Sets

Lecturer: Dr Thomas Sauerwald (substituting Prof Glynn Winskel)
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,

o1 o(1.2) o(13) (14 (1,5

o2 o22) (23] 24) 25

may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

N
[.u,n 021 o(12) ¢(22) o(13) o(23) o14) 24) (15 25 |

/

or even simply as

D

for other considerations.
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

Vsets A, B. A=B < (Vx.x€ A &< xe€B)

Example:

0) #10,1) = 1,0; # 2} = 14,2}
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Subsets and supersets

We say that A is a subset of B, denoted A C B, whenever
Vx.x e A — x€B

Also B is a superset of A, denoted B D A.
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Lemma 83

1. Reflexivity.
For all sets A, A C A.

2. Transitivity.
ForallsetsA,B,C,(ACB ANBCC) — A CC.

3. Antisymmetry.
ForallsetsA,B, ACB NBCA) — A =B.
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Note:

Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

{x e A|P(x)]

ac{xcA|Px)}& (ae AAP(a))
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Russell’s paradox

Informal Statement:

The barber is the “one who shaves all those, and those only,
who do not shave themselves.” The question is, does the
barber shave himself?
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Empty set

» or {}
defined by
Vx.x €0
or, equivalently, by
—(Ix.x € 0)

Using the Separation principle, we could also write

{x € A | x #x}
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S|.

Example:
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Powerset axiom

For any set, there is a set consisting of all its subsets.
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Hasse diagrams
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Proposition 84 For all finite sets U,
H#P(U) =274

PROOF IDEA:
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Venn diagrams?

& s

Quiz. In a class there are:

» 6 students who program in JAVA and ML
» 10 students who do not program anything

» 12 students who program in JAVA

» 9 students who program in ML

How many students are in the class?

®From http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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The powerset Boolean algebra

Forall A,B € P(U),
AUB = {xelU|lxeAV xeB} € PU)
ANB = {xelU|xe A AxeB} e€PU)

A = {xelU|—-(xeA)} c P(U)
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUB)JUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A

» The empty set () is a neutral element for U and the universal
set U is a neutral element for N.

PDUA =A=UNA
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUB)JUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A

» The empty set () is a neutral element for U and the universal
set U is a neutral element for N.

PDUA =A=UNA
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» The empty set () is an annihilator for N and the universal set U
is an annihilator for U.

DNA=1(

UUA=U

» With respect to each other, the union operation U and the
Intersection operation N are distributive and absorptive.

AN(BUC) = (ANB)U(ANC), AU(BNC)=(AUB)N(AUC)
AU(ANB) = A = An(AUB)

— 297 —



» The empty set () is an annihilator for N and the universal set U
is an annihilator for U.

DNA=1(

UUA=U

» With respect to each other, the union operation U and the
Intersection operation N are distributive and absorptive.

AN(BUC) = (ANB)U(ANC), AU(BNC)=(AUB)N(AUC)
AU(ANB) = A = An(AUB)
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» [he complement operation (-)¢ satisfies complementation laws.

AUACZU’ AmACZQ

» De Morgan's Law: (AUB)°=7?? A" A Gc

— /o ¢ ¢\
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Proposition 85 LetU be a setand let A,B € P(U).
1. VXePU). AUBCX & (ACX A BCX).

2.¥XePU. XCANB < (XCA A XCB).

(=) [ AR <SX  pSALEX

X . =X
u ¢ /}U@ &/n (/téA ~'—"(é)(
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Corollary 86 LetU be a setand let A,B,C € P(U).

=
1. C=AUB
<
i i if
v ACCABCC]
/\
VXePU). (ACXABCX) = C
2 C=ANB

iff



Sets and logic

/7«6(4/79&}} Ple)
PU) { false, true }
Z%éa /UZ;/Q} 0 false dl;
{% el / W? u true
[%éu /ﬂ[}/?f/ ;%c/éf/(@u{/ U V Frx) v 8z )
QO i A A
et 27§ At 7P
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Pairing axiom

For every a and b, there is a set with a and b as its
only elements.

