Natural Numbers and mathematical induction

We have mentioned in passing that the natural numbers are generated from zero by succesive increments. This is in fact the defining property of the set of natural numbers, and endows it with a very important and powerful reasoning principle, that of Mathematical Induction, for establishing universal properties of natural numbers.

Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the set of natural numbers \mathbb{N}.
If

- the statement $\mathrm{P}(0)$ holds, and
- the statement

$$
\forall \mathrm{n} \in \mathbb{N} .(\mathrm{P}(\mathrm{n}) \Longrightarrow \mathrm{P}(\mathrm{n}+1))
$$

also holds
then

- the statement

$$
\forall \mathrm{m} \in \mathbb{N} . \mathrm{P}(\mathrm{~m})
$$

holds.

Binomial Theorem $\quad\binom{n}{k}=\frac{n!}{\text { af }}(n-k)!k!$
Theorem 29 For all $n \in \mathbb{N}$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{n-k} \cdot y^{k} .
$$

Proof:
Let $P(n)$ be the statement

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{n-k} \cdot y^{k}
$$

We pose $\forall m \in N . P(m)$ Dy mathematical induction.
Basis is P(O) notes ln the following armet.

$$
\text { hhs }=(x+y)^{\circ}=1 \quad \text { hs }=1
$$

Iduchón Stès. Assume $P(n)$ hords. RTP. $P(n+1)$.
$\underset{n}{\text { Have }}(x+y)(x+y)^{n}=(x+y) \cdot \sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.

$$
\begin{aligned}
= & \sum_{k=0}^{n}\left(\begin{array}{l}
n \\
k
\end{array}\right] x^{n+1-k} y^{k}+\sum_{n=0}^{n}\binom{n}{k} x^{n-k} y^{k+1} \\
= & x^{n+1}+\cdots\binom{n}{k} x^{n+1-k} y^{k}+\cdots+\binom{n}{k-1} x^{n+1-k} y^{k} \cdots+y^{n+1} \\
= & x^{n+1}+\sum_{k=1}^{n}\left(\binom{n}{k}+\binom{n}{k-1}\right) x^{n+1-k} y^{k}+y^{n+1} \\
& \text { Exerice } \\
& \left.=\begin{array}{c}
n+1 \\
k
\end{array}\right)
\end{aligned}
$$

Definition by Mathematical Inidnetion
Recursion
To define a function on N, specifying

$$
\begin{aligned}
& f(0)=k \quad \text { and } \\
& f(n+1)=B(n, f(n)) \text { for } n \in \mathbb{N}
\end{aligned}
$$

suffices. Eg.

$$
\begin{aligned}
& !0=1 \\
& !(n+1)=(n+1)!n
\end{aligned}
$$

defines the factorial function.

Principle of Induction

 from basis ℓLet $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ. If

- $P(\ell)$ holds, and
- $\forall \mathrm{n} \geq \ell$ in $\mathbb{N} .(\mathrm{P}(\mathrm{n}) \Longrightarrow \mathrm{P}(\mathrm{n}+1))$ also holds then
- $\forall \mathrm{m} \geq \ell$ in $\mathbb{N} . \mathrm{P}(\mathrm{m})$ holds.

Principle of Strong Induction

from basis ℓ and Induction Hypothesis $P(m)$.
Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ. If both

- $P(\ell)$ and
- $\forall \mathrm{n} \geq \ell$ in $\mathbb{N} .((\forall k \in[\ell . . n] . P(k)) \Longrightarrow P(n+1))$ hold, then
- $\forall \mathrm{m} \geq \ell$ in $\mathbb{N} . \mathrm{P}(\mathrm{m})$ holds.

An alterative formulation of Strong Induction
$1 f$ we $n=l$

$$
\forall n \geqslant l \text { in } \mathbb{N} \cdot(\forall k, l \leqslant k<n . P(k)) \Rightarrow P(n)
$$

then $\forall m \geqslant l$ m. W. $P(m)$
Where's the basis case gone?
Consider $n=l$.

$$
\begin{aligned}
& \text { aider } n=l . \\
& (\forall k, l \leqslant k<l . P(k)) \Leftrightarrow \forall k \underbrace{\frac{\text { Sone }}{l \mid k<l}}_{C^{l+k<l} \Rightarrow P(k)})
\end{aligned}
$$

is "vacuously bine",
So $(\forall k, l \leqslant k<l, p(k)) \Rightarrow p(n)$
reduces is tome $\Rightarrow P(n)$, so to $P(n)$.

Fundamental Theorem of Arithmetic
Proposition 76 Every positive integer greater than or equal 2 is a prime or a product of primes. pl, pr \cdots 传

Proof: Let $P(m)$ be the statement m is prime or a product of primes.

We prone

$$
\forall m \geqslant 2 \text { ni N. P(m) }
$$

by strong Induatow with basis 2 .
Basis. $P(27$. as 2 i a plus

Induction sèj Asmme $\forall k \in[2, \cdots, n]$. $P(k)$. RTP $P(n+1)$. Case $1 n+1$ is apmine. Then $P(n+1)$ direstig. Case $2 n+1$ i compronté, le $n+1=x \cdot y$ where $x, y \in[2, \cdots, n]$.
thave $P(x)$ ad $P(y)$ for ind. hap.

$$
\therefore \quad P(x \cdot y) \text { ie } P(n+1)
$$

This complets the proef by Aroy induation AB

Theorem 77 (Fundamental Theorem of Arithmetic) For every positive integer n there is a unique finite ordered sequence of primes $\left(p_{1} \leq \cdots \leq p_{\ell}\right)$ with $\ell \in \mathbb{N}$ such that

$$
n=\prod\left(p_{1}, \ldots, p_{\ell}\right) . \quad \text { aka }
$$

Proof: Use the least number puinaple
A non-empsiy subset of N has a least element. (The least umber principle is agmivelent tr mature id.)

