
Sets

Lecturer: Dr Thomas Sauerwald (substituting Prof Glynn Winskel)
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,

!" #$

%& '(
•(1,1) •(1,2) •(1,3) •(1,4) •(1,5)

•(2,1) •(2,2) •(2,3) •(2,4) •(2,5)

may be a convenient way of picturing a certain set for some con-

siderations, but what is apparently the same set may be pictured

as

!" #$
%& '(•(1,1) •(2,1) •(1,2) •(2,2) •(1,3) •(2,3) •(1,4) •(2,4) •(1,5) •(2,5)

or even simply as

!" #$
%& '(• • • • • • • • • •

for other considerations.
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,

we will be naively looking at ubiquituous structures that are

available within it.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

∀ sets A,B. A = B ⇐⇒ ( ∀ x. x ∈ A ⇐⇒ x ∈ B ) .

Example:

{0} ̸= {0, 1} = {1, 0} ̸= {2} = {2, 2}
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Subsets and supersets

We say that A is a subset of B, denoted A ⊆ B, whenever

∀ x. x ∈ A =⇒ x ∈ B

Also B is a superset of A, denoted B ⊇ A.
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Lemma 83

1. Reflexivity.

For all sets A, A ⊆ A.

2. Transitivity.

For all sets A, B, C, (A ⊆ B ∧ B ⊆ C) =⇒ A ⊆ C.

3. Antisymmetry.

For all sets A, B, (A ⊆ B ∧ B ⊆ A) =⇒ A = B.
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Separation principle

For any set A and any definable property P, there is a

set containing precisely those elements of A for which

the property P holds.

{ x ∈ A | P(x) }

Note:

a ∈ {x ∈ A | P(x)}⇔ (a ∈ A∧ P(a))

— 285 —



Russell ′s paradox

Informal Statement:

The barber is the “one who shaves all those, and those only,

who do not shave themselves.” The question is, does the

barber shave himself?
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Empty set

∅ or { }

defined by

∀ x. x ̸∈ ∅

or, equivalently, by

¬(∃ x. x ∈ ∅)

Using the Separation principle, we could also write

{x ∈ A | x ̸= x}
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,

then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S |.

Example:

#∅ = 0
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Powerset axiom

For any set, there is a set consisting of all its subsets.

P(U)

∀X. X ∈ P(U) ⇐⇒ X ⊆ U .
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Hasse diagrams
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Proposition 84 For all finite sets U,

#P(U) = 2#U .

PROOF IDEA :
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Venn diagramsa

Quiz. In a class there are:

! 6 students who program in JAVA and ML

! 10 students who do not program anything

! 12 students who program in JAVA

! 9 students who program in ML

How many students are in the class?

aFrom http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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The powerset Boolean algebra

( P(U) , ∅ , U , ∪ , ∩ , (·)c )

For all A,B ∈ P(U),

A ∪ B = { x ∈ U | x ∈ A ∨ x ∈ B } ∈ P(U)

A ∩ B = { x ∈ U | x ∈ A ∧ x ∈ B } ∈ P(U)

Ac = { x ∈ U | ¬(x ∈ A) } ∈ P(U)
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! The union operation ∪ and the intersection operation ∩ are

associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

! The empty set ∅ is a neutral element for ∪ and the universal

set U is a neutral element for ∩.

∅ ∪A = A = U ∩A
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! The union operation ∪ and the intersection operation ∩ are

associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

! The empty set ∅ is a neutral element for ∪ and the universal

set U is a neutral element for ∩.

∅ ∪A = A = U ∩A
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! The empty set ∅ is an annihilator for ∩ and the universal set U

is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

! With respect to each other, the union operation ∪ and the

intersection operation ∩ are distributive and absorptive.

A∩(B∪C) = (A∩B)∪(A∩C) , A∪(B∩C) = (A∪B)∩(A∪C)

A ∪ (A ∩ B) = A = A ∩ (A ∪ B)
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! The empty set ∅ is an annihilator for ∩ and the universal set U

is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

! With respect to each other, the union operation ∪ and the

intersection operation ∩ are distributive and absorptive.

A∩(B∪C) = (A∩B)∪(A∩C) , A∪(B∩C) = (A∪B)∩(A∪C)

A ∪ (A ∩ B) = A = A ∩ (A ∪ B)
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! The complement operation (·)c satisfies complementation laws.

