ Commutativity law

m+ n = n+m

and as such is what in the mathematical jargon is referred to as
a commutative monoid.

— 148 —

Also the multiplicative structure (N, 1, ·) of natural numbers with one
and multiplication is a commutative monoid:

◮ Monoid laws

1 · n = n = n · 1 , (l ·m) · n = l · (m · n)

◮ Commutativity law

m · n = n ·m

— 149 —

The additive and multiplicative structures interact nicely in that they
satisfy the

◮ Distributive law

l · (m+ n) = l ·m+ l · n

and make the overall structure (N, 0,+, 1, ·) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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Cancellation

The additive and multiplicative structures of natural numbers further
satisfy the following laws.

◮ Additive cancellation

For all natural numbers k, m, n,

k+m = k+ n =⇒ m = n .

◮ Multiplicative cancellation

For all natural numbers k, m, n,

if k 6= 0 then k ·m = k · n =⇒ m = n .

— 152 —

Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there
exists a number y such that x+ y = 0.

— 153 —

Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there
exists a number y such that x+ y = 0.

2. A number x is said to admit a multiplicative inverse whenever
there exists a number y such that x · y = 1.

— 153-a —

Extending the system of natural numbers to: (i) admit all additive
inverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:

— 154 —



Extending the system of natural numbers to: (i) admit all additive
inverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:

(i) the integers

Z : . . . − n , . . . , −1 , 0 , 1 , . . . , n , . . .

which then form what in the mathematical jargon is referred to
as a commutative ring, and

(ii) the rationals Q which then form what in the mathematical jargon
is referred to as a field.

— 154-a —

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n+ r.

— 155 —

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n+ r.

Definition 44 The natural numbers q and r associated to a given
pair of a natural number m and a positive integer n determined by
the Division Theorem are respectively denoted quo(m,n) and
rem(m,n).

— 155-a —

The Division Algorithm in ML:

fun divalg( m , n )

= let

fun diviter( q , r )

= if r < n then ( q , r )

else diviter( q+1 , r-n )

in

diviter( 0 , m )

end

fun quo( m , n ) = #1( divalg( m , n ) )

fun rem( m , n ) = #2( divalg( m , n ) )
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Theorem 45 For every natural number m and positive natural
number n, the evaluation of divalg(m,n) terminates, outputing a
pair of natural numbers (q0, r0) such that r0 < n and m = q0 ·n+ r0.

PROOF:

— 157 —

Proposition 46 Let m be a positive integer. For all natural
numbers k and l,

k ≡ l (mod m) ⇐⇒ rem(k,m) = rem(l,m) .

PROOF:
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Corollary 47 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

PROOF:

— 162 —

Corollary 47 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

2. For every integer k there exists a unique integer [k]m such that

0 ≤ [k]m < m and k ≡ [k]m (mod m) .

PROOF:

— 162-a —



Modular arithmetic

For every positive integer m, the integers modulo m are:

Zm : 0 , 1 , . . . , m− 1 .

with arithmetic operations of addition +m and multiplication ·m
defined as follows

k+m l = [k + l]m = rem(k+ l,m) ,

k ·m l = [k · l]m = rem(k · l,m)

for all 0 ≤ k, l < m.

— 165 —

Example 49 The addition and multiplication tables for Z4 are:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.

— 166 —

From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

additive
inverse

0 0

1 3

2 2

3 1

multiplicative
inverse

0 −

1 1

2 −

3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

— 167 —

Example 50 The addition and multiplication tables for Z5 are:

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

·5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

additive
inverse

0 0

1 4

2 3

3 2

4 1

multiplicative
inverse

0 −

1 1

2 3

3 2

4 4

Surprisingly, every non-zero element has a multiplicative inverse.

— 169 —

Proposition 51 For all natural numbers m > 1, the
modular-arithmetic structure

(Zm, 0,+m, 1, ·m)

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
.

— 170 —

Important mathematical jargon : Sets

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)
collection of mathematical objects, called the elements (or
members) of the set.

— 171 —

Set membership

The symbol ‘∈’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

x ∈ A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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Defining sets

The set

of even primes

of booleans

[−2..3]

is

{ 2 }

{ true , false }

{−2 , −1 , 0 , 1 , 2 , 3 }

— 174 —

Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Notations:

{ x ∈ A | P(x) } , { x ∈ A : P(x) }

— 176 —

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

D(n) =
{
d ∈ N : d | n

}
.

Example 53

1. D(0) = N

2. D(1224) =





1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68,

72, 102, 136, 153, 204, 306, 408, 612, 1224





Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)

— 178 —

Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n) =
{
d ∈ N : d | m ∧ d | n

}

for m,n ∈ N.

Example 54

CD(1224, 660) = { 1, 2, 3, 4, 6, 12 }

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the
greatest common divisor?
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Lemma 56 (Key Lemma) Let m and m ′ be natural numbers and
let n be a positive integer such that m ≡ m ′ (mod n). Then,

CD(m,n) = CD(m ′, n) .

