Important mathematical jargon: Sets

Very roughly, sets are the mathematicians' data structures. Informally, we will consider a set as a (well-defined, unordered) collection of mathematical objects, called the elements (or members) of the set.

Set membership

The symbol ' \in ' known as the set membership predicate is central to the theory of sets, and its purpose is to build statements of the form

$$
x \in A
$$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise. Equality of sets

$$
A=B \quad \text { iff } \quad \forall x, \quad x \in A \Leftrightarrow x \in B
$$

Defining sets
The set $\left|\begin{array}{c}\text { of even primes } \\ \text { of boolean } \\ {[-2.3]}\end{array}\right|$ is $\left|\begin{array}{c}\{2\} \\ \{\text { true, false }\} \\ \{-2,-1,0,1,2,3\}\end{array}\right|$
\mathbb{N} the set of hat ural numbers

$$
\left\{0,1,2, \ldots, n_{0} \cdots\right\}
$$

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$
\{x \in A \mid P(x)\} \quad, \quad\{x \in A: P(x)\}
$$

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set comprehension as follows

$$
D(n)=\{d \in \mathbb{N}: d \mid n\} .
$$

Example 53

1. $\mathrm{D}(0)=\mathbb{N}$
2. $\mathrm{D}(1224)=\left\{\begin{array}{c}1,2,3,4,6,8,9,12,17,18,24,34,36,51,68, \\ 72,102,136,153,204,306,408,612,1224\end{array}\right\}$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the common divisors of pairs of natural numbers? That is, the set

$$
C D(m, n)=\{d \in \mathbb{N}: d|m \wedge d| n\}
$$

for $m, n \in \mathbb{N}$.

Example 54

$$
\mathrm{CD}(1224,660)=\{1,2,3,4,6,12\}
$$

Since $C D(n, n)=D(n)$, the computation of common divisors is as hard as that of divisors. But, what about the computation of the greatest common divisor?
hof

Lemma 56 (Key Lemma) Let m and m^{\prime} be natural numbers and let n be a positive integer such that $\mathrm{m} \equiv \mathrm{m}^{\prime}(\bmod \mathfrak{n})$. Then,

$$
C D(m, n)=C D\left(m^{\prime}, n\right) .
$$

Proof: Assume $m \equiv m^{\prime}(\bmod n)$, is $m^{\prime}=m_{m}+k \cdot n$ for some $k \in \mathbb{Z} . R T P . \forall d \in N . d / m \& d / n \Leftrightarrow d \mid m / \varepsilon d l_{n}$ Let $A \in \mathbb{X}$.
\Leftrightarrow Assur d la $e d / \mathrm{l}$. Then
d / m^{\prime} because $d /(m+k n)$.
[using $d(a \& d / b \Rightarrow d l(a+b)]$.
So $d / m^{\prime} \& d / u$.
(\leftarrow). Symmetrically

$d / n \quad \& \quad n / m \Rightarrow d / m$
Lemma 58 For all positive integers m and n, blench $\begin{array}{ll}\mathrm{CD}(\mathrm{m}, \mathrm{n})= & , \text { if } \mathrm{n} \mid \mathrm{m} \\ \mathrm{D}(\mathrm{n})^{\vee} & , \text { otherwise } \\ \mathrm{CD}(\mathrm{n}, \operatorname{rem}(\mathrm{m}, \mathrm{n}))\end{array}$
CD) $(\operatorname{ram}(m, n), n)$

Lemma 58 For all positive integers m and n ,

$$
C D(m, n)= \begin{cases}D(n) & , \text { if } \mathfrak{n} \mid m \\ C D(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

Since a positive integer n is the greatest divisor in $D(n)$, the lemma suggests a recursive procedure:

$$
\operatorname{gcd}(m, n)= \begin{cases}n & , \text { if } n \mid m \\ \operatorname{gcd}(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

for computing the greatest common divisor, of two positive integers m and n. This is