A ∪Ac = U , A ∩Ac = ∅

! De Morgan’s Law: (A ∪ B)c = ??
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Proposition 85 Let U be a set and let A,B ∈ P(U).

1. ∀X ∈ P(U). A ∪ B ⊆ X ⇐⇒
(

A ⊆ X ∧ B ⊆ X
)

.

2. ∀X ∈ P(U). X ⊆ A ∩ B ⇐⇒
(

X ⊆ A ∧ X ⊆ B
)

.

PROOF:
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Corollary 86 Let U be a set and let A,B,C ∈ P(U).

1. C = A ∪ B

iff
[

A ⊆ C∧ B ⊆ C
]

∧
[

∀X ∈ P(U).
(

A ⊆ X ∧ B ⊆ X
)

=⇒ C ⊆ X
]

2. C = A ∩ B

iff
[

C ⊆ A∧ C ⊆ B
]

∧
[

∀X ∈ P(U).
(

X ⊆ A ∧ X ⊆ B
)

=⇒ X ⊆ C
]
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Sets and logic

P(U)
{
false , true

}

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)

— 303 —

Lxeul Peas } Pca )

I ueulfak } f

{ real true }
Pcxlvcecx )

lxeulplxlfvlxe.tl/a6cD
A

a

luau final } a Peel

= hutu I Mabe



Pairing axiom

For every a and b, there is a set with a and b as its

only elements.

{a , b }

defined by

∀x. x ∈ {a, b} ⇐⇒ (x = a ∨ x = b)

NB The set {a, a} is abbreviated as {a }, and referred to as a singleton.
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Examples:

! # { ∅ } = 1

! # { { ∅ } } = 1

! #{ ∅ , { ∅ } } = 2
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Ordered pairing

For every pair a and b, the set

{
{a } , {a, b }

}

is abbreviated as

⟨a, b⟩

and referred to as an ordered pair .
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Proposition 87 (Fundamental property of ordered pairing)

For all a, b, x, y,

⟨a, b⟩ = ⟨x, y⟩ ⇐⇒
(

a = x ∧ b = y
)

.

PROOF:
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Products

The product A× B of two sets A and B is the set

A× B =
{
x | ∃a ∈ A,b ∈ B. x = (a, b)

}

where

∀a1, a2 ∈ A,b1, b2 ∈ B.

(a1, b1) = (a2, b2) ⇐⇒ (a1 = a2 ∧ b1 = b2) .

Thus,

∀ x ∈ A× B.∃!a ∈ A.∃!b ∈ B. x = (a, b) .
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Proposition 89 For all finite sets A and B,

# (A× B) = #A ·#B .

PROOF IDEA :
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Big unions

Definition 90 Let U be a set. For a collection of sets F ∈ P(P(U)),

we let the big union (relative to U) be defined as

⋃

F =
{
x ∈ U | ∃A ∈ F. x ∈ A

}
∈ P(U) .

— 312 —
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Proposition 91 For all F ∈ P(P(P(U))),

⋃
(
⋃

F
)

=
⋃

{
⋃

A ∈ P(U) A ∈ F
}

∈ P(U) .

PROOF:
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Big intersections

Definition 92 Let U be a set. For a collection of sets F ⊆ P(U), we

let the big intersection (relative to U) be defined as

⋂

F =
{
x ∈ U | ∀A ∈ F. x ∈ A

}
.
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Theorem 93 Let

F =
{

S ⊆ R (0 ∈ S) ∧
(

∀x ∈ R. x ∈ S =⇒ (x+ 1) ∈ S
)

}
.

Then, (i) N ∈ F and (ii) N ⊆
⋂

F. Hence,
⋂

F = N.

PROOF:
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Union axiom

Every collection of sets has a union.

⋃

F

x ∈
⋃

F ⇐⇒ ∃X ∈ F. x ∈ X
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For non-empty F we also have

⋂

F

defined by

∀x. x ∈
⋂

F ⇐⇒
(

∀X ∈ F. x ∈ X
)

.

— 322 —
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Disjoint unions

Definition 94 The disjoint union A % B of two sets A and B is the

set

A % B =
(

{1}×A
)

∪
(

{2}× B
)

.

