THEOREM OF THE DAY

Euler's Identity With τ and e the mathematical constants

$\tau=2 \pi=6.2831853071795864769252867665590057683943387987502116419498891846156328125724179972560696506842341359 \ldots$ and
$e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274 \ldots$
(the first 100 places of decimal being given), and using i to denote $\sqrt{-1}$, we have

Squaring both sides of $e^{i \tau / 2}=-1$ gives $e^{i \tau}=1$, encoding the defining fact that τ radians measures one full circumference. The calculation can be confirmed explicitly using the evaluation of e^{z}, for any complex number z, as an infinite sum: $e^{z}=1+z+z^{2} / 2!+z^{3} / 3!+z^{4} / 4!+\ldots$. The even powers of $i=\sqrt{-1}$ alternate between 1 and -1 , while the odd powers alternate between i and $-i$, so we get two separate sums, one with i 's (the imaginary part) and one without (the real part). Both converge rapidly as shown in the two plots above: the real part to 1 , the imaginary to 0 . In the limit equality is attained, $e^{i \tau}=1+0 \times i$, whence $e^{\tau i}=1$. The value of $e^{i \tau / 2}$ may be confirmed in the same way.
Combining as it does the six most fundamental constants of mathematics: $0,1,2, i, \tau$ and e, the identity has an air of magic.
J.H. Conway, in The Book of Numbers, traces the identity to Leonhard Euler's 1748 Introductio; certainly Euler deserves credit for the much more general formula $e^{i \theta}=\cos \theta+i \sin \theta$, from which the identity follows using $\theta=\tau / 2$ radians (180°).
Web link: fermatslast theorem.blogspot.com/2006/02/eulers-identity.html
Further reading: Dr Euler's Fabulous Formula: Cures Many Mathematical Ills, by Paul J. Nahin, Princeton University Press, 2006

