
Natural Numbers
and mathematical induction

We have mentioned in passing that the natural numbers are

generated from zero by succesive increments. This is in fact the

defining property of the set of natural numbers, and endows it with

a very important and powerful reasoning principle, that of

Mathematical Induction, for establishing universal properties of

natural numbers.
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Principle of Induction

Let P(m) be a statement for m ranging over the set of natural

numbers N.

If

! the statement P(0) holds, and

! the statement

∀n ∈ N.
(

P(n) =⇒ P(n+ 1)
)

also holds

then

! the statement

∀m ∈ N. P(m)

holds.
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Binomial Theorem

Theorem 29 For all n ∈ N,

(x+ y)n =
∑n

k=0

(

n
k

)

· xn−k · yk .

PROOF:
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Definition by Mathematical induction
.
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Principle of Induction
from basis ℓ

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If

! P(ℓ) holds, and

! ∀n ≥ ℓ in N.
(

P(n) =⇒ P(n+ 1)
)

also holds

then

! ∀m ≥ ℓ in N. P(m) holds.
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Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If both

! P(ℓ) and

! ∀n ≥ ℓ in N.
(

(

∀k ∈ [ℓ..n]. P(k)
)

=⇒ P(n+ 1)
)

hold, then

! ∀m ≥ ℓ in N. P(m) holds.
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An alternative formulation of Strong Induction
.
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Fundamental Theorem of Arithmetic

Proposition 76 Every positive integer greater than or equal 2 is a

prime or a product of primes.

PROOF:
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Theorem 77 (Fundamental Theorem of Arithmetic) For every

positive integer n there is a unique finite ordered sequence of

primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
∏

(p1, . . . , pℓ) .

PROOF:

— 261 —

"
smallest

aka

counterexample

Use the least number principle :

A mon -

empty subset of Nl has a
least  element

.

( The least number principle is equivalent
b make .

wid
. )


