
Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
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in symbols :

k

p ⇒ false



A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent

form and use instead this other statement.

Logical equivalences

¬
(

P =⇒ Q
)

⇐⇒ P ∧ ¬Q

¬
(

P ⇐⇒ Q
)

⇐⇒ P ⇐⇒ ¬Q

¬
(

∀x. P(x)
)

⇐⇒ ∃x.¬P(x)
¬
(

P ∧ Q
)

⇐⇒ (¬P) ∨ (¬Q)

¬
(

∃x. P(x)
)

⇐⇒ ∀x.¬P(x)
¬
(

P ∨ Q
)

⇐⇒ (¬P) ∧ (¬Q)

¬
(

¬P
)

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)

— 125 —

e.:÷I
all provable

from earlier

techniques plus

proof by contradiction
.



Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

PROOF:
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Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false
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Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false

Proof pattern:

In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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11¥sometimes used to indicate a contra defeat .



Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P
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Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

PROOF:
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Lemma 41 A positive real number x is rational iff

∃positive integers m,n :

x = m/n ∧ ¬
(

∃prime p : p | m ∧ p | n
) (†)

PROOF:
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Numbers
Objectives

! Get an appreciation for the abstract notion of number system,

considering four examples: natural numbers, integers,

rationals, and modular integers.

! Prove the correctness of three basic algorithms in the theory of

numbers: the division algorithm, Euclid’s algorithm, and the

Extended Euclid’s algorithm.

! Exemplify the use of the mathematical theory surrounding

Euclid’s Theorem and Fermat’s Little Theorem in the context of

public-key cryptography.

! To understand and be able to proficiently use the Principle of

Mathematical Induction in its various forms.
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