
Conjunction

Conjunctive statements are of the form

P and Q

or, in other words,

both P and also Q hold

or, in symbols,

P ∧ Q or P & Q
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The proof strategy for conjunction:

To prove a goal of the form

P ∧ Q

first prove P and subsequently prove Q (or vice versa).

— 77 —



Proof pattern:

In order to prove

P ∧ Q

1. Write: Firstly, we prove P. and provide a proof of P.

2. Write: Secondly, we prove Q. and provide a proof of Q.
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Scratch work:

Before using the strategy

Assumptions Goal

P ∧ Q
...

After using the strategy

Assumptions Goal Assumptions Goal

P Q
...

...
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The use of conjunctions:

To use an assumption of the form P ∧ Q,

treat it as two separate assumptions: P and Q.
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Theorem 20 For every integer n, we have that 6 | n iff 2 | n and

3 | n.

PROOF:
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Existential quantification

Existential statements are of the form

there exists an individual x in the universe of

discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the

property P(x) holds

or, in symbols,

∃x. P(x)
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Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n

pigeonholes then there will be a pigeonhole with more than

one letter.
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Theorem 21 (Intermediate value theorem) Let f be a real-valued

continuous function on an interval [a, b]. For every y in between f(a)

and f(b), there exists v in between a and b such that f(v) = y.

Intuition:

— 85 —

÷:



The main proof strategy for existential statements:

To prove a goal of the form

∃x. P(x)

find a witness for the existential statement; that is, a value

of x, say w, for which you think P(x) will be true, and show

that indeed P(w), i.e. the predicate P(x) instantiated with

the value w, holds.
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Proof pattern:

In order to prove

∃x. P(x)

1. Write: Let w = . . . (the witness you decided on).

2. Provide a proof of P(w).
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Scratch work:

Before using the strategy

Assumptions Goal

∃x. P(x)
...

After using the strategy

Assumptions Goals

P(w)
...

w = . . . (the witness you decided on)

— 88 —



Proposition 22 For every positive integer k, there exist natural

numbers i and j such that 4 · k = i2 − j2.

PROOF:
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The use of existential statements:

To use an assumption of the form ∃x. P(x), introduce a new

variable x0 into the proof to stand for some individual for

which the property P(x) holds. This means that you can

now assume P(x0) true.
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Theorem 24 For all integers l, m, n, if l | m and m | n then l | n.

PROOF:
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Unique existence

The notation

∃! x. P(x)

stands for

the unique existence of an x for which the property P(x) holds .

That is,

∃x. P(x) ∧
(

∀y.∀z.
(

P(y) ∧ P(z)
)

=⇒ y = z
)
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Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

P ∨ Q
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