Discrete Mathematics for Part I CST 2018/19 Sets Exercises

Marcelo Fiore Ohad Kammar

- Suggested supervision schedule
 - On sets, relations, and partial functions: Basic (\S 1.1, 2.1, 3.1) and core (\S 1.2, 2.2, 3.2) exercises. Lectures 12–14 onwards.
 - On functions, bijections, and equivalence relations: Basic (§§ 4.1, 5.1, 6.1) and core (§§ 4.2, 5.2, 6.2) exercises.
 - Lecture 16 onwards.
 - On surjections, injections, and images: Basic (§§ 7.1, 8.1, 9.1) and core (§§ 7.2, 8.2, 9.2) exercises. Lecture 17 onwards.
 - On countability: Basic (§ 10.1) and core (§ 10.2) exercises. Lecture 18 onwards.
- Suggested Easter-break work
 - -2018 Paper 2 Questions 7 (b), 8 (b) & (c), and 9 (b) & (c)
 - -2017 Paper 2 Questions 7 (b), 8 (b) & (c), and 9 (b) & (c)
 - 2016 Paper 2 Question 9 (b) & (c)
 - -2015 Paper 2 Questions 7 (c), 8 (c), and 9 (b) & (c)
 - 2014 Paper 2 Question 8
 - 2013 Paper 2 Question 5
 - 2011 Paper 2 Question 5
 - 2009 Paper 1 Question 4
 - 2008 Paper 2 Question 3
 - -2007 Paper 2 Question 5
 - 2006 Paper 2 Question 5

1 On sets

1.1 Basic exercises

- 1. Prove the following statements:
 - (a) Reflexivity: \forall sets $A. A \subseteq A$.
 - (b) Transitivity: \forall sets $A, B, C. (A \subseteq B \land B \subseteq C) \implies A \subseteq C.$
 - (c) Antisymmetry: \forall sets $A, B. (A \subseteq B \land B \subseteq A) \iff A = B$.
- 2. Prove the following statements:
 - (a) \forall set $S. \emptyset \subseteq S$.

- ${\rm (b)} \ \forall \ {\rm set} \ S. (\forall x. \, x \not\in S) \iff S = \emptyset.$
- 3. Find the union and intersection of:
 - (a) $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$;
 - (b) $\{x \in \mathbb{R} \mid x > 7\}$ and $\{x \in \mathbb{N} \mid x > 5\}$.
- 4. Find the product of $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$.
- 5. Let $I = \{2, 3, 4, 5\}$, and for each $i \in I$ let $A_i = \{i, i+1, i-1, 2 \cdot i\}$.
 - (a) List the elements of all the sets A_i for $i \in I$.
 - (b) Let $\{A_i \mid i \in I\}$ stand for $\{A_2, A_3, A_4, A_5\}$. Find $\bigcup \{A_i \mid i \in I\}$ and $\bigcap \{A_i \mid i \in I\}$.
- 6. Find the disjoint union of $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$.
- 7. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that
 - (a) $A^{c} = B \iff (A \cup B = U \land A \cap B = \emptyset),$
 - (b) $(A^{c})^{c} = A$, and
 - (c) the De Morgan's laws:

$$(A\cup B)^{\rm c}=A^{\rm c}\cap B^{\rm c}$$
 and $(A\cap B)^{\rm c}=A^{\rm c}\cup B^{\rm c}$.

8. Establish the laws of the powerset Boolean algebra.

1.2 Core exercises

- 1. Either prove or disprove that, for all sets A and B,
 - (a) $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B)$,
 - (b) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$,
 - (c) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - (d) $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$,
 - (e) $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
- 2. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that the following statements are equivalent.
 - (a) $A \cup B = B$.
 - (b) $A \subseteq B$.
 - (c) $A \cap B = A$.
 - (d) $B^{c} \subseteq A^{c}$.
- 3. For sets A, B, C, D, either prove or disprove the following statements.
 - (a) $(A \subseteq B \land C \subseteq D) \implies A \times C \subseteq B \times D.$ (b) $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D).$ (c) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D).$ (d) $A \times (B \cup D) \subseteq (A \times B) \cup (A \times D).$
 - (e) $(A \times B) \cup (A \times D) \subseteq A \times (B \cup D)$.
- 4. Prove or disprove the following statements for all sets A, B, C, D:

