
Theorem 77 (Fundamental Theorem of Arithmetic) For every

positive integer n there is a unique finite ordered sequence of

primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
∏

(p1, . . . , pℓ) .

PROOF:

— 261 —

"
smallest

aka

counterexample

Use the least number principle :

A mon -

empty subset of Nl has a
least  element

.

( The least number principle is equivalent
G make .

mid
. )

Proof by
contradiction .

Assume there is
.

per
.

it
.

without a

unique decomposition .

,



Then
,

h
=p ,

. .

. .

.pe
=

g ,
.

.
.  -

aqk for different sequences

of primes p, s .
. .

Spe
and

q , f -

-

-

fqk
.

and ni the least such
.

9

Note
p , In

.

As
y

,
i

puke p Igi for one i
.

But qi ni prime :
.

p ,
=

qi
. I

g. Epi .

symmetrically Piton
.

I
.

pi
-

-

of ,
.

so diidiy n by p , f- 8D
,

pz
.  

- -
.

Pe
=

q .

.  - - .

qu

two distinct deeompn.to of a
smaller

no .

A- a h
. #



Euclid ′s infinitude of primes

Theorem 80 The set of primes is infinite.
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Structural Induction

mmmm

Syntax of Boolean proposition
's
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Definitions

by
structural induction
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(1) We can define
the length of a Boolean

proposition by
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(2) v
elimination :

murmur
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Well - founded Induction
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A
very general

niduchon

principle ,

in portent for example

ni
proving

the termination of

programs .



Well - founded relations

mmmm

A relation L on a set A is well-founded

iff there are no infinite descending
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Examples of well-founded relations
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Anapph#tn .
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