PROOF:

— 181 —

Lemma 58 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
(
n, rem(m,n)

)
, otherwise

— 185 —

Lemma 58 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
(
n, rem(m,n)

)
, otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

gcd(m,n) =





n , if n | m

gcd
(
n, rem(m,n)

)
, otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid ′s Algorithm

— 185-a —

gcd

fun gcd( m , n )

= let

val ( q , r ) = divalg( m , n )

in

if r = 0 then n

else gcd( n , r )

end

— 186 —



Example 59 (gcd(13, 34) = 1)

gcd(13, 34) = gcd(34, 13)

= gcd(13, 8)

= gcd(8, 5)

= gcd(5, 3)

= gcd(3, 2)

= gcd(2, 1)

= 1

— 188 —

Theorem 60 Euclid’s Algorithm gcd terminates on all pairs of
positive integers and, for such m and n, gcd(m,n) is the greatest
common divisor of m and n in the sense that the following two
properties hold:

(i) both gcd(m,n) | m and gcd(m,n) | n, and

(ii) for all positive integers d such that d | m and d | n it necessarily
follows that d | gcd(m,n).

PROOF:

— 189 —

gcd(m,n)

n|m

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣
m = q · n + r

q > 0 , 0 < r < n
0<m<n

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗

n gcd(n, r)

r|n

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣

n = q ′ · r + r ′

q ′ > 0 , 0 < r ′ < r

gcd(n,m)

r gcd(r, r ′)
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Fractions in lowest terms

fun lowterms( m , n )

= let

val gcdval = gcd( m , n )

in

( m div gcdval , n div gcdval )

end

— 197 —



Some fundamental properties of gcds

Lemma 62 For all positive integers l, m, and n,

1. (Commutativity) gcd(m,n) = gcd(n,m),

2. (Associativity) gcd
(
l, gcd(m,n)

)
= gcd(gcd(l,m), n),

3. (Linearity)a gcd(l ·m, l · n) = l · gcd(m,n).

PROOF:

aAka (Distributivity).

— 200 —

Euclid ′s Theorem

Theorem 63 For positive integers k, m, and n, if k | (m · n) and
gcd(k,m) = 1 then k | n.

PROOF:

— 207 —

Corollary 64 (Euclid’s Theorem) For positive integers m and n,
and prime p, if p | (m · n) then p | m or p | n.

Now, the second part of Fermat’s Little Theorem follows as a
corollary of the first part and Euclid’s Theorem.

PROOF:

— 209 —

Fields of modular arithmetic

Corollary 66 For prime p, every non-zero element i of Zp

has [ip−2]p as multiplicative inverse. Hence, Zp is what in
the mathematical jargon is referred to as a field.
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Extended Euclid ′s Algorithm

Example 67

gcd(34, 13) 34 = 2· 13 + 8

= gcd(13, 8) 13 = 1· 8 + 5

= gcd(8, 5) 8 = 1· 5 + 3

= gcd(5, 3) 5 = 1· 3 + 2

= gcd(3, 2) 3 = 1· 2 + 1

= gcd(2, 1) 2 = 2· 1 + 0

= 1
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Extended Euclid ′s Algorithm

Example 67

gcd(34, 13) 34 = 2· 13 + 8 8 = 34 −2· 13

= gcd(13, 8) 13 = 1· 8 + 5 5 = 13 −1· 8

= gcd(8, 5) 8 = 1· 5 + 3 3 = 8 −1· 5

= gcd(5, 3) 5 = 1· 3 + 2 2 = 5 −1· 3

= gcd(3, 2) 3 = 1· 2 + 1 1 = 3 −1· 2

= gcd(2, 1) 2 = 2· 1 + 0

= 1

— 214-a —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= gcd(8, 5) 3 = 8 −1· 5

= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2

— 215 —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2

— 215-a —



gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2

— 215-b —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
︷ ︸︸ ︷
−1 · 34+ 3 · 13 −1·

︷ ︸︸ ︷
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

— 215-c —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
︷ ︸︸ ︷
−1 · 34+ 3 · 13 −1·

︷ ︸︸ ︷
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

=
︷ ︸︸ ︷
(2 · 34+ (−5) · 13) −1·

︷ ︸︸ ︷
(−3 · 34+ 8 · 13))

= 5 · 34+ (−13) · 13

— 215-d —

Linear combinations

Definition 68 An integer r is said to be a linear combination of a
pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the
coefficients of the linear combination, such that

[
s t

]
·
[
m

n

]
= r ;

that is

s ·m+ t · n = r .

— 216 —



Theorem 69 For all positive integers m and n,

1. gcd(m,n) is a linear combination of m and n, and

2. a pair lc1(m,n), lc2(m,n) of integer coefficients for it,
i.e. such that

[
lc1(m,n) lc2(m,n)

]
·
[
m

n

]
= gcd(m,n) ,

can be efficiently computed.

— 218 —

Proposition 70 For all integers m and n,

1.
[
?1 ?2

]
·
[
m

n

]
= m ∧

[
?1 ?2

]
·
[
m

n

]
= n ;

— 219 —

Proposition 70 For all integers m and n,

1.
[
?1 ?2

]
·
[
m

n

]
= m ∧

[
?1 ?2

]
·
[
m

n

]
= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,
[
s1 t1

]
·
[
m

n

]
= r1 ∧

[
s2 t2

]
·
[
m

n

]
= r2

implies
[
?1 ?2

]
·
[
m

n

]
= r1 + r2 ;
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Proposition 70 For all integers m and n,

1.
[
?1 ?2

]
·
[
m

n

]
= m ∧

[
?1 ?2

]
·
[
m

n

]
= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,
[
s1 t1

]
·
[
m

n

]
= r1 ∧

[
s2 t2

]
·
[
m

n

]
= r2

implies
[
?1 ?2

]
·
[
m

n

]
= r1 + r2 ;

3. for all integers k and s, t, r,
[
s t

]
·
[
m

n

]
= r implies

[
?1 ?2

]
·
[
m

n

]
= k · r .
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gcd

fun gcd( m , n )

= let

fun gcditer( r1 , c as r2 )

= let

val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then c

else gcditer( c , r )

end

in

gcditer( m , n )

end

— 220 —

egcd

fun egcd( m , n )

= let

fun egcditer( ((s1,t1),r1) , lc as ((s2,t2),r2) )

= let

val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then lc

else egcditer( lc , ((s1-q*s2,t1-q*t2),r) )

end

in

egcditer( ((1,0),m) , ((0,1),n) )

end

— 220-a —

fun gcd( m , n ) = #2( egcd( m , n ) )

fun lc1( m , n ) = #1( #1( egcd( m , n ) ) )

fun lc2( m , n ) = #2( #1( egcd( m , n ) ) )

— 223 —

Multiplicative inverses in modular arithmetic

Corollary 74 For all positive integers m and n,

1. n · lc2(m,n) ≡ gcd(m,n) (mod m), and

2. whenever gcd(m,n) = 1,
[
lc2(m,n)

]
m

is the multiplicative inverse of [n]m in Zm .
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Diffie-Hellman cryptographic method

Shared secret key

A B

— 227 —

Diffie-Hellman cryptographic method

Shared secret key

A

a

c, p
B

b

— 227-a —

Diffie-Hellman cryptographic method

Shared secret key

A

a 

[ca]p = α

c, p
B

b 

β = [cb]p

— 227-b —

Diffie-Hellman cryptographic method

Shared secret key

A

a 

[ca]p = α

β

c, p
B

b 

β = [cb]p

α

/.-,()*+α
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗ /.-,()*+β
vv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
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Diffie-Hellman cryptographic method

Shared secret key

A

a 

[ca]p = α

β 

k = [βa]p

c, p
B

b 

β = [cb]p

α 

[αb]p = k

/.-,()*+α
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗ /.-,()*+β
vv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
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Key exchange

Lemma 75 Let p be a prime and e a positive integer with
gcd(p − 1, e) = 1. Define

d =
[
lc2(p− 1, e)

]
p−1

.

Then, for all integers k,

(ke)d ≡ k (mod p) .

PROOF:

— 228 —

A B
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A B
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A B

— 126 —

A B

— 126 —

A B

— 126 —

A B

— 126 —



A B

— 126 —

A B

— 126 —

A B
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A

(eA, dA)

0 ≤ k < p

p
B

(eB, dB)

— 230-a —



A

(eA, dA)

0 ≤ k < p 

[keA ]p = m1

p
B

(eB, dB)

m1

GFED@ABCm1
//
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A

(eA, dA)

0 ≤ k < p 

[keA ]p = m1

m2

p
B

(eB, dB)

m1 

m2 = [m1
eB]p

GFED@ABCm1
//GFED@ABCm2

oo
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A

(eA, dA)

0 ≤ k < p 

[keA ]p = m1

m2 

[m2
dA]p = m3

p
B

(eB, dB)

m1 

m2 = [m1
eB]p

m3

GFED@ABCm1
//GFED@ABCm2

oo GFED@ABCm3
//
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A

(eA, dA)

0 ≤ k < p 

[keA ]p = m1

m2 

[m2
dA]p = m3

p
B

(eB, dB)

m1 

m2 = [m1
eB]p

m3 

[m3
dB]p = k

GFED@ABCm1
//GFED@ABCm2

oo GFED@ABCm3
//

— 230-e —



Natural Numbers
and mathematical induction

We have mentioned in passing that the natural numbers are
generated from zero by succesive increments. This is in fact the
defining property of the set of natural numbers, and endows it with
a very important and powerful reasoning principle, that of
Mathematical Induction, for establishing universal properties of
natural numbers.

— 231 —

Principle of Induction

Let P(m) be a statement for m ranging over the set of natural
numbers N.
If

◮ the statement P(0) holds, and

◮ the statement

∀n ∈ N.
(
P(n) =⇒ P(n+ 1)

)

also holds

then

◮ the statement

∀m ∈ N. P(m)

holds.

— 232 —

Binomial Theorem

Theorem 29 For all n ∈ N,

(x+ y)n =
∑n

k=0

(
n
k

)
· xn−k · yk .

PROOF:

— 237 —

Principle of Induction
from basis ℓ

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number ℓ.
If

◮ P(ℓ) holds, and

◮ ∀n ≥ ℓ in N.
(
P(n) =⇒ P(n+ 1)

)
also holds

then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 251 —



Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number ℓ.
If both

◮ P(ℓ) and

◮ ∀n ≥ ℓ in N.
( (

∀k ∈ [ℓ..n]. P(k)
)

=⇒ P(n+ 1)
)

hold, then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 255 —

Fundamental Theorem of Arithmetic

Proposition 76 Every positive integer greater than or equal 2 is a
prime or a product of primes.

PROOF:

— 257 —

Theorem 77 (Fundamental Theorem of Arithmetic) For every
positive integer n there is a unique finite ordered sequence of
primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
∏

(p1, . . . , pℓ) .

PROOF:

— 261 —

Euclid ′s infinitude of primes

Theorem 80 The set of primes is infinite.

PROOF:
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Sets

— 275 —

Objectives

To introduce the basics of the theory of sets and some of its uses.

— 277 —

Abstract sets
It has been said that a set is like a mental “bag of dots”, except of
course that the bag has no shape; thus,?> =<89 :;•(1,1) •(1,2) •(1,3) •(1,4) •(1,5)

•(2,1) •(2,2) •(2,3) •(2,4) •(2,5)

may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as?> =<89 :;•(1,1) •(2,1) •(1,2) •(2,2) •(1,3) •(2,3) •(1,4) •(2,4) •(1,5) •(2,5)

or even simply as ?> =<89 :;• • • • • • • • • •

for other considerations.
— 279 —

Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

∀ sets A,B. A = B ⇐⇒ ( ∀ x. x ∈ A ⇐⇒ x ∈ B ) .

Example:

{0} 6= {0, 1} = {1, 0} 6= {2} = {2, 2}

— 282 —

Subsets and supersets

— 283 —

Lemma 83

1. Reflexivity.

For all sets A, A ⊆ A.

2. Transitivity.

For all sets A, B, C, (A ⊆ B ∧ B ⊆ C) =⇒ A ⊆ C.

3. Antisymmetry.

For all sets A, B, (A ⊆ B ∧ B ⊆ A) =⇒ A = B.

— 284 —

Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

{ x ∈ A | P(x) }
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Russell ′s paradox

— 287 —

Empty set

∅ or { }

defined by

∀ x. x 6∈ ∅

or, equivalently, by

¬(∃ x. x ∈ ∅)

— 288 —

Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S |.

Example:

#∅ = 0

— 289 —

Powerset axiom

For any set, there is a set consisting of all its subsets.

P(U)

∀X. X ∈ P(U) ⇐⇒ X ⊆ U .
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Hasse diagrams

— 291 —

Proposition 84 For all finite sets U,

#P(U) = 2#U .

PROOF IDEA :

— 292 —

Venn diagramsa

aFrom http://en.wikipedia.org/wiki/Intersection_(set_theory) .

— 293 —

Union Intersection

Complement

— 294 —



The powerset Boolean algebra

( P(U) , ∅ , U , ∪ , ∩ , (·)c )

For all A,B ∈ P(U),

A ∪ B = { x ∈ U | x ∈ A ∨ x ∈ B } ∈ P(U)

A ∩ B = { x ∈ U | x ∈ A ∧ x ∈ B } ∈ P(U)

Ac = { x ∈ U | ¬(x ∈ A) } ∈ P(U)

— 295 —

◮ The union operation ∪ and the intersection operation ∩ are
associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

— 296 —

◮ The union operation ∪ and the intersection operation ∩ are
associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

◮ The empty set ∅ is a neutral element for ∪ and the universal
set U is a neutral element for ∩.

∅ ∪A = A = U ∩A

— 296-a —

◮ The empty set ∅ is an annihilator for ∩ and the universal set U
is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

— 297 —



◮ The empty set ∅ is an annihilator for ∩ and the universal set U
is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

◮ With respect to each other, the union operation ∪ and the
intersection operation ∩ are distributive and absorptive.

A∩(B∪C) = (A∩B)∪(A∩C) , A∪(B∩C) = (A∪B)∩(A∪C)

A ∪ (A ∩ B) = A = A ∩ (A ∪ B)

— 297-a —

◮ The complement operation (·)c satisfies complementation laws.

A ∪Ac = U , A ∩Ac = ∅

— 298 —

Proposition 85 Let U be a set and let A,B ∈ P(U).

1. ∀X ∈ P(U). A ∪ B ⊆ X ⇐⇒
(
A ⊆ X ∧ B ⊆ X

)
.

2. ∀X ∈ P(U). X ⊆ A ∩ B ⇐⇒
(
X ⊆ A ∧ X ⊆ B

)
.

PROOF:

— 299 —

Corollary 86 Let U be a set and let A,B,C ∈ P(U).

1. C = A ∪ B

iff
[
A ⊆ C∧ B ⊆ C

]

∧
[
∀X ∈ P(U).

