Logical Deduction - Modus Ponens -

A main rule of logical deduction is that of Modus Ponens:
From the statements P and $P \Longrightarrow Q$, the statement Q follows.
or, in other words,
If P and $P \Longrightarrow Q$ hold then so does Q.
or, in symbols,

The use of implications:
To use an assumption of the form $P \Longrightarrow \mathrm{Q}$, aim at establishing P.
Once this is done, by Modus Ponens, one can conclude Q and so further assume it.

Theorem 11 Let P_{1}, P_{2}, and P_{3} be statements. If $P_{1} \Longrightarrow P_{2}$ and $P_{2} \Longrightarrow P_{3}$ then $P_{1} \Longrightarrow P_{3}$.

Proof: Ass. $P_{1} \Rightarrow P_{2}, P_{2} \Rightarrow P_{3}$.
$\operatorname{RTP} \quad P_{1} \Rightarrow P_{3}$.
Assume P_{2}
By $M P, P_{1}, P_{1} \Rightarrow P_{2}$, get P_{2}
B MP, $P_{2}-P_{2} \Rightarrow B$ get P_{3}
Thevefine $P_{3} \Longrightarrow P_{3}$

Bi-implication

Some theorems can be written in the form
P is equivalent to Q
or, in other words,
P implies Q, and vice versa
or
Q implies P, and vice versa
or

> P if, and only if, Q

P iff Q
or, in symbols,

$$
\mathrm{P} \Longleftrightarrow \mathrm{Q}
$$

Proof pattern:

In order to prove that

$$
\mathrm{P} \Longleftrightarrow \mathrm{Q}
$$

1. Write: (\Longrightarrow) and give a proof of $P \Longrightarrow Q$.
2. Write: (\Longleftarrow) and give a proof of $\mathrm{Q} \Longrightarrow \mathrm{P}$.

Proposition 12 Suppose that n is an integer. Then, n is even of n^{2} is even.
Proof: (\Rightarrow) Assume n even, ie $n=2 \cdot i$ for an integer i Thereptre $n^{2}=(2 i)^{2}=2 .\left(2 i^{2}\right)$ so 4^{2} i even.
$C=$) Assume h^{2} been, $\cos ^{2}=2 i \cdots$ We show the contrapositive, n a Id $\Rightarrow n^{2}$ odd. But we have show Mop 8 hat m, n oder \Rightarrow. mi a odd. So we new Mas

Divisibility and congruence

Definition 13 Let d and n be integers. We say that divides n , and write $\mathrm{d} \mid \mathrm{n}$, whenever there is an integer k such that $\mathrm{n}=\mathrm{k} \cdot \mathrm{d}$.

Example 14 The statement $2 \mid 4$ is true, while $4 \mid 2$ is not.
Definition 15 Fix a positive integer m . For integers a and b , we say that a is congruent to b modulo m , and write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, whenever $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$.

Example 16

1. $18 \equiv 2(\bmod 4)$
2. $2 \equiv-2(\bmod 4)$
3. $18 \equiv-2(\bmod 4)$

Proposition 17 For every integer n,

1. n is even if, and only if, $\mathrm{n} \equiv 0(\bmod 2)$, and
2. n is odd if, and only if, $n \equiv 1(\bmod 2)$.

Proof:

The use of bi-implications:
To use an assumption of the form $\mathrm{P} \Longleftrightarrow \mathrm{Q}$, use it as two separate assumptions $P \Longrightarrow Q$ and $Q \Longrightarrow P$.

Universal quantification

Universal statements are of the form
for all individuals x of the universe of discourse, the property $\mathrm{P}(\mathrm{x})$ holds
or, in other words,
no matter what individual x in the universe of discourse one considers, the property $\mathrm{P}(\mathrm{x})$ for it holds
or, in symbols,

$$
\forall x . P(x)
$$

Example 18

2. For every positive real number x, if x is irrrational then so is \sqrt{x}.
3. For every integer n, we have that n is even iff so is n^{2}.

The main proof strategy for universal statements:
To prove a goal of the form

$$
\forall x . P(x)
$$

let x stand for an arbitrary individual and prove $P(x)$.

Proof pattern:

In order to prove that

$$
\forall x . \mathrm{P}(x)
$$

1. Write: Let x be an arbitrary individual.
2. Show that $P(x)$ holds.

Proof pattern:

In order to prove that

$$
\forall x . P(x)
$$

1. Write: Let x be an arbitrary individual.

Warning: Make sure that the variable x is new (also referred to as fresh) in the proof! If for some reason the variable x is already being used in the proof to stand for something else, then you must use an unused variable, say y, to stand for the arbitrary individual, and prove P(y).
2. Show that $P(x)$ holds.

Scratch work:

Before using the strategy

Assumptions
Goal

$$
\forall x . P(x)
$$

After using the strategy
Assumptions
Goal
$P(x) \quad$ (for a new (or fresh) x)

The use of universal statements:

To use an assumption of the form $\forall x . \mathrm{P}(\mathrm{x})$, you can plug in any value, say a, for x to conclude that $P(a)$ is true and so further assume it.

This rule is called universal instantiation.

Proposition 19 Fix a positive integer m. For integers a and b , we have that $\mathrm{a} \equiv \mathrm{b}(\bmod m)$ if, and only if, for all positive integers n , we have that $n \cdot a \equiv n \cdot b(\bmod n \cdot m)$.
PROOF: (\Longleftrightarrow) Assume $a \equiv b(\operatorname{modm})$, ie. $a-b=K \cdot m$ for inter k. RP. $\forall n, n+$ remiteger, $n \cdot a \equiv n . b$ (modnim, Let n be a tree ut. $B_{y}(1), n \cdot(a-b)=$ n.K.m ie. $n \cdot a-n \cdot b=k \cdot(n \cdot m)$, so by deft. n. $a \equiv n \cdot b \cdot \bmod / n$ (\leftrightarrow) Assume $\forall n$, n tue cutger. $n, a \equiv n, b$ (modn.m lose universal cirtatiation, taking $n=1$,

$$
\begin{array}{ll}
1, a \equiv 1 . b & (\bmod f \cdot m) \\
1+a & =b \\
(\bmod a)
\end{array}
$$

$$
\forall x \forall y\left(x=y=\left(\begin{array}{l}
y=2 \Rightarrow x-2) \\
x \neq 2 \Rightarrow y \neq 2
\end{array}\right.\right.
$$

$$
\text { Equality axioms } P(y) \Leftrightarrow y=x
$$

Just for the record, here are the axioms for equality.

- Every individual is equal to itself.

$$
\forall x . x=x
$$

$$
\forall x \forall y x=y \Rightarrow y=x
$$

- For any pair of equal individuals, if a property holds for one of them then it also holds for the other one.

$$
\forall x \cdot \forall y \cdot x=y \Longrightarrow(P(x) \Longrightarrow P(y))
$$

Liebuiz

NB From these axioms one may deduce the usual intuitive properties of equality, such as

$$
\forall x \cdot \forall y \cdot x=y \Longrightarrow y=x
$$

and

$$
\forall x \cdot \forall y \cdot \forall z \cdot x=y \Longrightarrow(y=z \Longrightarrow x=z)
$$

However, in practice, you will not be required to formally do so; rather you may just use the properties of equality that you are already familiar with.