Euclid's Algorithm

gcd

fun gcd(m , n)

$$
=\text { let }
$$

$$
\operatorname{val}(\mathrm{q}, \mathrm{r})=\operatorname{divalg}(\mathrm{m}, \mathrm{n})
$$

in

$$
\begin{aligned}
& \text { if } r=0 \text { then } n \\
& \text { else } \operatorname{gcd}(\mathrm{n}, \mathrm{r}) \\
& \text { end }
\end{aligned}
$$

Example $59(\operatorname{gcd}(13,34)=1)$

$$
\begin{aligned}
\operatorname{gcd}(13,34) & =\operatorname{gcd}(34,13) \\
& =\operatorname{gcd}(13,8) \\
& =\operatorname{gcd}(8,5) \\
& =\operatorname{gcd}(5,3) \\
& =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,1) \\
& =1
\end{aligned}
$$

Theorem 60 Euclid's Algorithm gcd terminates on all pairs of positive integers and, for such m and $n, \operatorname{gcd}(m, n)$ is the greatest common divisor of m and n in the sense that the following two properties hold:
(i) both $\operatorname{gcd}(m, n) \mid m$ and $\operatorname{gcd}(m, n) \mid n$, and
(ii) for all positive integers d such that $\mathrm{d} \mid \mathrm{m}$ and $\mathrm{d} \mid \mathrm{n}$ it necessarily follows that $\mathrm{d} \mid \operatorname{gcd}(\mathrm{m}, \mathrm{n})$.

Proof:

Termination: ot arg. decreases

$$
\operatorname{gcd}\left(m, n_{1}\right)
$$

$$
\operatorname{gcd}(n, r)
$$

$$
D\left[r^{\prime}\right]
$$

$$
\begin{aligned}
& C D(m, n) \stackrel{?}{=} D(\operatorname{ged}(m, n)) \\
& C D(m, n) \\
& C D(h, r) \operatorname{gcd}(n, m) \\
& \Leftrightarrow d \operatorname{gcd}(m, n))
\end{aligned}
$$

Fractions in lowest terms

```
fun lowterms( m , n )
    = let
    val gcdval = gcd( m , n )
    in
        ( m div gcdval , n div gcdval )
    end
```

Some fundamental properties of gads
Lemma 62 For all positive integers l, m, and n ,

1. (Commutativity) $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m)$,
2. (Associativity) $\operatorname{gcd}(l, \operatorname{gcd}(\mathfrak{m}, \mathfrak{n}))=\operatorname{gcd}(\operatorname{gcd}(l, \mathfrak{m}), \mathfrak{n})$,
3. (Linearity) ${ }^{\mathrm{a}} \operatorname{gcd}(\mathrm{l} \cdot \mathrm{m}, l \cdot \mathfrak{n})=l \cdot \operatorname{gcd}(m, n)$.

PROOF. $g(3)(1) l \cdot \operatorname{ged}(m, n) / \operatorname{ged}(l . m, l, n)$
(2) ged (lm, ln) / l. ged (min)
(1) Have. ged $(m, n) / m, n \quad \therefore \quad l . \operatorname{ged}(m, n) / l m, l_{1} n$.
$\therefore l \operatorname{lged}(m, n) / \operatorname{grd}(l, m, l n)$.
${ }^{\text {a }}$ Aka (Distributivity).

Rtp.(2) $\operatorname{gcd}(l . m, l, n) \mid \operatorname{l.ged}(m, n)$
Note $l / \operatorname{grd}(l i m, l i n)$.
[Because $l / l \ln , l n]$.

$$
l \cdot k=\operatorname{ged}(l \cdot m, l \cdot n)(1)
$$

for some $k \in N$. Because $g(t)$,

$$
\ell . k \mid l m, l . n
$$

$\therefore k(m, n$.
$\therefore k^{1} 1 \operatorname{ged}(m, n)$
\therefore like 1 d ged (m, n)
$\operatorname{ged}(l-m, l i n)$

Euclid's Theorem

Theorem 63 For positive integers k, m, and n, if $k \mid(m \cdot n)$ and $\operatorname{gcd}(\mathrm{k}, \mathrm{m})=1$ then $\mathrm{k} \mid \mathrm{n}$.

Proof:

