Numbers Objectives

- Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- To understand and be able to proficiently use the Principle of Mathematical Induction in its various forms.

Natural numbers

In the beginning there were the *<u>natural numbers</u>*

 \mathbb{N} : 0, 1, ..., n, n+1, ...

generated from zero by successive increment; that is, put in ML:

datatype

N = zero | succ of N

The basic operations of this number system are:

► Addition

► Multiplication

Group = monorial with inverses

The <u>additive structure</u> $(\mathbb{N}, 0, +)$ of natural numbers with zero and addition satisfies the following:

Monoid laws

0 + n = n = n + 0, (l + m) + n = l + (m + n)

► Commutativity law

m + n = n + m

and as such is what in the mathematical jargon is referred to as a <u>commutative monoid</u>.

Also the *multiplicative structure* $(\mathbb{N}, 1, \cdot)$ of natural numbers with one and multiplication is a commutative monoid:

Monoid laws

 $1 \cdot n = n = n \cdot 1$, $(l \cdot m) \cdot n = l \cdot (m \cdot n)$

► Commutativity law

 $\mathbf{m} \cdot \mathbf{n} = \mathbf{n} \cdot \mathbf{m}$

The additive and multiplicative structures interact nicely in that they satisfy the

► Distributive law

 $l \cdot (m+n) = l \cdot m + l \cdot n$

and make the overall structure $(\mathbb{N}, 0, +, 1, \cdot)$ into what in the mathematical jargon is referred to as a *commutative semiring*.

Cancellation

The additive and multiplicative structures of natural numbers further satisfy the following laws.

► Additive cancellation

For all natural numbers k, m, n,

 $k + m = k + n \implies m = n$.

► Multiplicative cancellation

For all natural numbers k, m, n,

if $k \neq 0$ then $k \cdot m = k \cdot n \implies m = n$.

Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there exists a number y such that x + y = 0.

Inverses

Definition 42

- 1. A number x is said to admit an <u>additive inverse</u> whenever there exists a number y such that x + y = 0.
- 2. A number x is said to admit a multiplicative inverse whenever there exists a number y such that $x \cdot y = 1$.

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for non-zero numbers yields two very interesting results:

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for non-zero numbers yields two very interesting results:

(i) the *integers*

 \mathbb{Z} : ... - n, ..., -1, 0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to as a *commutative ring*, and

(ii) the <u>rationals</u> \mathbb{Q} which then form what in the mathematical jargon is referred to as a <u>field</u>.

Lemma 43- For integers 9, nand r with n>0 & 05 r < m,

 $0 = q, n + r \Rightarrow q = 0 & r = 0.$

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers qand r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$. $= q' \cdot n + r'$ Roof of Lemma 43. Assume 0 = q.n+r. Proof by orhadiction, manual q = 0, i.e. (1) q > 0 or (2) q < 0.0 = (q - q').h + (r - r')assuming $q \neq 0, i.e.$ (1) q > 0 or (2) q < 0.0 = (q - q').h + (r - r')Case 1 g>0. Then g. h+r>0 XX Case 2 g < 0. Then gintr 5 -n+r < -n+n=0. X Thus q = 0 and 0 = 0. $n \neq r$, so r = 0. \square Lemma 43 guies the uniquenes part of Thm. 43.

-155 ----

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

Definition 44 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

ad hor Semantics dwdg
$$(m, n)$$

with compatition sequences dwither $(0, m)$
The Division Algorithm in ML:
fun divalg (m, n)
= let $(0, m)$
fun diviter (q, r) $(0, m)$
= if $r < n$ then (q, r) $(1, m-n)$
else diviter $(q+1, r-n)$ $m-h < n$ $(1, m-n)$
in $(1, m-n)$
end $(2, m-2h)$
fun quo (m, n) = #1 $(divalg(m, n))$

Theorem 45 For every natural number m and positive natural number n, the evaluation of divalg(m, n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

PROOF: (Idea) $0 \le 0 \le 0 \le m \le m = 0.n + m$ (0,m)(0,m)INVARIANT: $0 \leq q \leq 0 \leq r \leq m = q \cdot n + r$ $\iint (as assume n \leq r)$ $0 \leq q + 1 \leq 0 \leq r - n \leq n$ $m = (q + 1) \cdot n + (r - n)$