(
A ⊆ X ∧ B ⊆ X

)
=⇒ C ⊆ X

]

2. C = A ∩ B

iff
[
C ⊆ A∧ C ⊆ B

]

∧
[
∀X ∈ P(U).

(
X ⊆ A ∧ X ⊆ B

)
=⇒ X ⊆ C

]

— 302 —



Sets and logic

P(U)
{
false , true

}

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)

— 303 —

Pairing axiom

For every a and b, there is a set with a and b as its
only elements.

{a , b }

defined by

∀x. x ∈ {a, b} ⇐⇒ (x = a ∨ x = b)

NB The set {a, a} is abbreviated as {a }, and referred to as a singleton.

— 304 —

Examples:

◮ # { ∅ } = 1

◮ # { { ∅ } } = 1

◮ #{ ∅ , { ∅ } } = 2

— 306 —

Ordered pairing

For every pair a and b, the set
{
{a } , {a, b }

}

is abbreviated as

〈a, b〉

and referred to as an ordered pair .

— 307 —



Proposition 87 (Fundamental property of ordered pairing)
For all a, b, x, y,

〈a, b〉 = 〈x, y〉 ⇐⇒
(
a = x ∧ b = y

)
.

PROOF:
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Products

The product A× B of two sets A and B is the set

A× B =
{
x | ∃a ∈ A,b ∈ B. x = (a, b)

}

where

∀a1, a2 ∈ A,b1, b2 ∈ B.

(a1, b1) = (a2, b2) ⇐⇒ (a1 = a2 ∧ b1 = b2) .

Thus,

∀ x ∈ A× B.∃!a ∈ A.∃!b ∈ B. x = (a, b) .

— 309 —

Proposition 89 For all finite sets A and B,

# (A× B) = #A ·#B .

PROOF IDEA :
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Big unions

Definition 90 Let U be a set. For a collection of sets F ∈ P(P(U)),
we let the big union (relative to U) be defined as

⋃
F =

{
x ∈ U | ∃A ∈ F. x ∈ A

}
∈ P(U) .

— 312 —



Proposition 91 For all F ∈ P(P(P(U))),
⋃( ⋃

F
)

=
⋃{ ⋃

A ∈ P(U) A ∈ F

}
∈ P(U) .

PROOF:

— 315 —

Big intersections

Definition 92 Let U be a set. For a collection of sets F ⊆ P(U), we
let the big intersection (relative to U) be defined as

⋂
F =

{
x ∈ U | ∀A ∈ F. x ∈ A

}
.

— 318 —

Theorem 93 Let

F =
{

S ⊆ R (0 ∈ S) ∧
(
∀x ∈ R. x ∈ S =⇒ (x+ 1) ∈ S

) }
.

Then, (i) N ∈ F and (ii) N ⊆ ⋂
F. Hence,

⋂
F = N.

PROOF:

— 319 —

Union axiom

Every collection of sets has a union.

⋃
F

x ∈ ⋃
F ⇐⇒ ∃X ∈ F. x ∈ X

— 321 —



For non-empty F we also have
⋂

F

defined by

∀x. x ∈ ⋂
F ⇐⇒

(
∀X ∈ F. x ∈ X

)
.

— 322 —

Disjoint unions

Definition 94 The disjoint union A ⊎ B of two sets A and B is the
set

A ⊎ B =
(
{1}×A

)
∪
(
{2}× B

)
.

Thus,

∀ x. x ∈ (A ⊎ B) ⇐⇒
(
∃a ∈ A. x = (1, a)

)
∨

(
∃b ∈ B. x = (2, b)

)
.

— 324 —

Proposition 96 For all finite sets A and B,

A ∩ B = ∅ =⇒ # (A ∪ B) = #A+#B .

PROOF IDEA:

Corollary 97 For all finite sets A and B,

# (A ⊎ B) = #A+#B .

— 326 —

Relations

Definition 99 A (binary) relation R from a set A to a set B

R : A−→p B or R ∈ Rel(A,B) ,

is

R ⊆ A× B or R ∈ P(A× B) .

Notation 100 One typically writes aRb for (a, b) ∈ R.
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Informal examples:

◮ Computation.

◮ Typing.

◮ Program equivalence.

◮ Networks.

◮ Databases.

— 331 —

Examples:

◮ Empty relation.
∅ : A−→p B (a ∅ b ⇐⇒ false)

◮ Full relation.
(A× B) : A−→p B (a (A× B) b ⇐⇒ true)

◮ Identity (or equality) relation.
idA =

{
(a, a) | a ∈ A

}
: A−→p A (a idA a ′ ⇐⇒ a = a ′)

◮ Integer square root.
R2 =

{
(m,n) | m = n2

}
: N−→p Z (m R2 n ⇐⇒ m = n2)

— 332 —

Internal diagrams

Example:

R =
{
(0, 0), (0,−1), (0, 1), (1, 2), (1, 1), (2, 1)

}
: N−→p Z

S =
{
(1, 0), (1, 2), (2, 1), (2, 3)

}
: Z−→p Z

— 333 —

Relational extensionality

R = S : A−→p B

iff

∀a ∈ A.∀b ∈ B. aRb ⇐⇒ aSb

— 334 —



Relational composition

— 335 —

Theorem 102 Relational composition is associative and has the
identity relation as neutral element.

