Disjunction

Disjunctive statements are of the form
P or Q
or, in other words,
either P, Q, or both hold
or, in symbols,

The main proof strategy for disjunction:

To prove a goal of the form

you may

1. try to prove P (if you succeed, then you are done); or
2. try to prove Q (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either P or Q.

Hint $n \cdot \quad n^{2} \equiv 0(\bmod 4) \quad o r n^{2} \equiv 1(\bmod 4)$
Proposition 25 For all integers \mathfrak{n}, either $\mathfrak{n}^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.
Proof: Let n be an integer. Every int n is liver (1) even ar (2)odd. Consider case (1) and (2)
Care (1) seven, is $h=2 k$ fr e inter.

$$
n^{2}=(2 k)^{2}=4 k^{2} \quad \therefore n^{c}=0(\bmod 4)
$$

Care (2 , n odd.,$!n=2 k+1$ forme. k.

$$
\begin{align*}
n^{2}=(2 k+1)^{2} & =4 k^{2}+2 k+2 k+1 \\
& =4\left(k^{2}+k\right)+1 \\
\therefore n^{2} & =\$(\bmod 4)
\end{align*}
$$

The use of disjunction:

To use a disjunctive assumption

$$
P_{1} \vee P_{2}
$$

to establish a goal Q, consider the following two cases in turn: (i) assume P_{1} to establish Q , and (ii) assume P_{2} to establish Q.

Scratch work:

Before using the strategy
Assumptions Goal
Q

$$
P_{1} \vee P_{2}
$$

After using the strategy

Assumptions	Goal	Assumptions	Goal
\vdots	Q		Q
P_{1}		\vdots	
		P_{2}	

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$$
P_{1} \vee P_{2}
$$

write: We prove the following two cases in turn: (i) that assuming P_{1}, we have Q ; and (ii) that assuming P_{2}, we have Q . Case (\mathfrak{i}): Assume P_{1}. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_{2}. and provide a proof of Q from it and the other assumptions.

$$
\binom{p}{m}=\frac{p!}{(p m)!m!A} \text { little arithmetic } \quad{ }^{+} C_{m} C_{m}^{p}
$$

Lemma 27 For all positive integers p and natural numbers m, if $\mathrm{m}=0$ or $\mathrm{m}=\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 1(\bmod \mathrm{p})$.
Proof: let p, m be integers, p the.
Care (1)m=0($\binom{p}{0} \frac{p!}{p!0!}=1 \equiv 1$ $(\bmod 1 p)$
$\frac{\operatorname{Car}(\nu)}{} m=p \quad\binom{p}{p}=\frac{p!}{(p-p)!p!}=1$ yisúy

$$
x \equiv x(\bmod \phi)
$$

$$
\equiv 1 \text { (nd) }
$$

Euclid paine $p \& p / x^{4} \cdot y^{2 \cdot 1} \Rightarrow p / 2 x$ ar $p l y$
Lemma 28 For all integers p and m , if p is prime and $0<m<p$ then $\binom{p}{m} \equiv 0(\bmod p)$. WhITE THIS OUT PRopERLY.
Proof: Let p, m be enters, p paine miss o<m<p.

$$
\begin{aligned}
& \binom{p}{m}=\frac{p!}{(p-m)!m!}=p \cdot\left[\frac{(p-1)!}{(p-m)!m!}\right] \\
& p \cdot(p-1)!=\binom{p}{m} \cdot(p-m)!m!\text { An inter? }
\end{aligned}
$$

Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{\mathfrak{p}}{\mathfrak{m}} \equiv 0(\bmod p)$ or $\binom{\mathfrak{p}}{m} \equiv 1(\bmod p)$.

Proof: Pars. Care (1) $m=0$ rp. Case le) $0<m<p$ in pop 27 by top 28 .

A little more arithmetic
Corollary 33 (The Freshman's Dream) For all natural numbers m, n and primes p ,

$$
(\mathfrak{m}+\mathfrak{n})^{\mathfrak{p}} \equiv \mathfrak{m}^{\mathfrak{p}}+\mathfrak{n}^{\mathfrak{p}}(\bmod \mathfrak{p})
$$

Proof: Let m, n be nat no and p a pune.

$$
\begin{aligned}
& (m+n)^{p}=\sum_{i=0}^{p}\binom{p}{i} m^{i} n^{(p-i)} \quad \text { (Bninnial tho) } \\
& =m^{p}+n^{p}+\sum_{i=1}^{p}\binom{p}{i} m^{p} n^{(p-i]}
\end{aligned}
$$

$$
=m^{p}+n^{p}+K \cdot p \text { where } K \text { i aniler. }
$$

$$
\therefore\left(m^{p}+n\right)^{r} \equiv m^{p}+n^{p}(\bmod p)
$$

Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$
(m+1)^{p} \equiv m^{p}+1(\bmod p)
$$

Proposition 35 (The Many Dropout Lemma) For all natural numbers m and i, and primes p,

Proof:

$$
\begin{aligned}
& (m+i)^{p} \equiv m^{p}+i(\bmod p) \cdot i \text { tumas } \\
& -(m+i)^{p}=(m+1+\cdots+1)^{p} \\
& \equiv(m+\underbrace{1+\cdots+1}_{i-1})^{p}+1 \\
& \equiv m^{p}+i
\end{aligned}
$$

The Many Dropout Lemma (Proposition 35) gives the fist part of the following very important theorem as a corollary.

Theorem 36 (Fermat's Little Theorem) For all natural numbers i and primes p,
'drop out' lemma, so Euchd's thm.

$$
\text { 1. } \mathfrak{i}^{p} \equiv \mathfrak{i}(\bmod p) \text {, and }
$$

2. $\mathfrak{i}^{p-1} \equiv 1(\bmod p)$ whenever i is not a multiple of p.

Via Eucled's Chm: By 1., $p / i^{p}-i$, is. $p / i_{0}\left(i^{p-1}-1\right) \ldots$ The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .

Btw

1. Fermat's Little Theorem has applications to:
(a) primality testing ${ }^{\text {a }}$,
(b) the verification of floating-point algorithms, and
(c) cryptographic security.
${ }^{a}$ For instance, to establish that a positive integer m is not prime one may proceed to find an integer i such that $i^{m} \not \equiv i(\bmod m)$.

Negation

Negations are statements of the form
not P
or, in other words,

$$
\mathrm{P} \text { is not the case }
$$

or

$$
P \text { is absurd }
$$

or

or, in symbols,

$$
\neg \mathrm{P}
$$