Thus,

∀ x. x ∈ (A % B) ⇐⇒
(

∃a ∈ A. x = (1, a)
)

∨
(

∃b ∈ B. x = (2, b)
)

.
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Proposition 96 For all finite sets A and B,

A ∩ B = ∅ =⇒ # (A ∪ B) = #A+#B .

PROOF IDEA:

Corollary 97 For all finite sets A and B,

# (A % B) = #A+#B .
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Relations

Definition 99 A (binary) relation R from a set A to a set B

R : A−→! B or R ∈ Rel(A,B) ,

is

R ⊆ A× B or R ∈ P(A× B) .

Notation 100 One typically writes aRb for (a, b) ∈ R.
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Informal examples:

! Computation.

! Typing.

! Program equivalence.

! Networks.

! Databases.
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Examples:

! Empty relation.

∅ : A−→! B (a ∅ b ⇐⇒ false)

! Full relation.

(A× B) : A−→! B (a (A× B) b ⇐⇒ true)

! Identity (or equality) relation.

idA =
{
(a, a) | a ∈ A

}
: A−→! A (a idA a ′ ⇐⇒ a = a ′)

! Integer square root.

R2 =
{
(m,n) | m = n2

}
: N−→! Z (m R2 n ⇐⇒ m = n2)
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Internal diagrams

Example:

R =
{
(0, 0), (0,−1), (0, 1), (1, 2), (1, 1), (2, 1)

}
: N−→! Z

S =
{
(1, 0), (1, 2), (2, 1), (2, 3)

}
: Z−→! Z
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Relational extensionality

R = S : A−→! B

iff

∀a ∈ A.∀b ∈ B. aRb ⇐⇒ aSb
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Relational composition

— 335 —
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Theorem 102 Relational composition is associative and has the

identity relation as neutral element.

! Associativity.

For all R : A−→! B, S : B−→! C, and T : C−→! D,

(T ◦ S) ◦ R = T ◦ (S ◦ R)

! Neutral element.

For all R : A−→! B,

R ◦ idA = R = idB ◦ R .
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Relations and matrices

Definition 103

1. For positive integers m and n, an (m× n)-matrix M over a

semiring
(

S, 0,⊕, 1,⊙
)

is given by entries Mi,j ∈ S for all

0 ≤ i < m and 0 ≤ j < n.

Theorem 104 Matrix multiplication is associative and has the

identity matrix as neutral element.
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Relations from [m] to [n] and (m× n)-matrices over Booleans

provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
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Directed graphs

Definition 108 A directed graph (A,R) consists of a set A and a

relation R on A (i.e. a relation from A to A).
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Corollary 110 For every set A, the structure

(

Rel(A) , idA , ◦ )

is a monoid.

Definition 111 For R ∈ Rel(A) and n ∈ N, we let

R◦n = R ◦ · · · ◦ R︸ ︷︷ ︸
n times

∈ Rel(A)

be defined as idA for n = 0, and as R ◦ R◦m for n = m+ 1.
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Paths

Proposition 113 Let (A,R) be a directed graph. For all n ∈ N and

s, t ∈ A, s R◦n t iff there exists a path of length n in R with source s

and target t.

PROOF:
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Definition 114 For R ∈ Rel(A), let

R◦∗ =
⋃
{
R◦n ∈ Rel(A) | n ∈ N

}
=

⋃

n∈N R◦n .

Corollary 115 Let (A,R) be a directed graph. For all s, t ∈ A,

s R◦∗ t iff there exists a path with source s and target t in R.
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The (n× n)-matrix M = mat(R) of a finite directed graph
(

[n], R
)

for n a positive integer is called its adjacency matrix .

The adjacency matrix M∗ = mat(R◦∗) can be computed by matrix

multiplication and addition as Mn where
⎧
⎨

⎩
M0 = In

Mk+1 = In +
(

M ·Mk

)

This gives an algorithm for establishing or refuting the existence of

paths in finite directed graphs.
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Preorders

Definition 116 A preorder
(

P , ⊑
)

consists of a set P and a relation

⊑ on P (i.e. ⊑ ∈ P(P × P)) satisfying the following two axioms.

! Reflexivity.

∀ x ∈ P. x ⊑ x

! Transitivity.