- (a) $(A \subseteq B \land C \subseteq D) \implies A \uplus C \subseteq B \uplus D$,
- (b) $(A \cup B) \uplus C \subseteq (A \uplus C) \cup (B \uplus C),$
- (c) $(A \uplus C) \cup (B \uplus C) \subseteq (A \cup B) \uplus C$,
- (d) $(A \cap B) \uplus C \subseteq (A \uplus C) \cap (B \uplus C),$
- (e) $(A \uplus C) \cap (B \uplus C) \subseteq (A \cap B) \uplus C$.
- 5. For $\mathcal{F} \subseteq \mathcal{P}(A)$, let $\mathcal{U} = \{ X \subseteq A \mid \forall S \in \mathcal{F}. S \subseteq X \} \subseteq \mathcal{P}(A)$. Prove that $\bigcup \mathcal{F} = \bigcap \mathcal{U}.$ Analogously, define $\mathcal{L} \subseteq \mathcal{P}(A)$ such that $\bigcap \mathcal{F} = \bigcup \mathcal{L}$. Also prove this statement.
- 6. Prove that, for all collections of sets \mathcal{F} , it holds that

$$\forall \text{ set } U. \bigcup \mathcal{F} \subseteq U \iff (\forall X \in \mathcal{F}. X \subseteq U) \quad .$$

1.3 Optional advanced exercises

Prove that for all collections of sets \mathcal{F}_1 and \mathcal{F}_2 ,

$$(\bigcup \mathcal{F}_1) \cup (\bigcup \mathcal{F}_2) = \bigcup (\mathcal{F}_1 \cup \mathcal{F}_2)$$

State and prove the analogous property for intersections of non-empty collections of sets.

2 On relations

2.1 Basic exercises

- 1. Let $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}, \text{ and } C = \{x, y, z\}.$ Let $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\} : A \longrightarrow B$ and $S = \{(b, x), (b, x), (c, y), (d, z)\} : B \longrightarrow C.$ What is the composition $S \circ R : A \longrightarrow C$?
- 2. Prove that relational composition is associative and has the identity relation as neutral element.
- 3. For a relation $R: A \longrightarrow B$, let its *opposite*, or *dual*, $R^{\text{op}}: B \longrightarrow A$ be defined by

$$b R^{\mathrm{op}} a \iff a R b$$
.

For $R, S : A \rightarrow B$, prove that

- (a) $R \subseteq S \implies R^{\mathrm{op}} \subseteq S^{\mathrm{op}}$.
- (b) $(R \cap S)^{\mathrm{op}} = R^{\mathrm{op}} \cap S^{\mathrm{op}}$.
- (c) $(R \cup S)^{\mathrm{op}} = R^{\mathrm{op}} \cup S^{\mathrm{op}}$.

4. For a relation R on a set A, prove that R is antisymmetric iff $R \cap R^{\text{op}} \subseteq \text{id}_A$.

2.2 Core exercises

1. Let $\mathcal{F} \subseteq \mathcal{P}(A \times B)$ be a collection of relations from A to B. Prove that,

(a) for all
$$R: X \to A$$
,
 $(\bigcup \mathcal{F}) \circ R = \bigcup \{ S \circ R \mid S \in \mathcal{F} \} : X \to B$ and that,

(b) for all $R: B \to Y$,

$$R \circ \left(\bigcup \mathcal{F}\right) = \bigcup \left\{ R \circ S \mid S \in \mathcal{F} \right\} : A \longrightarrow Y \quad .$$

What happens in the case of big intersections?

2. For a relation R on a set A, let

$$\mathcal{T}_R = \{ Q \subseteq A \times A \mid R \subseteq Q \land Q \text{ is transitive } \} .$$

For $R^{\circ +} = R \circ R^{\circ *}$, prove that (i) $R^{\circ +} \in \mathcal{T}_R$ and (ii) $R^{\circ +} \subseteq \bigcap \mathcal{T}_R$. Hence, $R^{\circ +} = \bigcap \mathcal{T}_R$.

3 On partial functions

3.1 Basic exercises

- 1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the elements of the four sets $(A_i \Rightarrow A_j)$ for $i, j \in \{2, 3\}$.
- 2. Prove that a relation $R: A \to B$ is a partial function iff $R \circ R^{\mathrm{op}} \subseteq \mathrm{id}_B$.
- 3. Prove that the identity relation is a partial function, and that the composition of partial functions yields a partial function.

3.2 Core exercises

- 1. Show that $(PFun(A, B), \subseteq)$ is a partial order.
- 2. Show that the intersection of a non-empty collection of partial functions in PFun(A, B) is a partial function in PFun(A, B).
- 3. Show that the union of two partial functions in PFun(A, B) is a relation that need not be a partial function; but that for $f, g \in PFun(A, B)$ such that $f \subseteq h \supseteq g$ for some $h \in PFun(A, B)$, the union $f \cup g$ is a partial function in PFun(A, B).

4 On functions

4.1 Basic exercises

- 1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the elements of the four sets $(A_i \Rightarrow A_j)$ for $i, j \in \{2, 3\}$.
- 2. A relation $R: A \to B$ is said to be total whenever $\forall a \in A. \exists b \in B. a R b$. Prove that this is equivalent to $id_A \subseteq R^{op} \circ R$.

Conclude that a relation $R: A \to B$ is a function iff $R \circ R^{\mathrm{op}} \subseteq \mathrm{id}_B$ and $\mathrm{id}_A \subseteq R^{\mathrm{op}} \circ R$.

3. Prove that the identity partial function is a function, and that the composition of functions yields a function.

4.2 Core exercises

- 1. Find endofunctions $f, g : A \to A$ such that $f \circ g \neq g \circ f$. Prove your claim.
- 2. Let $\chi : \mathcal{P}(U) \to (U \Rightarrow [2])$ be the function mapping subsets S of U to their characteristic (or indicator) functions $\chi_S : U \to [2]$.
 - (a) Prove that, for all $x \in U$,
 - $\chi_{A\cup B}(x) = (\chi_A(x) \text{ OR } \chi_B(x)) = \max(\chi_A(x), \chi_B(x)),$
 - $\chi_{A \cap B}(x) = (\chi_A(x) \text{ and } \chi_B(x)) = \min(\chi_A(x), \chi_B(x)),$

• $\chi_{A^{c}}(x) = \operatorname{NOT}(\chi_{A}(x)) = (1 - \chi_{A}(x)).$

(b) For what construction A?B on sets A and B it holds that

$$\chi_{A?B}(x) = \left(\chi_A(x) \text{ XOR } \chi_B(x)\right) = \left(\chi_A(x) +_2 \chi_B(x)\right)$$

for all $x \in U$? Prove your claim.

4.3 Optional advanced exercises

Consider a set A together with an element $a \in A$ and an endofunction $f : A \to A$. Say that a relation $R \subseteq \mathbb{N} \times A$ is (a, f)-closed whenever

$$(0,a) \in R$$
 and $\forall (n,x) \in \mathbb{N} \times A. (n,x) \in R \implies (n+1,f(x)) \in R$.

Define the relation $F \subseteq \mathbb{N} \times A$ as

$$F = \bigcap \{ R \subseteq \mathbb{N} \times A \mid R \text{ is } (a, f) \text{-closed} \}$$

- (a) Prove that the relation F is (a, f)-closed.
- (b) Prove that the relation F is total; that is, $\forall n \in \mathbb{N}$. $\exists y \in A$. $(n, y) \in F$.
- (c) Prove that the relation F is a (total) function $\mathbb{N} \to A$; that is,

$$\forall n \in \mathbb{N}. \exists ! y \in A. (n, y) \in F .$$

Hint: Proceed by induction. Observe that, in view of the previous item, to show that $\exists ! y \in A$. $(\ell, y) \in F$ it suffices to exhibit an (a, f)-closed relation R_{ℓ} such that $\exists ! y \in A$. $(\ell, y) \in R_{\ell}$. (Why?) For instance, as the relation $R_0 = \{ (m, y) \in \mathbb{N} \times A \mid m = 0 \implies y = a \}$ is (a, f)-closed one has that $(0, y) \in F \implies (0, y) \in R_0 \implies y = a$.

(d) Show that if h is a function $\mathbb{N} \to A$ such that h(0) = a and $\forall n \in \mathbb{N}$. h(n+1) = f(h(n)) then h = F.

Thus, for every set A together with an element $a \in A$ and an endofunction $f : A \to A$ there exists a unique function $F : \mathbb{N} \to A$, typically said to be *inductively defined*, satisfying the recurrence relation

$$F(n) = \begin{cases} a & , \text{ for } n = 0\\ f(F(n-1)) & , \text{ for } n \ge 1 \end{cases}$$

5 On bijections

5.1 Basic exercises

- 1. (a) Give examples of functions that have (i) none, (ii) exactly one, and (iii) more than one retraction.
 - (b) Give examples of functions that have (i) none, (ii) exactly one, and (iii) more than one section.
- 2. Let n be an integer.
 - (a) How many sections are there for the absolute-value map $[-n..n] \rightarrow [0..n] : x \mapsto |x|$?
 - (b) How many retractions are there for the exponential map $[0..n] \rightarrow [0..2^n] : x \mapsto 2^x$?
- 3. Give an example of two sets A and B and a function $f: A \to B$ satisfying both:
 - (i) there is a retraction for f, and
 - (ii) there is no section for f.

Explain how you know that f has these two properties.

- 4. Prove that the identity function is a bijection, and that the composition of bijections yields a bijection.
- 5. For $f : A \to B$, prove that if there are $g, h : B \to A$ such that $g \circ f = id_A$ and $f \circ h = id_B$ then g = h. Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

5.2 Core exercises

- 1. We say that two functions $s : A \to B$ and $r : B \to A$ are a section-retraction pair whenever $r \circ s = id_A$; and that a function $e : B \to B$ is an *idempotent* whenever $e \circ e = e$.
 - (a) Show that if $s: A \to B$ and $r: B \to A$ are a section-retraction pair then the composite $s \circ r: B \to B$ is an idempotent.
 - (b) Prove that for every idempotent $e : B \to B$ there exists a set A and a section-retraction pair $s : A \to B$ and $r : B \to A$ such that $s \circ r = e$.
 - (c) Let $p: C \to D$ and $q: D \to C$ be functions such that $p \circ q \circ p = p$. Can you conclude that
 - $p \circ q$ is idempotent? If so, how?
 - $q \circ p$ is idempotent? If so, how?
- 2. Prove the isomorphisms of the Calculus of Bijections, I.
- 3. Prove that, for all $m, n \in \mathbb{N}$,
 - (a) $\mathcal{P}([n]) \cong [2^n]$
 - (b) $[m] \times [n] \cong [m \cdot n]$
 - (c) $[m] \uplus [n] \cong [m+n]$
 - (d) $([m] \Rightarrow [n]) \approx [(n+1)^m]$
 - (e) $([m] \Rightarrow [n]) \cong [n^m]$
 - (f) $\operatorname{Bij}([n], [n]) \cong [n!]$

6 On equivalence relations

6.1 Basic exercises

- 1. For a relation R on a set A, prove that
 - R is reflexive iff $id_A \subseteq R$,
 - R is symmetric iff $R \subseteq R^{\text{op}}$,
 - R is transitive iff $R \circ R \subseteq R$.
- 2. Prove that the isomorphism relation \cong between sets is an equivalence relation.
- 3. Prove that the identity relation id_A on a set A is an equivalence relation and that $A_{/\mathrm{id}_A} \cong A$.
- 4. Show that, for a positive integer m, the relation \equiv_m on \mathbb{Z} given by

 $x \equiv_m y \iff x \equiv y \pmod{m}$.

is an equivalence relation.

5. Show that the relation \equiv on $\mathbb{Z} \times \mathbb{N}^+$ given by

$$(a,b) \equiv (x,y) \iff a \cdot y = x \cdot b$$

is an equivalence relation.

6. Let B be a subset of a set A. Define the relation E on $\mathcal{P}(A)$ by

$$(X,Y) \in E \iff X \cap B = Y \cap B$$
.

Show that E is an equivalence relation.

6.2 Core exercises

- 1. Let E_1 and E_2 be two equivalence relations on a set A. Either prove or disprove the following statements.
 - (a) $E_1 \cup E_2$ is an equivalence relation on A.
 - (b) $E_1 \cap E_2$ is an equivalence relation on A.
- 2. For an equivalence relation E on a set A, show that $[a_1]_E = [a_2]_E$ iff $a_1 E a_2$, where $[a]_E = \{x \in A \mid x E a\}$.
- 3. For a function $f: A \to B$ define a relation \equiv_f on A by the rule

$$a \equiv_f a' \iff f(a) = f(a')$$

for all $a, a' \in A$.

- (a) Show that for every function $f: A \to B$, the relation \equiv_f is an equivalence on A.
- (b) Prove that every equivalence relation E on a set A is equal to \equiv_q for q the quotient function $A \twoheadrightarrow A_{/_E} : a \mapsto [a]_E$.
- (c) Prove that for every surjection $f: A \twoheadrightarrow B$,

$$B \cong (A_{/\equiv_f})$$

7 On surjections

7.1 Basic exercises

- 1. Give three examples of functions that are surjective and three examples of functions that are not.
- 2. Prove that the identity function is a surjection, and that the composition of surjections yields a surjection.

7.2 Core exercises

From surjections $A \twoheadrightarrow B$ and $X \twoheadrightarrow Y$ define, and prove surjective, functions $A \times X \twoheadrightarrow B \times Y$ and $A \uplus X \twoheadrightarrow B \uplus Y$.

8 On injections

8.1 Basic exercises

- 1. Give three examples of functions that are injective and three of functions that are not.
- 2. Prove that the identity function is an injection, and that the composition of injections yields an injection.

8.2 Core exercises

From injections $A \rightarrow B$ and $X \rightarrow Y$ define, and prove injective, functions $A \times X \rightarrow B \times Y$ and $A \uplus X \rightarrow B \uplus Y$.

9 On images

9.1 Basic exercises

- 1. What is the direct image of \mathbb{N} under the integer square-root relation $R_2 = \{ (m, n) \mid m = n^2 \} : \mathbb{N} \longrightarrow \mathbb{Z}$? And the inverse image of \mathbb{N} ?
- 2. For a relation $R: A \longrightarrow B$, show that
 - (a) $\overrightarrow{R}(X) = \bigcup_{x \in X} \overrightarrow{R}(\{x\})$ for all $X \subseteq A$, and (b) $\overleftarrow{R}(Y) = \{a \in A \mid \overrightarrow{R}(\{a\}) \subseteq Y\}$ for all $Y \subseteq B$.

9.2 Core exercises

- 1. For $X \subseteq A$, prove that the direct image $\overrightarrow{f}(X) \subseteq B$ under an injective function $f: A \to B$ is in bijection with X; that is, $X \cong \overrightarrow{f}(X)$.
- 2. Prove that for a surjective function $f: A \to B$, the direct image function $\overrightarrow{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ is surjective.
- 3. Show that, by inverse image,

every map $A \to B$ induces a Boolean algebra map $\mathcal{P}(B) \to \mathcal{P}(A)$.

That is, for every function $f: A \to B$,

•
$$\overleftarrow{f}(\emptyset) = \emptyset$$

• $\overleftarrow{f}(X \cup Y) = \overleftarrow{f}(X) \cup \overleftarrow{f}(Y)$
 $\overleftarrow{f}(X) = \overleftarrow{f}(X) \cup \overleftarrow{f}(Y)$

• $\overleftarrow{f}(B) = A$

•
$$\overleftarrow{f}(X \cap Y) = \overleftarrow{f}(X) \cap \overleftarrow{f}(Y)$$

•
$$\overleftarrow{f}(X^{c}) = (\overleftarrow{f}(X))$$

for all $X, Y \subseteq B$.

9.3 Optional advanced exercises

For a relation $R: A \rightarrow B$, prove that

(a) $\overrightarrow{R}(\bigcup \mathcal{F}) = \bigcup \{ \overrightarrow{R}(X) \mid X \in \mathcal{F} \} \in \mathcal{P}(B) \text{ for all } \mathcal{F} \in \mathcal{P}(\mathcal{P}(A)), \text{ and}$ (b) $\overleftarrow{R}(\bigcap \mathcal{G}) = \bigcap \{ \overleftarrow{R}(Y) \mid Y \in \mathcal{G} \} \in \mathcal{P}(A) \text{ for all } \mathcal{G} \in \mathcal{P}(\mathcal{P}(B)).$

10 On countability

10.1 Basic exercises

Prove that:

- (a) Every finite set is countable.
- (b) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable sets.

10.2 Core exercises

- 1. For an infinite set S, prove that if there is a surjection $\mathbb{N} \to S$ then there is a bijection $\mathbb{N} \to S$.
- 2. Prove that:
 - (a) Every subset of a countable set is countable.
 - (b) The product and disjoint union of countable sets is countable.
- 3. For an infinite set S, prove that the following are equivalent:
 - (a) There is a bijection $\mathbb{N} \to S$.
 - (b) There is an injection $S \to \mathbb{N}$.
 - (c) There is a surjection $\mathbb{N} \to S$
- 4. For a set X, prove that there is no injection $\mathcal{P}(X) \to X$.

10.3 Optional advance exercises

Prove that if X and A are countable sets then so are A^* , $\mathcal{P}_{\text{fin}}(A)$, and $(X \Longrightarrow_{\text{fin}} A)$.

11 On indexed sets

11.1 Optional advanced exercises

Prove the isomorphisms of the Calculus of Bijections, II.