◮ Associativity.

For all R : A−→p B, S : B−→p C, and T : C−→p D,

(T ◦ S) ◦ R = T ◦ (S ◦ R)

◮ Neutral element.

For all R : A−→p B,

R ◦ idA = R = idB ◦ R .

— 336 —

Relations and matrices

Definition 103

1. For positive integers m and n, an (m× n)-matrix M over a
semiring

(
S, 0,⊕, 1,⊙

)
is given by entries Mi,j ∈ S for all

0 ≤ i < m and 0 ≤ j < n.

Theorem 104 Matrix multiplication is associative and has the
identity matrix as neutral element.

— 337 —

Relations from [m] to [n] and (m× n)-matrices over Booleans
provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .

— 342 —



Directed graphs

Definition 108 A directed graph (A,R) consists of a set A and a
relation R on A (i.e. a relation from A to A).

— 345 —

Corollary 110 For every set A, the structure
(
Rel(A) , idA , ◦ )

is a monoid.

Definition 111 For R ∈ Rel(A) and n ∈ N, we let

R◦n = R ◦ · · · ◦ R︸ ︷︷ ︸
n times

∈ Rel(A)

be defined as idA for n = 0, and as R ◦ R◦m for n = m+ 1.

— 346 —

Paths

Proposition 113 Let (A,R) be a directed graph. For all n ∈ N and
s, t ∈ A, s R◦n t iff there exists a path of length n in R with source s

and target t.

PROOF:

— 348 —

Definition 114 For R ∈ Rel(A), let

R◦∗ =
⋃ {

R◦n ∈ Rel(A) | n ∈ N
}

=
⋃

n∈N R◦n .

Corollary 115 Let (A,R) be a directed graph. For all s, t ∈ A,
s R◦∗ t iff there exists a path with source s and target t in R.

— 349 —



The (n× n)-matrix M = mat(R) of a finite directed graph
(
[n], R

)

for n a positive integer is called its adjacency matrix .

The adjacency matrix M∗ = mat(R◦∗) can be computed by matrix
multiplication and addition as Mn where





M0 = In

Mk+1 = In +
(
M ·Mk

)

This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.

— 350 —

Preorders

Definition 116 A preorder
(
P , ⊑

)
consists of a set P and a relation

⊑ on P (i.e. ⊑ ∈ P(P × P)) satisfying the following two axioms.

◮ Reflexivity.

∀ x ∈ P. x ⊑ x

◮ Transitivity.

∀ x, y, z ∈ P. (x ⊑ y ∧ y ⊑ z) =⇒ x ⊑ z

— 352 —

Examples:

◮ (R,≤) and (R,≥).

◮ (P(A),⊆) and (P(A),⊇).

◮ ( Z , | ).

— 353 —

Theorem 118 For R ⊆ A×A, let

FR =
{
Q ⊆ A×A | R ⊆ Q ∧ Q is a preorder

}
.

Then, (i) R◦∗ ∈ FR and (ii) R◦∗ ⊆ ⋂
FR. Hence, R◦∗ =

⋂
FR.

PROOF:
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Partial functions

Definition 119 A relation R : A −→p B is said to be functional, and
called a partial function, whenever it is such that

∀a ∈ A.∀b1, b2 ∈ B. aRb1 ∧ aRb2 =⇒ b1 = b2 .

— 356 —

Theorem 121 The identity relation is a partial function, and the
composition of partial functions yields a partial function.

NB

f = g : A⇀ B

iff

∀a ∈ A.
(
f(a)↓ ⇐⇒ g(a)↓

)
∧ f(a) = g(a)

— 360 —

Example: The following defines a partial function Z× Z⇀ Z× N:

◮ for n ≥ 0 and m > 0,
(n,m) 7→

(
quo(n,m) , rem(n,m)

)

◮ for n ≥ 0 and m < 0,
(n,m) 7→

(
− quo(n,−m) , rem(n,−m)

)

◮ for n < 0 and m > 0,
(n,m) 7→

(
− quo(−n,m) − 1 , rem(m− rem(−n,m),m)

)

◮ for n < 0 and m < 0,
(n,m) 7→

(
quo(−n,−m) + 1 , rem(−m− rem(−n,−m),−m)

)

Its domain of definition is
{
(n,m) ∈ Z× Z | m 6= 0

}
.

— 363 —

Proposition 122 For all finite sets A and B,

# (A⇀⇀B) = (#B+ 1)#A .

PROOF IDEA :

— 365 —



Functions (or maps)

Definition 123 A partial function is said to be total, and referred
to as a (total) function or map, whenever its domain of definition
coincides with its source.

Theorem 124 For all f ∈ Rel(A,B),

f ∈ (A⇒ B) ⇐⇒ ∀a ∈ A.∃!b ∈ B. a f b .
— 366 —

Proposition 125 For all finite sets A and B,

# (A⇒ B) = #B#A .

PROOF IDEA :

— 368 —

Theorem 126 The identity partial function is a function, and the
composition of functions yields a function.