∀ x, y, z ∈ P. (x ⊑ y ∧ y ⊑ z) =⇒ x ⊑ z
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Examples:

! (R,≤) and (R,≥).

! (P(A),⊆) and (P(A),⊇).

! ( Z , | ).
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Theorem 118 For R ⊆ A×A, let

FR =
{
Q ⊆ A×A | R ⊆ Q ∧ Q is a preorder

}
.

Then, (i) R◦∗ ∈ FR and (ii) R◦∗ ⊆
⋂

FR. Hence, R◦∗ =
⋂

FR.

PROOF:
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Partial functions

Definition 119 A relation R : A −→! B is said to be functional, and

called a partial function, whenever it is such that

∀a ∈ A.∀b1, b2 ∈ B. aRb1 ∧ aRb2 =⇒ b1 = b2 .
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Theorem 121 The identity relation is a partial function, and the

composition of partial functions yields a partial function.

NB

f = g : A⇀ B

iff

∀a ∈ A.
(

f(a)↓ ⇐⇒ g(a)↓
)

∧ f(a) = g(a)
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Example: The following defines a partial function Z× Z⇀ Z× N:

! for n ≥ 0 and m > 0,

(n,m) %→
(

quo(n,m) , rem(n,m)
)

! for n ≥ 0 and m < 0,

(n,m) %→
(

− quo(n,−m) , rem(n,−m)
)

! for n < 0 and m > 0,

(n,m) %→
(

− quo(−n,m) − 1 , rem(m− rem(−n,m),m)
)

! for n < 0 and m < 0,

(n,m) %→
(

quo(−n,−m) + 1 , rem(−m− rem(−n,−m),−m)
)

Its domain of definition is
{
(n,m) ∈ Z× Z | m ̸= 0

}
.

— 363 —



Proposition 122 For all finite sets A and B,

# (A⇀⇀B) = (#B+ 1)#A .

PROOF IDEA :
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Functions (or maps)

Definition 123 A partial function is said to be total, and referred

to as a (total) function or map, whenever its domain of definition

coincides with its source.

Theorem 124 For all f ∈ Rel(A,B),

f ∈ (A⇒ B) ⇐⇒ ∀a ∈ A.∃!b ∈ B. a f b .
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Proposition 125 For all finite sets A and B,

# (A⇒ B) = #B#A .

PROOF IDEA :
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Theorem 126 The identity partial function is a function, and the

composition of functions yields a function.

NB

1. f = g : A→ B iff ∀a ∈ A. f(a) = g(a).

2. For all sets A, the identity function idA : A→ A is given by the

rule

idA(a) = a

and, for all functions f : A→ B and g : B→ C, the composition

function g ◦ f : A→ C is given by the rule
(

g ◦ f
)

(a) = g
(

f(a)
)

.
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Bijections

Definition 127 A function f : A → B is said to be bijective, or

a bijection, whenever there exists a (necessarily unique) function

g : B→ A (referred to as the inverse of f) such that

1. g is a retraction (or left inverse) for f:

g ◦ f = idA ,

2. g is a section (or right inverse) for f:

f ◦ g = idB .
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Proposition 129 For all finite sets A and B,

#Bij(A,B) =

⎧
⎨

⎩
0 , if #A ̸= #B

n! , if #A = #B = n

PROOF IDEA :
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Theorem 130 The identity function is a bijection, and the composi-

tion of bijections yields a bijection.

— 374 —



Definition 131 Two sets A and B are said to be isomorphic (and

to have the same cardinatity) whenever there is a bijection between

them; in which case we write

A ∼= B or #A = #B .

Examples:

1. {0, 1} ∼= {false, true}.

2. N ∼= N+ , N ∼= Z , N ∼= N× N , N ∼= Q .

— 375 —
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Equivalence relations and set partitions

! Equivalence relations.

— 376 —

E E AXA
, abniay relations

.
.E

Reflexive : a Ea for all a E A

Symmetric : a
E b ⇒ BE a for all a. be A

Transitive : afb a bee ⇒ a Ec

for all a ,b,eeA .

Equivalence classes :

thymols
.=q{b .CA/bEa }



! Set partitions.
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From an equivalence relation EEAXA

Each L a } is non
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- for all a
,

be A
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÷:c
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Theorem 134 For every set A,

EqRel(A) ∼= Part(A) .

PROOF:
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Calculus of bijections

! A ∼= A , A ∼= B =⇒ B ∼= A , (A ∼= B ∧ B ∼= C) =⇒ A ∼= C

! If A ∼= X and B ∼= Y then

P(A) ∼= P(X) , A× B ∼= X× Y , A ) B ∼= X ) Y ,

Rel(A,B) ∼= Rel(X, Y) , (A⇀⇀B) ∼= (X⇀⇀Y) ,

(A⇒ B) ∼= (X⇒ Y) , Bij(A,B) ∼= Bij(X, Y)
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! A ∼= [1]×A , (A× B)× C ∼= A× (B× C) , A× B ∼= B×A

! [0] )A ∼= A , (A ) B) ) C ∼= A ) (B ) C) , A ) B ∼= B )A

! [0]×A ∼= [0] , (A ) B)× C ∼= (A× C) ) (B× C)

!

(

A⇒ [1]
)

∼= [1] ,
(

A⇒ (B× C)
)

∼= (A⇒ B)× (A⇒ C)

!

(

[0]⇒ A
)

∼= [1] ,
(

(A ) B)⇒ C
)

∼= (A⇒ C)× (B⇒ C)

! ([1]⇒ A) ∼= A ,
(

(A× B)⇒ C) ∼=
(

A⇒ (B⇒ C)
)

! (A⇀⇀B) ∼=
(

A⇒ (B ) [1])
)

! P(A) ∼=
(

A⇒ [2]
)

— 382 —
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Characteristic (or indicator) functions
P(A) ∼=

(

A ⇒ [2]
)
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Finite cardinality

Definition 136 A set A is said to be finite whenever A ∼= [n] for

some n ∈ N, in which case we write #A = n.
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Theorem 137 For all m,n ∈ N,

1. P
(

[n]
)

∼= [2n]

2. [m]× [n] ∼= [m · n]

3. [m] ) [n] ∼= [m+ n]

4.
(

[m]⇀⇀[n]
)

∼=
[

(n+ 1)m
]

5.
(

[m]⇒ [n]
)

∼= [nm]

6. Bij
(

[n], [n]
)

∼= [n!]
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Infinity axiom

There is an infinite set, containing ∅ and closed under successor.

— 387 —
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Bijections

Proposition 138 For a function f : A→ B, the following are

equivalent.

1. f is bijective.

2. ∀b ∈ B.∃!a ∈ A. f(a) = b.

3.
(

∀b ∈ B.∃a ∈ A. f(a) = b
)

∧
(

∀a1, a2 ∈ A. f(a1) = f(a2) =⇒ a1 = a2

)

— 388 —
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Surjections

Definition 139 A function f : A→ B is said to be surjective, or a

surjection, and indicated f : A" B whenever

∀b ∈ B.∃a ∈ A. f(a) = b .
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Theorem 140 The identity function is a surjection, and the

composition of surjections yields a surjection.

The set of surjections from A to B is denoted

Sur(A,B)

and we thus have

Bij(A,B) ⊆ Sur(A,B) ⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B) .
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Enumerability

Definition 142

1. A set A is said to be enumerable whenever there exists a

surjection N" A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.
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Rod.

tfA = ¢ then .
A can be arranged as the empty

Suprema . Otherwise there is Idea : Each AEA is

f : IN → A
.
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index "
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. .

.
. .

.
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Examples:

1. A bijective enumeration of Z.

· · · −3 −2 −1 0 1 2 3 · · ·

— 395 —

Nl EZ

( II
.

.11 5 3 I 0246 -
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Same idea shows µ E Nl enumerable



2. A bijective enumeration of N× N.

0 1 2 3 4 5 · · ·

0

1

2

3

4
...
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Proposition 143 Every non-empty subset of an enumerable set is

enumerable.

PROOF:
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A proof technique :

To show a set B is enumerable it

suffices to exhibit a surjection

f : A → B

from an

enumerable
set A

.

The composition with the enumerator of A

[ MAIL.BGB
. ]guts an brained



Countability

Proposition 144

1. N, Z, Q are countable sets.

2. The product and disjoint union of countable sets is countable.

3. Every finite set is countable.

4. Every subset of a countable set is countable.
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Axiom of choice

Every surjection has a section.
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Injections

Definition 145 A function f : A → B is said to be injective, or an

injection, and indicated f : A! B whenever

∀a1, a2 ∈ A.
(

f(a1) = f(a2)
)

=⇒ a1 = a2 .
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Theorem 146 The identity function is an injection, and the compo-

sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A,B)

and we thus have

Sur(A,B)⊆

Bij(A,B)
⊆
⊆

Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B)

Inj(A,B)
⊆

with

Bij(A,B) = Sur(A,B) ∩ Inj(A,B) .
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Proposition 147 For all finite sets A and B,

#Inj(A,B) =

⎧
⎨

⎩

(

#B
#A

)

· (#A)! , if #A ≤ #B

0 , otherwise

PROOF IDEA:

— 404 —



Relational images

Definition 150 Let R : A−→! B be a relation.

" The direct image of X ⊆ A under R is the set
−→
R (X) ⊆ B, defined

as
−→
R (X) = {b ∈ B | ∃ x ∈ X. xRb } .

NB This construction yields a function
−→
R : P(A)→ P(B).

— 407 —
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" The inverse image of Y ⊆ B under R is the set
←−
R (Y) ⊆ A,

defined as
←−
R (Y) = {a ∈ A | ∀b ∈ B. aRb =⇒ b ∈ Y }

NB This construction yields a function
←−
R : P(B)→ P(A).

— 408 —



Replacement axiom

The direct image of every definable functional property

on a set is a set.
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Set-indexed constructions

For every mapping associating a set Ai to each element of a set I,

we have the set

⋃

i∈I Ai =
⋃
{
Ai | i ∈ I

}
=
{
a | ∃ i ∈ I. a ∈ Ai

}
.

Examples:

1. Indexed disjoint unions:
⊎

i∈I Ai =
⋃

i∈I {i}×Ai

2. Finite sequences on a set A:

A∗ =
⊎

n∈NA
n

— 412 —



3. Finite partial functions from a set A to a set B:

(A⇀⇀fin B) =
⊎

S∈Pfin(A) (S⇒ B)

where

Pfin(A) =
{
S ⊆ A | S is finite

}

4. Non-empty indexed intersections: for I ̸= ∅,
⋂

i∈I Ai =
{
x ∈

⋃

i∈I Ai | ∀ i ∈ I. x ∈ Ai

}

5. Indexed products:
∏

i∈I Ai =
{

α ∈
(

I⇒
⋃

i∈I Ai

)

∀ i ∈ I.α(i) ∈ Ai

}

— 413 —
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Proposition 153 An enumerable indexed disjoint union of

enumerable sets is enumerable.

PROOF:

Corollary 155 If X and A are countable sets then so are A∗,

Pfin(A), and (X⇀⇀finA).
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THEOREM OF THE DAY
Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S 1, S 2, S 3, . . . , and denote by S i( j) the j-th entry of sequence S i. Now
define a new sequence, S , whose i-th entry is S i(i)+1 (mod 2). So S is S 1(1)+1, S 2(2)+1, S 3(3)+1, S 4(4)+1, . . . , with all entries remaindered
modulo 2. S is certainly an infinite sequence of 0s and 1s. So it must appear in our list: it is, say, S k, so its k-th entry is S k(k). But this is, by
definition, S k(k) + 1 (mod 2) ! S k(k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers
(1, 2, 3, . . .). To see this informally, consider the infinite sequences of 0s and 1s to be the binary expansions of fractions (e.g. 0.010011 . . . =
0/2 + 1/4 + 0/8 + 0/16 + 1/32 + 1/64 + . . .). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see
that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or
exclude it (0).

Georg Cantor (1845–1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/∼dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:
type ‘earliest diagonal’ into their search box.

Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org
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Unbounded cardinality

Theorem 156 (Cantor’s diagonalisation argument) For every

set A, no surjection from A to P(A) exists.

PROOF:
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Corollary 159 The sets

P(N) ∼=
(

N⇒ [2]
)

∼= [0, 1] ∼= R

are not enumerable.

Corollary 160 There are non-computable infinite sequences of

bits.
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Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of ∈-Induction .
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For the sake of completeness - the last
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