{a, b}
defined by

Vx.x € {a,b} &< (x=a V x=D)

NB Theset{a, a}is abbreviated as{ a}, and referred to as a singleton.

— 304 —



Examples:

> #{0}=1

> #{{0}}=1

» H0O,{0}}=2
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Ordered pairing

For every pair a and b, the set

{{a}, {a,b}}
IS abbreviated as
(a,b)

and referred to as an ordered pair.
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lo, 85 = {ab 4 azg@
Proposition 87 (Fundamental property of ordered pairing)

For all a, b, x,y, e
e
(a,b) = (x,y) < (Cl:X/\b:y) :

PROOF: (;j)% f fq?) f?,é?} < ?H?} (l°‘77_?

Govo azb. e~ LAFY 3 = 7<) o om=a
/W@[%/jgr’:éaﬁ v’—d\-
(roe a#b

>

—
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Products

The product A x B of two sets A and B is the set

AxB={x|3aeAbeB.x=(a,b)}
where = ] Ca,bD | aelh A éeP}

VCl],azEA,b],szB.
(a1,b1) = (az,b2) & (a; =a; A\ by =by)
Thus,

Vx e AxB.dlae A.d!b e B.x = (a,b)
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/ 4Q1)"'&“‘“Y

Proposition 89 For all finite sets A and B,= { &, --

#(AXB) = #A-#B

b )

PROOF IDEA:
|
>
o
%' — (“)%)
- \
L /
—1; e,
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ﬂ?/;fi Big unions 4 = cu)

Definition 90 Let U be a set. For a collection of sets F € P(P(U)),
we let the big union (relative to U) be defined as

UF = {xeU|3AeTF.xcA} ePU) .
ey & Jact ek

ALoE s U

d- a6




= )

Proposition 91 For all F € P(P 4 s pCrPn))
U(UT) =U{uacpu [aeg | e .

PROOF: |, ¢ U[U%) e ueX A XcUd JrmeX

S weX A XA oaAdcd JueeaX b

© e Uk A Acd fvomc A
= (AQO{U}@I}%G/{}
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Big intersections

Definition 92 Let U be a set. For a collection of sets F C P(U), we
let the big intersection (relative to U) be defined as
J ( ) Vﬂr-@é/%/ :774é/4)

NF = {xeU|VAecTF.xecA} .
e ¢ Y = \“/%\544, x /A

4

0T = WL

¥ - WM@
NY =A0DR
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Theorem 93 Let

F = {SQR\(Oes)A(VxeR.xes — (x+1)68)} -

>
Then, (i) N e F and (ii) N C (F. Hence, (\F = N.

A% RSN\ V.
PROOF:
iy RTP WS feoed S<J
MI,) S
- pat O ¢S
Mi— MQAU I C S —) Q/\’L 7) KAS
x:
b, @&6{0 e (‘D“Q(F oy d{n«y/
b/\Ly (/S/MF (C)U‘j ’—)W}dﬁS'/d‘k
(C;O(J' oD — g



Union axiom
S0k

Every collection of sets has a union.

UK

xelJTF & IXeFxeX
U4 5, A [ el e XY
g -
X u¢ & EXGQS.%@Y@ }X‘YG@I\ ﬁ6—><
—321—8/4.5/}?&4/L



For non-empty & we also have

defined by &%



D1isjoint unions

Definition 94 The disjoint union A W B of two sets A and B is the
set

AWB = ({1} x A)U ({2} x B)

Thus,
Vx.x € (AWB) & (JacA.x=(1,a)) V (FbeB.x=(2,b)).
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Proposition 96 For all finite sets A and B,
ANB=0 — #(AUB) = #A+ #B

PROOF IDEA:

Corollary 97 For all finite sets A and B,

#(AWB) = #A + #B
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Relations

Definition 99 A (binary) relation R from a set A to a set B

R:A—+—B or ReRelA,B) ,
IS

RCAXxB or RePA xB)

Notation 100 One typically writes aRb for (a,b) € R.




