Conjunction

Conjunctive statements are of the form

$$
P \text { and } Q
$$

or, in other words,
both P and also Q hold
or, in symbols,

The proof strategy for conjunction:

To prove a goal of the form

$$
P \wedge Q
$$

first prove P and subsequently prove Q (or vice versa).

Proof pattern:

In order to prove

$$
P \wedge Q
$$

1. Write: Firstly, we prove P. and provide a proof of P.
2. Write: Secondly, we prove Q . and provide a proof of Q .

Scratch work:

Before using the strategy

Assumptions
 Goal

$P \wedge Q$

After using the strategy

Assumptions	Goal	Assumptions	Goal
	P		Q
\vdots		\vdots	

The use of conjunctions:

To use an assumption of the form $\mathrm{P} \wedge \mathrm{Q}$, treat it as two separate assumptions: P and Q .
\forall int. $6 / 4 \Leftrightarrow 2 / n \& 3 / n$
Theorem 20 For every integer n, we have that $6 \mid n$ ff $2 \mid n$ and $3 \mid$ n.
Proof: Let n be an integer. RTP. $6 / 4 \Leftrightarrow 2 / 483 / 4$.
\Leftrightarrow Ass. $6 / \mathrm{n}$, ie $n=k 6$ for an int k.

$$
\begin{aligned}
& n=k \cdot 2 \cdot 3 . \quad \therefore \quad n=2 \cdot(k \cdot 3) \therefore 2 / n \\
& n=3 \cdot(k \cdot 2) \quad \therefore \quad 3 / n \quad \therefore 2 / 4 \& 3 / 4
\end{aligned}
$$

(\Leftarrow) Ass. $2 / 4$ and 3/4. Fe.
$n=2 . i$ and $n=3 . j$ formenters jj.

$$
\begin{aligned}
& 3 \cdot n=3 \cdot 2 \cdot i=6 i \\
& 2 \cdot n=2 \cdot 3 \cdot j=6 j
\end{aligned}
$$

$$
\therefore \text { sbbactiog, } n=3 \cdot n-2 n=6 i-6 j=6(i-j)
$$

Existential quantification

Existential statements are of the form
there exists an individual x in the universe of discourse for which the property $\mathrm{P}(\mathrm{x})$ holds
or, in other words,
for some individual x in the universe of discourse, the property $\mathrm{P}(x)$ holds
or, in symbols,

$$
\exists x . \mathrm{P}(\mathrm{x})
$$

Example: The Pigeonhole Principle.
Let n be a positive integer. If $n+1$ letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval $[\mathrm{a}, \mathrm{b}]$. For every y in between $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$, there exists v in between a and b such that $\mathrm{f}(v)=\mathrm{y}$.

Intuition:

The main proof strategy for existential statements:

To prove a goal of the form

$$
\exists x . P(x)
$$

find a witness for the existential statement; that is, a value of x, say w, for which you think $P(x)$ will be true, and show that indeed $\mathrm{P}(\mathcal{w})$, i.e. the predicate $\mathrm{P}(x)$ instantiated with the value w, holds.

$$
\begin{array}{ll}
\operatorname{fn} x & x+1 \\
f x y . & y+1
\end{array}
$$

Proof pattern:
In order to prove

$$
\exists x . P(x)
$$

1. Write: Let $w=$ (the witness you decided on).
2. Provide a proof of $\mathrm{P}(w)$.

Scratch work:

Before using the strategy

Assumptions

Goal

$$
\exists x . P(x)
$$

After using the strategy
Assumptions
Goals
$P(w)$
$w=\ldots$ (the witness you decided on)

Gpo. mit.k ヨ nat. $i, j . \quad 4 k=i^{2}-j^{2}$
Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot \mathrm{k}=\mathrm{i}^{2}-\mathrm{j}^{2}$.
Proof: Let k be a pos. int. RIp Jactij. $4 k=i^{2}-j^{2}$? Want withers io and jo, not nos, sit.
$\begin{aligned} & 4 k=i_{0}^{2}-j_{0}^{2} . \\ \text { Take } c_{0}= & k+1, j 0=k-1 .\end{aligned}$
Then

$$
\begin{array}{r}
i_{0}^{2}-j_{1}^{2}=(k+1)^{2}-(k-1)^{2} \\
=k^{2}+2 k+1-k^{2}+2 k+1 \\
=4 k \quad \therefore J_{i j j}
\end{array}
$$

The use of existential statements:

To use an assumption of the form $\exists x . P(x)$, introduce a new variable x_{0} into the proof to stand for some individual for which the property $P(x)$ holds. This means that you can now assume $P\left(x_{0}\right)$ true.
$\forall m t . l, m, n . \quad l / m \& m / n \Rightarrow \ell / n$
Theorem 24 For all integers $\mathrm{l}, \mathrm{m}, \mathrm{n}$, if $\mathrm{l} \mid \mathrm{m}$ and $\mathrm{m} \mid \mathrm{n}$ then $\mathrm{l} \mid \mathrm{n}$.
Proof: Let l, m, n be meters. RTP $l / m \mathrm{~mm} / \mathrm{h} \Rightarrow l / \mathrm{h}$.
Assume $\ell / m \& m / n$, re, $\exists i, m=i l$ and $\exists j . n=j . m$.
So there are witnesses $i_{0} i_{0}, j_{0} . \quad m=i_{0} l$ and $n=j_{0}, m$
RIP. $\exists k . n=k \cdot l$. Wait k_{0} ot. $n=k_{0} \cdot l$
We have $n=j o \cdot m=j o \cdot i_{0} \cdot h=\left(j \cdot i_{0}\right) \cdot d$
So $k_{0}=j b \cdot i s$ is a mitione for

$$
\text { Th. } n=a \cdot l
$$

Unique existence

The notation

$$
\exists!x . P(x)
$$

stands for
the unique existence of an x for which the property $P(x)$ holds .

That is,

$$
\exists x . \mathrm{P}(\mathrm{x}) \wedge(\forall \mathrm{y} . \forall z \cdot(\mathrm{P}(\mathrm{y}) \wedge \mathrm{P}(z)) \Longrightarrow \mathrm{y}=z)
$$

Disjunction

Disjunctive statements are of the form
P or Q
or, in other words,
either P, Q, or both hold
or, in symbols,

