## Negation

Negations are statements of the form
not P
or, in other words,

$$
\mathrm{P} \text { is not the case }
$$

or

$$
P \text { is absurd }
$$

or

or, in symbols,

$$
\neg \mathrm{P}
$$

## A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent form and use instead this other statement.

\[

\]

Theorem 37 For all statements P and Q ,

$$
(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longrightarrow(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P})
$$

Proof: Assume $P \Rightarrow Q . \operatorname{RTP}(\neg Q \Rightarrow \neg P)$.
Assume $\neg Q$, ie e $Q \Rightarrow$ false
[Before $(P \Rightarrow C l \& Q \Rightarrow R) \Rightarrow P]$ As cantier, deduce $P \Rightarrow$ fable, $\rightarrow P$

$$
\begin{array}{lllll}
\left(P_{1} \Rightarrow P_{2} \& P_{2} \rightarrow P_{3} \& \cdots \& P_{n}, \Rightarrow P_{h}\right) & & P_{1} \\
\Rightarrow P_{1} \Rightarrow P_{h} & \text { Often write } & \begin{aligned}
& P_{1} \\
& \\
& \Rightarrow P_{3} \\
& \Rightarrow P_{3}
\end{aligned}
\end{array}
$$

## Proof by contradiction

## The strategy for proof by contradiction:

To prove a goal $P$ by contradiction is to prove the equivalent statement $\neg \mathrm{P} \Longrightarrow$ false

## Proof by contradiction

## The strategy for proof by contradiction:

To prove a goal $P$ by contradiction is to prove the equivalent statement $\neg \mathrm{P} \Longrightarrow$ false

## Proof pattern:

In order to prove
P

1. Write: We use proof by contradiction. So, suppose P is false.
2. Deduce a logical contradiction.
3. Write: This is a contradiction. Therefore, P must be true.

## Scratch work:

Before using the strategy

## Assumptions

After using the strategy

## Assumptions

Goal
contradiction

Theorem 39 For all statements P and Q ,

$$
(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}) \Longrightarrow(\mathrm{P} \Longrightarrow \mathrm{Q})
$$

Proof: Assume $\neg \theta \Rightarrow \neg P$ ( 1 ) RIP $P \Rightarrow Q$.
Assume P. RTP Cl. We use pol by contuchat
Assume $\neg Q$ By asomptor (1), $\neg P$
But $P$ and $工 P$ is abroad.
Therefore (by pt bs cortradidio), $Q$.

$$
\therefore \quad \quad 1 \Rightarrow Q
$$

rnimise Well-fömded miduhon \& penvicon
Lemma 41 A positive real number $x$ is rational jiff
$\exists$ positive integers $m, n$ :

$$
x=m / n \wedge \neg(\exists \text { prime } p: p|m \wedge p| n)
$$

PROOF: $(\Longrightarrow$ ) Assume $x$ is a posture rational. By defy, $x=\mathrm{m} / \mathrm{n}$ for some points. $m, n$. So there us a parr mo, no sit. $e_{c}=m_{0} / u_{0}$ and $m_{0}$ i least. RIP $\rightarrow$ (Dormie $p$. $p l m_{0} \& p \mid n_{0}$ )
Use proof by contuadichōs. Assume Jpime p plmo\&plu So $m_{0}=p \cdot m_{1}$ and $n_{0}=p \cdot n_{i}$ fir pos. mt. $m_{1}, n_{1}$.

$$
\therefore x=m_{0} / n_{0}=\frac{p, m_{1}}{p \cdot n_{1}}=\frac{m_{1}}{n_{1}} \text {. But } m_{1}<m_{0} \ll
$$

Uses the principle that any non-empty subset of natural numbers has a least element.

## Numbers Objectives

- Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- To understand and be able to proficiently use the Principle of Mathematical Induction in its various forms.

