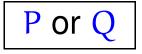
## Disjunction

Disjunctive statements are of the form



or, in other words,

either P, Q, or both hold

or, in symbols,

$$P \lor Q$$

#### The main proof strategy for disjunction:

To prove a goal of the form

 $\underset{\mathscr{C}}{\mathsf{P}} \bigvee \underset{\mathscr{C}}{\mathsf{Q}} Q$ 

you may

- 1. try to prove P (if you succeed, then you are done); or
- try to prove Q (if you succeed, then you are done);
   otherwise
- 3. break your proof into cases; proving, in each case, either P or Q.

With  $n n^2 \equiv O \pmod{4} \propto n^2 \equiv 1 \pmod{4}$  **Proposition 25** For all integers n, either  $n^2 \equiv 0 \pmod{4}$  or  $n^2 \equiv 1 \pmod{4}$ .

PROOF: let n be an integer. Eveny it n és eiher (1) even av (2/odd. Consider case (1) and (2) Care (1) neven, is h = 24 for integer le.  $h^{2} = (2k)^{2} = 4k^{2}$  ;  $n^{2} = 0$  (and 4) Careles nodel, je n= 2let 1 formt-le.  $h^{2} = (2k+1)^{2} = 4k^{2} + 2k+2k+1$  $= 4(4^{2}+4) + 1$  = 4(4 - 4) + 1 X

#### The use of disjunction:

To use a disjunctive assumption

## $P_1 ~\lor~ P_2$

to establish a goal Q, consider the following two cases in turn: (i) assume  $P_1$  to establish Q, and (ii) assume  $P_2$  to establish Q.



Before using the strategy

 $P_1 \vee P_2$ 

After using the strategyAssumptionsGoalAssumptionsQQQQQ $P_1$  $P_2$  $P_2$ 

Goal

Q

#### **Proof pattern:**

In order to prove Q from some assumptions amongst which there is

#### $P_1 ~\lor~ P_2$

write: We prove the following two cases in turn: (i) that assuming  $P_1$ , we have Q; and (ii) that assuming  $P_2$ , we have Q. Case (i): Assume  $P_1$ . and provide a proof of Q from it and the other assumptions. Case (ii): Assume  $P_2$ . and provide a proof of Q from it and the other assumptions.

$$\binom{p}{m} = \frac{p!}{(p-m)! m!}$$
 A little arithmetic

 $C_m C_m^p$ 

**Lemma 27** For all positive integers p and natural numbers m, if m = 0 or m = p then  $\binom{p}{m} \equiv 1 \pmod{p}$ .

PROOF: let p, m be m tegens, p theCase (1/m=0)  $\binom{p}{p} = \frac{p!}{p!} = 1 = 1$  (mxdp)

 $\binom{P}{p} = \frac{p'}{(p-p)! p!} = 1$ (are (2) m = /2 = 1 (mdp) (mod \$7)

Endrid princ ple plæy => plæ ar ply **Lemma 28** For all integers p and m, if p is prime and 0 < m < pthen  $\binom{p}{m} \equiv 0 \pmod{p}$ . WR ITE THE SUT PROPERLY ! PROOF: Let p, m be ntgers, p prive mts ock 5 p.  $\binom{p}{m} = \frac{p!}{(p-m)!m!} = p \cdot \underbrace{\frac{(p-1)!}{(p-m)!m!}}_{(p-m)!m!}$ 

**Proposition 29** For all prime numbers p and integers  $0 \le m \le p$ , either  $\binom{p}{m} \equiv 0 \pmod{p}$  or  $\binom{p}{m} \equiv 1 \pmod{p}$ .

PROOF: Prover Care (1) m = ONP- Carele, OSM Sp hy Mop 27 hy Map 28.

### A little more arithmetic

**Corollary 33 (The Freshman's Dream)** For all natural numbers m, n and primes p,

 $(\mathfrak{m}+\mathfrak{n})^p \equiv \mathfrak{m}^p + \mathfrak{n}^p \pmod{p}$ . PROOF: Let m, n be not nor and p a prime.  $(m+n)^{p} = \sum_{i=0}^{p} {\binom{p}{i}} m^{i} n^{p-i} (Bmmin Mm)$   $= m^{p} + n^{p} + \sum_{i=0}^{p-i} {\binom{p}{i}} m^{i} n^{p-i}$ = hP + hP + K.p where K is an integer.  $(mP + n)^{p} = mP + nP \pmod{p}$ 

# **Corollary 34 (The Dropout Lemma)** For all natural numbers **m** and primes **p**,

$$(m+1)^p \equiv m^p + 1 \pmod{p}$$
 .

# **Proposition 35 (The Many Dropout Lemma)** For all natural numbers m and i, and primes p,

PROOF:  

$$(m+i)^{p} \equiv m^{p} + i \pmod{p} \cdot (i + m)^{p}$$

$$= (m+i)^{p} = (m+i)^{p} + 1$$

$$\equiv m^{p} + i$$

Via Enclid's Ehm: For prime and integers &, y,  $p/x\cdot y \Rightarrow p/x \quad or \quad p/y.$ 

The Many Dropout Lemma (Proposition 35) gives the fist part of the following very important theorem as a corollary.

Theorem 36 (Fermat's Little Theorem) For all natural numbers i and primes p, 1.  $i^p \equiv i \pmod{p}$ , and

2.  $i^{p-1} \equiv 1 \pmod{p}$  whenever i is not a multiple of p. Via Euclid's line: by 1.,  $p/i^{p-i}$ , is  $p/i^{o}(i^{p-i}-1)$ ... The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .

## Btw

- 1. Fermat's Little Theorem has applications to:
  - (a) primality testing<sup>a</sup>,
  - (b) the verification of floating-point algorithms, and
  - (c) cryptographic security.

<sup>&</sup>lt;sup>a</sup>For instance, to establish that a positive integer  $\mathfrak{m}$  is not prime one may proceed to find an integer  $\mathfrak{i}$  such that  $\mathfrak{i}^{\mathfrak{m}} \not\equiv \mathfrak{i} \pmod{\mathfrak{m}}$ .

## Negation