NB

1. f = g : A→ B iff ∀a ∈ A. f(a) = g(a).

2. For all sets A, the identity function idA : A→ A is given by the
rule

idA(a) = a

and, for all functions f : A→ B and g : B→ C, the composition
function g ◦ f : A→ C is given by the rule

(
g ◦ f

)
(a) = g

(
f(a)

)
.

— 370 —

Bijections

Definition 127 A function f : A → B is said to be bijective, or
a bijection, whenever there exists a (necessarily unique) function
g : B→ A (referred to as the inverse of f) such that

1. g is a retraction (or left inverse) for f:

g ◦ f = idA ,

2. g is a section (or right inverse) for f:

f ◦ g = idB .

— 371 —



Proposition 129 For all finite sets A and B,

#Bij(A,B) =





0 , if #A 6= #B

n! , if #A = #B = n

PROOF IDEA :

— 373 —

Theorem 130 The identity function is a bijection, and the composi-
tion of bijections yields a bijection.

— 374 —

Definition 131 Two sets A and B are said to be isomorphic (and
to have the same cardinatity) whenever there is a bijection between
them; in which case we write

A ∼= B or #A = #B .

Examples:

1. {0, 1} ∼= {false, true}.

2. N ∼= N+ , N ∼= Z , N ∼= N× N , N ∼= Q .

— 375 —

Equivalence relations and set partitions

◮ Equivalence relations.

— 376 —



◮ Set partitions.

— 377 —

Theorem 134 For every set A,

EqRel(A) ∼= Part(A) .

PROOF:

— 379 —

Calculus of bijections

◮ A ∼= A , A ∼= B =⇒ B ∼= A , (A ∼= B ∧ B ∼= C) =⇒ A ∼= C

◮ If A ∼= X and B ∼= Y then

P(A) ∼= P(X) , A× B ∼= X× Y , A ⊎ B ∼= X ⊎ Y ,

Rel(A,B) ∼= Rel(X, Y) , (A⇀⇀B) ∼= (X⇀⇀Y) ,

(A⇒ B) ∼= (X⇒ Y) , Bij(A,B) ∼= Bij(X, Y)

— 381 —

◮ A ∼= [1]×A , (A× B)× C ∼= A× (B× C) , A× B ∼= B×A

◮ [0] ⊎A ∼= A , (A ⊎ B) ⊎ C ∼= A ⊎ (B ⊎ C) , A ⊎ B ∼= B ⊎A

◮ [0]×A ∼= [0] , (A ⊎ B)× C ∼= (A× C) ⊎ (B× C)

◮
(
A⇒ [1]

)
∼= [1] ,

(
A⇒ (B× C)

)
∼= (A⇒ B)× (A⇒ C)

◮
(
[0]⇒ A

)
∼= [1] ,

(
(A ⊎ B)⇒ C

)
∼= (A⇒ C)× (B⇒ C)

◮ ([1]⇒ A) ∼= A ,
(
(A× B)⇒ C) ∼=

(
A⇒ (B⇒ C)

)

◮ (A⇀⇀B) ∼=
(
A⇒ (B ⊎ [1])

)

◮ P(A) ∼=
(
A⇒ [2]

)
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Characteristic (or indicator) functions

P(A) ∼=
(
A ⇒ [2]

)

— 383 —

Finite cardinality

Definition 136 A set A is said to be finite whenever A ∼= [n] for
some n ∈ N, in which case we write #A = n.

— 385 —

Theorem 137 For all m,n ∈ N,

1. P
(
[n]

)
∼= [2n]

2. [m]× [n] ∼= [m · n]

3. [m] ⊎ [n] ∼= [m+ n]

4.
(
[m]⇀⇀[n]

)
∼=
[
(n+ 1)m

]

5.
(
[m]⇒ [n]

)
∼= [nm]

6. Bij
(
[n], [n]

)
∼= [n!]

— 386 —

Infinity axiom

There is an infinite set, containing ∅ and closed under successor.

— 387 —



Bijections

Proposition 138 For a function f : A→ B, the following are
equivalent.

1. f is bijective.

2. ∀b ∈ B.∃!a ∈ A. f(a) = b.

3.
(
∀b ∈ B.∃a ∈ A. f(a) = b

)

∧(
∀a1, a2 ∈ A. f(a1) = f(a2) =⇒ a1 = a2

)

— 388 —

Surjections

Definition 139 A function f : A→ B is said to be surjective, or a
surjection, and indicated f : A։ B whenever

∀b ∈ B.∃a ∈ A. f(a) = b .

— 389 —

Theorem 140 The identity function is a surjection, and the
composition of surjections yields a surjection.

The set of surjections from A to B is denoted

Sur(A,B)

and we thus have

Bij(A,B) ⊆ Sur(A,B) ⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B) .

— 391 —

Enumerability

Definition 142

1. A set A is said to be enumerable whenever there exists a
surjection N։ A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.
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Examples:

1. A bijective enumeration of Z.

· · · −3 −2 −1 0 1 2 3 · · ·

— 395 —

2. A bijective enumeration of N× N.

0 1 2 3 4 5 · · ·
0

1

2

3

4
...

— 396 —

Proposition 143 Every non-empty subset of an enumerable set is
enumerable.

PROOF:

— 397 —

Countability

Proposition 144

1. N, Z, Q are countable sets.

2. The product and disjoint union of countable sets is countable.

3. Every finite set is countable.

4. Every subset of a countable set is countable.

— 399 —



Axiom of choice

Every surjection has a section.

— 400 —

Injections

Definition 145 A function f : A → B is said to be injective, or an
injection, and indicated f : A B whenever

∀a1, a2 ∈ A.
(
f(a1) = f(a2)

)
=⇒ a1 = a2 .

— 401 —

Theorem 146 The identity function is an injection, and the compo-
sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A,B)

and we thus have

Sur(A,B)⊆

Bij(A,B)
⊆
⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B)

Inj(A,B)
⊆

with

Bij(A,B) = Sur(A,B) ∩ Inj(A,B) .

— 403 —

Proposition 147 For all finite sets A and B,

#Inj(A,B) =





(
#B
#A

)
· (#A)! , if #A ≤ #B

0 , otherwise

PROOF IDEA:
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Relational images

Definition 150 Let R : A−→p B be a relation.

◮ The direct image of X ⊆ A under R is the set
−→
R (X) ⊆ B, defined

as
−→
R (X) = {b ∈ B | ∃ x ∈ X. xRb } .

NB This construction yields a function
−→
R : P(A)→ P(B).

— 407 —

◮ The inverse image of Y ⊆ B under R is the set
←−
R (Y) ⊆ A,

defined as
←−
R (Y) = {a ∈ A | ∀b ∈ B. aRb =⇒ b ∈ Y }

NB This construction yields a function
←−
R : P(B)→ P(A).

— 408 —

Replacement axiom

The direct image of every definable functional property
on a set is a set.

— 411 —

Set-indexed constructions

For every mapping associating a set Ai to each element of a set I,
we have the set

⋃
i∈IAi =

⋃ {
Ai | i ∈ I

}
=
{
a | ∃ i ∈ I. a ∈ Ai

}
.

Examples:

1. Indexed disjoint unions:
⊎

i∈IAi =
⋃

i∈I {i}×Ai

2. Finite sequences on a set A:

A∗ =
⊎

n∈NA
n

— 412 —



3. Finite partial functions from a set A to a set B:

(A⇀⇀fin B) =
⊎

S∈Pfin(A) (S⇒ B)

where

Pfin(A) =
{
S ⊆ A | S is finite

}

4. Non-empty indexed intersections: for I 6= ∅,
⋂

i∈I Ai =
{
x ∈ ⋃

i∈IAi | ∀ i ∈ I. x ∈ Ai

}

5. Indexed products:
∏

i∈IAi =
{

α ∈
(
I⇒ ⋃

i∈IAi

)
∀ i ∈ I. α(i) ∈ Ai

}

— 413 —

Proposition 153 An enumerable indexed disjoint union of
enumerable sets is enumerable.

PROOF:

Corollary 155 If X and A are countable sets then so are A∗,
Pfin(A), and (X⇀⇀finA).

— 414 —

THEOREM OF THE DAY
Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S 1, S 2, S 3, . . . , and denote by S i( j) the j-th entry of sequence S i. Now

define a new sequence, S , whose i-th entry is S i(i)+1 (mod 2). So S is S 1(1)+1, S 2(2)+1, S 3(3)+1, S 4(4)+1, . . . , with all entries remaindered

modulo 2. S is certainly an infinite sequence of 0s and 1s. So it must appear in our list: it is, say, S k, so its k-th entry is S k(k). But this is, by

definition, S k(k) + 1 (mod 2) , S k(k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers

(1, 2, 3, . . .). To see this informally, consider the infinite sequences of 0s and 1s to be the binary expansions of fractions (e.g. 0.010011 . . . =
0/2 + 1/4 + 0/8 + 0/16 + 1/32 + 1/64 + . . .). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see

that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or

exclude it (0).

Georg Cantor (1845–1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/∼dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:

type ‘earliest diagonal’ into their search box.

Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org
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Unbounded cardinality

Theorem 156 (Cantor’s diagonalisation argument) For every
set A, no surjection from A to P(A) exists.

PROOF:
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Definition 157 A fixed-point of a function f : X→ X is an element
x ∈ X such that f(x) = x.

Theorem 158 (Lawvere’s fixed-point argument) For sets A and
X, if there exists a surjection A։ (A⇒ X) then every function
X→ X has a fixed-point; and hence X is a singleton.

PROOF:
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Corollary 159 The sets

P(N) ∼=
(
N⇒ [2]

)
∼= [0, 1] ∼= R

are not enumerable.

Corollary 160 There are non-computable infinite sequences of
bits.

— 424 —

Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of ∈-Induction .

— 427 —


