Conjunctive statements are of the form

or, in other words,

or, in symbols,

Conjunction

P and Q

both P and also Q hold

P A Q

or

P&Q




The proof strategy for conjunction:

To prove a goal of the form
P AQ

first prove P and subsequently prove Q (or vice versa).



Proof pattern:
In order to prove

P A Q

1. Write: Firstly, we prove P. and provide a proof of P.

2. Write: Secondly, we prove Q. and provide a proof of Q.




Scratch work:

Before using the strategy
Assumptions

After using the strategy
Assumptions Goal

P

Goal
PAQ

Assumptions

Goal
Q



The use of conjunctions:

To use an assumption of the form P A\ Q,
treat it as two separate assumptions: P and Q.
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Theorem 20 For every integer n, we have that 6 | n iff 2 | n and
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Existential quantification

Existential statements are of the form

there exists an individual x in the universe of
discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the
property P(x) holds

or, in symbols,




Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n
pigeonholes then there will be a pigeonhole with more than
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Theorem 21 (Intermediate value theorem) Let f be a real-valued
continuous function on an interval [a, b]. For everyy in between f(a)
and f(b), there exists v in between a and b such that f(v) = y.

Intuition:




The main proof strategy for existential statements:

To prove a goal of the form
Fx. P(x)

find a witness for the existential statement; that is, a value
of x, say w, for which you think P(x) will be true, and show
that indeed P(w), i.e. the predicate P(x) instantiated with
the value w, holds.
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Proof pattern:
In order to prove

1. Write: Let w = ... (the withess you decided on).

2. Provide a proof of P(w).




Scratch work:

Before using the strategy
Assumptions Goal

Fx. P(x)

After using the strategy
Assumptions Goals

P(w)

w = ... (the withess you decided on)
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Proposition 22 For every positive integer k, there exist natural
numbers i andj such that4 - k = i* —j°.
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The use of existential statements:

To use an assumption of the form Jx. P(x), introduce a new
variable x, into the proof to stand for some individual for
which the property P(x) holds. This means that you can
now assume P(x,) true.
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Theorem 24 For all integers 1, m, n, ifl | m and m |n thenl | n.
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Unique existence
The notation
! x. P(x)
stands for

the unique existence of an x for which the property P(x) holds .

That is,

Ix.P(x) A (Vy.Vz. (Ply) AN P(z)) = vy :z>



Disjunction

Disjunctive statements are of the form

or, in other words,

or, in symbols,

PorQ

either P, Q, or both hold

PV Q




