
Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

P ∨ Q
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The main proof strategy for disjunction:

To prove a goal of the form

P ∨ Q

you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);

otherwise

3. break your proof into cases; proving, in each case,

either P or Q.
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Proposition 25 For all integers n, either n2 ≡ 0 (mod 4) or

n2 ≡ 1 (mod 4).

PROOF:
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The use of disjunction:

To use a disjunctive assumption

P1 ∨ P2

to establish a goal Q, consider the following two cases in

turn: (i) assume P1 to establish Q, and (ii) assume P2 to

establish Q.
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Scratch work:

Before using the strategy

Assumptions Goal

Q
...

P1 ∨ P2

After using the strategy

Assumptions Goal Assumptions Goal

Q Q
...

...

P1 P2
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Proof pattern:

In order to prove Q from some assumptions amongst which there

is

P1 ∨ P2

write: We prove the following two cases in turn: (i) that assuming

P1, we have Q; and (ii) that assuming P2, we have Q. Case (i):

Assume P1. and provide a proof of Q from it and the other as-

sumptions. Case (ii): Assume P2. and provide a proof of Q from

it and the other assumptions.
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A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if

m = 0 or m = p then
(

p
m

)

≡ 1 (mod p).

PROOF:
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Lemma 28 For all integers p and m, if p is prime and 0 < m < p

then
(

p
m

)

≡ 0 (mod p).

PROOF:
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Proposition 29 For all prime numbers p and integers 0 ≤ m ≤ p,

either
(

p
m

)

≡ 0 (mod p) or
(

p
m

)

≡ 1 (mod p).

PROOF:
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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,

n and primes p,

(m+ n)p ≡ mp + np (mod p) .

PROOF:
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Corollary 34 (The Dropout Lemma) For all natural numbers m and

primes p,

(m+ 1)p ≡ mp + 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-

bers m and i, and primes p,

(m+ i)p ≡ mp + i (mod p) .

PROOF:
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The Many Dropout Lemma (Proposition 35) gives the fist part of the

following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the

second one will be proved later on .
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Btw

1. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im ̸≡ i (mod m).
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Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
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in symbols :

k

p ⇒ false