Informal examples:

Thole
» Computation.
» Sos
» Typing. bk
» Program equivalence. L NS

)
» Networks. @/i;"\//

» Databases.
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Examples:

» Empty relation.
D:A——B (a) b & false)

» Full relation.
(AxB):A—+B (a (A xB)b < true)

» |dentity (or equality) relation.
idya ={(aq,a)|laeA}:A—+A (aidp @’ & a=ad’)

» Integer square root.
R={(mn)|m=n?}:N—+Z (MR & m=n?
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Internal diagrams |
Sl Ao % ) /\@\%BQ
‘ I

R ={(0,0),(0,-1),(0,1),(1,2),(1,1),(2,1) } : N— 7 >
— { (]>O)>(1>2)>(2>1)>(2)3) } L —— 1
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Relational extensionality

R=S:A—+B
|ff
Vae A.VYbeB. aRb & aSb

()| afty =@t a5t
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Relational composition

K:AK—HB SR+ =) QO(Z/_\*——f—)C

v SoR ¢ %%
BLEB&RL) /\Lgc

G, 0c SR Y (e J (e | DLaRL A
/>T G Lgqul
-

20
ol
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Theorem 102 Relational composition is associative and has the
identity relation as neutral element.

» Associativity.
ForallR:A—+—B,S:B—+—C,andT:C—+D,

(ToS)oR = To(SoR) T —
» Neutral element. (o u® To S o i
ForallR : A —+ B, 4gA A A
ROidA = R = idBOR
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Relations and matrices

Definition 103

1. For positive integers m andn, an (m x n)-matrix M over a
semiring (S, 0,6, 1, @) Is given by entries M ; € S for all
0<i<mandl<j<n. e

TN

e /Wf

Theorem 104 Matrix multiplication is associative and has the
identity matrix as neutral element.
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Relations from [m] to [n] and (m x n)-matrices over Booleans
provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .

mit () o (M)
ol ot (R)) = R

pak(elM)) = M
b (SoR) =  wat (V) cwst (K )
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D1irected graphs

Definition 108 A directed graph (A, R) consists of a set A and a
relation R on A (i.e. a relation from A to A).
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Corollary 110 For every set A, the structure
(Rel(A), ida ,0)

IS & monoid.

Definition 111 ForR € Rel(A) andn € N, we let
@/%7 f(/m R™ = Ro---0R € Rel(A)

n times

be defined asidy forn =0, andas Ro R°™ forn = m + 1.
@@’r} - o Y
R — o, @
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/“é\ [ﬁ,ﬁ/"'fﬂm)g/’%{—/ ﬂ Ao =% A Ay = é /\
Paths VL'- (0{@{:/,/ a, /gél(;,/
be a directed graph. For alln € N and

s,t € A, s R°™ t iff there exists th of length n in R with source s
and target t.
/\/\/\/\

. Bani n=0. N = 5=
PROOF:
W /5’) %,:w < éf; é .
%// SK&CM%’)é > 3464, Y/gﬁ N AE é
= JacA s o 4 dhtre & e




Definition 114 ForR € Rel(A), let

R* = U{R"E€Rel(A)IneN} = [,y R

neN

Corollary 115 Let (A, R) be a directed graph. For all s,t € A,
s R°* t iff there exists a path with source s and targett in R.
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The (n x n)-matrix M = mat(R) of a finite directed graph ([n], R)
for n a positive integer is called its adjacency matrix.

The adjacency matrix M* = mat(R°*) can be computed by matrix
multiplication and addition as M, where

’

M, = I,
M = I+ (M- My)

This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.
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Preorders

Definition 116 Apreorder (P, C ) consists of a setP and a relation
C onP (l.e. C € P(P x P)) satisfying the following two axioms.

» Reflexivity.

Vx € P. x C x

» [ransitivity.

Vx,y,z€ P. xCy ANyCz) = xCz

%C%/_EQZLE’— C x,_

—

7@{ Q }C' ﬂ %} [:_; IL - — N

e &= 70



~ L / _
Examples: fj N j
— wK —
» (R,<)and (R, >).
> (P(A),C) and (P(A), 2)
P ) N



Theorem 118 ForR C A x A, let
Jr = {QCAXA | RCQ A Qisapreorder} .

Then, (1) R°* € S"R(/awnd (ii) R°* C () Fk. Hence, R°* = () Fk.

_M(QW = OACJL@
PROOF: . e,
(C’/ N’% ol Qo*’k al R = K = ;LJA
- @o/"f\(n) Céo/“LL«>
@( —( @ &/ N tj O?V <=

—) e (2%2
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Partial functions

Definition 119 A relation R : A —+— B is said to be functional, and
called a partial function, whenever it is such that

\V/G.EA.\V/b],bz € B. aRb; A aRb, =— b; =b,

A o I

//01 ’ 3[’(0\)

/A — [z,
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Theorem 121 The identity relation is a partial function, and the
composition of partial functions yields a partial function.

NB
f=g:A—B
Iff
Vae A.(fla)] & gla)l ) N f(a) = g(a)
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Example: The following defines a partial function Z x Z — 7Z x N:

» forn>0and m > 0,
(n,m) — (quo(n,m), rem(n, m))

» forn > 0and m < 0,
(n,m) — ( —quo(n,—m), rem(n,—m))

» forn <0and m > 0,
(n,m) — (—quo(—m, m) — 1, rem(m — rem(—n, m), m))

» forn < 0and m < 0,
(n,m) — (quo(—m,—m) + 1, rem(—m — rem(—n, —m),—m) )

lts domain of definition is { (n,m) € Z x Z | m # 0 }.
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Proposition 122 For all finite sets A and B,
#(A=B) = (#B+1)""

PROOF IDEA:

—
/j\ -
Ay
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Functions (or maps)

Definition 123 A partial function is said to be total, and referred
to as a (total) function or map, whenever its domain of definition
coincides with its source.

Theorem 124 For all f € Rel(A, B),

fe(A=B) & Vac A.d!lbe B. afb
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Proposition 125 For all finite sets A and B,
4 (A = B) = #B#A

PROOF IDEA:
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Theorem 126 The identity partial function is a function, and the
composition of functions yields a function.

NB
1. f=g:A—> Biff Vae A.f(a) = g(a).

2. For all sets A, the identity function id, : A — A is given by the
rule
ida(a) = a

and, for all functions f: A — B and g: B — C, the composition
function go f: A — C is given by the rule

(gof)(a) =g(f(a))
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Bijections

Definition 127 A function f : A — B is said to be bijective, or
a bijection, whenever there exists a (necessarily unique) function
g: B — A (referred to as the inverse of f) such that

1. g is aretraction (or left inverse) for f: WPfLo jwpechive.
go f = ldA , ” T’\’_/h

2. g Is asection (orright inverse) for f: L

ng:idB




Proposition 129 For all finite sets A and B,

’

0 ,if#A £ #B
| nl L f#A=#B=n

# Bij(A,B) = <

PROOF IDEA:
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Theorem 130 The identity function is a bijection, and the composi-
tion of bijections yields a bijection.
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Definition 131 Two sets A and B are said to be isomorphic (and
to have the same cardinatity) whenever there is a bijection between
them; in which case we write

A=B or #A =%#B

Examples:
1. {0, 1} = {false, true].

2. N=Nt N=Z, N=NxN, N=Q. N/ /f

— 375 —



Equivalence relations and set partitions

» Equivalence relations. E = /]x//\ s 5/&?7 wliton s{
Reflornre e Ea  frall ac/

Ypothic . a£L P EEC ot 2t

//,VWW LES « SEc = o be
S adl oA

@MW&M& cMacoes Z/ﬂ“}g :J%L{A c A /é Eﬁ}



{ﬂ?/g g {A}{ }#% 4 /”‘ng B /éé

o ﬂf ) d&,ﬂ/é( ﬁ//ééA,

c B a N C[Z—é’

calbe 4 <E6
o £ L

ce Ay w7 xla = ~ £
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Theorem 134 For every set A,

EqRel(A) = Part(A) .

{{a}g / A‘,@Aﬁ
I

PROOF:

v &
o Linl. T

E(’ A
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Calculus of bijections

» A=A, A=B — B=A ,(A=ZBAB=C) = A=C
» [f A=XandB =Y then
PA)=PX) , AxB=XxY , AWB=XWY ,
Rel(A,B) = Rel(X,Y) , (A=B)=(X=Y) ,
(A=B)=(X=Y) , BijA,B)=BijX,Y)
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» A=[1]xA , (AxB)xC=2Ax(BxC), AxB=BxA

» OJWA=A, (AUB)JWC=ZAW(BWC) , AWB=BWA

» Ol xA=[0, (AUB)xC=(AxC)w (B xC)
(A=0)=01, (A= BxC)=(A=B)x (A= C)

» (00=A)=[1], (AYUB)=C)=(A=C)x (B=C)
(M=A)=A, (AxB)=C)= (A= (B= ()

» (A=B)= (A= (BWIl]))

» P(A) = (A= 12])
=~ [0,/
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Characteristic (or indicator) functions
P(A) = (A =12])

Jo,17
X,

PANG)

> A
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Finite cardinality { o 1y

Definition 136 A set A is said to be finite whenever A = [n] for
some n € N, in which case we write #A = n.
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Theorem 137 For allm,n € N,
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¢ {¢} [{ﬁfcqﬁ;&} ’8 O - /é”‘~ \\?]
e (3675) = Loy v 1A

Infinity axiom

There is an infinite set, containing () and closed under successor.
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Bijections

Proposition 138 For a function f : A — B, the following are
equivalent.
1. f Is bijective.

2.VbeB.3'ae A.f(a) =b. , /-
v J/’ s WW
3. (VbeB.3ac A.f(a) =b) \

A A/j@bW

(Va1,a2 c A.fla;) =fla;) = a; = az)
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Surjections

Definition 139 A function f : A — B is said to be surjective, or a
surjection, and indicated f : A — B whenever

Vbe B.dae A.f(a) =D
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Theorem 140 The identity function is a surjection, and the
composition of surjections yields a surjection.

The set of surjections from A to B is denoted
Sur(A, B)
and we thus have

Bij(A,B) C Sur(A,B) C Fun(A,B) € PFun(A,B) C Rel(A,B) .
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Enumerability

Definition 142

1. A set A is said to be enumerable whenever there exists a
surjection N — A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.

Thtotwn A ot A o totible gL 4
Aokt Lo Lo M%?wa%«%%ﬁ”




@m%
a4/ = %é%/@%/ww}wé
v s

%C/I A
M%Oj%@ &m:ﬁ:
%
ﬁﬂﬂfmﬁa A Do ijﬁ L
B A

by oAl ‘ veng
G /] im A

- g, - “

M/H/Vr ﬁ/’O) ﬁ//\ p




N~ 7
Examples: —

1. A bijective enumeration of Z.

w2320 =1]0]1]2]3]-- w«\

—_—

D - | ST 21 |olz|4 e - b

Sﬁfw«e M\/M/W M@M WWM
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2. A bijective enumeration of N x N.

(1)

2
3
AEdV

W DN
S

N

w0y [—> (’M‘L“J (W“‘L_/) +
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¥ /]
Proposition 143 Every non-empty subs?/of an enumerable s%
enumerable.

PROOF: e oo W/W;v JD N—A
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/M ’% %{Mipx/j% Ax B
(0] =2 ( fla), 5O)

Countability

Proposition 144
1. N, Z, Q are countable sets.
A, K
2. The product and disjoint union of countable sets% countable.
3. Every finite set is countable. M — 4

4. Every subset of a countable set is countable. M — B
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Axiom of choice

Every surjection has a section.

— 400 —
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Injections

Definition 145 A function f : A — B is said to be injective, or an
injection, and indicated f : A — B whenever

Va,a, € A. (f((l]) — f((lz)) — A1 = Q
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Theorem 146 The identity function is an injection, and the compo-
sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A, B)
and we thus have

Sur(A, B)

¢ &

Z

Bij(A, B) Fun(A,B) C PFun(A,B) C Rel(A,B)

o
A &

Inj(A, B)

with

Bij(A,B) = Sur(A,B) NInj(A,B)
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Proposition 147 For all finite sets A and B,

(Zh) - (#A)ifH#A < #B

0 , otherwise

y

PROOF IDEA:
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Relational images

Definition 150 LetR: A —— B be a relation.

» Thedirectimage of X C A underR is the set?(X) C B, defined
as

R(X) = {beB|3xecX.xRb} .

NB This construction yields a function ? : P(A) — P(B).
— 407 —



. . . —
» Theinverse image of Y C B under R is the set R(Y) C A,

defined as

R(Y) = {ac€A|VbeB.aRb = beY)

1367,

NB This construction yields a function % : P(B) — P(A).
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Replacement axiom

The direct image of every definable functional property
on a set is a set.
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Set-indexed constructions

For every mapping associating a set A; to each element of a set I,
we have the set

U A = U{Ailiel} = {alFicelac A} .
Examples:

1. Indexed disjoint unions:
Hier Ai = Ui {tF X A4

2. Finite sequences on a set A:

A* = |4 oy A"
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3. Finite partial functions from a set A to a set B:
(A= B) = Wsep,,(a) (S = B)
where

Pin(A) = {S C A|Sis finite }

4. Non-empty indexed intersections: for I # (),

Nieg At = {xeUigAilVielLxe A}

5. Indexed products:
[Tic A = { x € (I= Ui Ad) ‘ VieLa(i) € Ay }

o dopsdat Gpe
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Proposition 153 An enumerable indexed disjoint uniozéf el
enumerable sets is enumerable.

PROOF: /)0 g Wﬁﬁf ; fz M”fzﬁ all eT .

W bl N — (C/I n A
(o, n) —— (4], 0 ()
X

Corollary 155 /f X and A are countable sets then so are A*,
CPﬁm(/A\)J and (X iﬁn A) .
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THEOREM OF THE DAY

Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S, S», S3,..., and denote by S;(j) the j-th entry of sequence S;. Now
define a new sequence, S, whose i-th entry is S;(i)+ 1 (mod 2). So S is §1(1)+1,5,(2)+1, S33)+ 1, S4(4)+1,..., with all entries remaindered
modulo 2. § is certainly an infinite sequence of Os and 1s. So it must appear in our list: it is, say, S, so its k-th entry is S (k). But this is, by
definition, S (k) + 1 (mod 2) # Si(k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers
(1, 2, 3,...). To see this informally, consider the infinite sequences of Os and 1s to be the binary expansions of fractions (e.g. 0.010011... =
0/2+1/4+0/8+0/16+1/32+1/64 +...). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see

that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or
exclude it (0).

Georg Cantor (1845-1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/~dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:
type ‘earliest diagonal’ into their search box.
Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org ﬁ
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Unbounded cardinality

Theorem 156 (Cantor’s diagonalisation argument) For every
set A, no surjection from A to P(A) exists.

PROOF: /}QW/%/M;% ;VWM Flice e

fenrict
W {O(/ A w%f(a]}
ATJEM'W\(/W W@ACA sl Jls)=X

Eilher he X o A%X Bt

beX=L) .~ bgX X %
L/ X < np(éj [X% } E
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Corollary/‘l 59 The sets

PN) = (N=1[2]) = [0,1] =R

are not enumerable.

Corollary 160 There are non-computable infinite sequences of
bits.
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WX o o] S Therny

Foundation axiom

The membership relation is well-founded.

e i’ o cmemem whmil
Thereby, providing a

Pr/nCIple of €-Induction .
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