
For Discrete Mathematics 2018-19:

Well-founded Induction and Recursion

An addition to Part IA Comp. Sci. Lecture Notes

c©Glynn Winskel

November 25, 2018

2

Chapter 1

Well-founded induction

This additional note introduces the powerful general proof principle of well-
founded induction and its associated method of definition called well-founded
recursion. They are based on the concept of a well-founded relation. Well-
founded induction has many applications but is especially important for defin-
ing, and proving properties of, terminating programs.

1.1 Structural induction

We have seen mathematical induction and strong induction on the natural num-
bers N. The principles are used to prove properties of natural numbers but they
can also be turned to a means of defining functions on natural numbers, defini-
tion by mathematical induction, giving a form of recursion.

Before treating well-founded induction, let’s examine another well-used proof
principle, that of structural induction. We proceed from an example. The syntax
of Boolean propositions is sometimes given by the following grammar:

A, B, ... ::= a, b, c, · · · | T | F | A ∧ B | A ∨ B | ¬A

By which we mean a proposition, which we will typically call A, B, · · ·, is either
a propositional variable from among a, b, c · · · ∈ Var, a set of propositional vari-
ables, the proposition true T or the proposition false F, or built up using the
logical operations of conjunction ∧, disjunction ∨ or negation ¬. To avoid ex-
cessive brackets in writing Boolean propositions we adopt the usual convention
that the operation ¬ binds more tightly than the two other operations ∧ and
∨, so that ¬A ∨ B means (¬A) ∨ B. Boolean propositions are ubiquitous in sci-
ence and everyday life. They are an unavoidable ingredient of almost all precise
discourse, and of course of mathematics and computer science.

If we wish to establish that a property holds of all Boolean propositions
we often carry out a proof by structural induction. We prove a property (the
induction hypothesis, IH) holds of all propositions by showing

• IH holds of all atomic propositions (propositional variables, T, F), and

3

4 CHAPTER 1. WELL-FOUNDED INDUCTION

• that IH holds of compound propositions (for instance A ∧ B) follows from
IH holding of immediate subexpressions (in this instance A and B).

We can also give definitions by structural induction. For example, we can
define the length of a Boolean proposition by structural induction as follows:

|a| = 1, |T| = 1, |F| = 1,

|A ∧ B| = |A|+ |B|+ 1,

|A ∨ B| = |A|+ |B|+ 1, |¬A| = |A|+ 1 .

We define the length of atomic propositions and then the length of of com-
pound propositions (for instance A ∧ B) follows from the length of immediate
subexpressions (in this instance A and B).

More interestingly perhaps, we can define a translation which eliminates
disjunction from Boolean propositions by the following structural induction:

tr(a) = a, tr(T) = T, tr(F) = F,

tr(A ∧ B) = tr(A) ∧ tr(B),

tr(A ∨ B) = ¬(¬tr(A) ∧ ¬tr(B)), tr(¬A) = ¬tr(A) .

Exercise 1.1 Prove by structural induction on Boolean propositions that

|tr(A)| ≤ 3|A| − 1 ,

for all Boolean propositions A. 2

Later in the course, you’ll meet the principle of rule induction, a name and
a way of presenting inductive definitions to computer scientists I introduced
in my first stint here back in the 1980’s. It concerns sets which are built up
by repeatedly applying rules and their associated induction principles. For the
natural numbers N the rules would say: adjoin 0; then adjoin successors. For
Boolean expressions the rules would be those expressed by their grammar: add
atomic propositions; add the compound propositions you can build from them.

1.2 Well-founded relations

Mathematical and structural induction are special cases of a general and power-
ful proof principle called well-founded induction. In essence structural induction
works because breaking down an expression into subexpressions cannot go on
forever, eventually it must lead to atomic expressions which cannot be broken
down any further. If a property fails to hold of any expression then it must fail
on some minimal expression which when it is broken down yields subexpres-
sions, all of which satisfy the property. This observation justifies the principle
of structural induction: to show a property holds of all expressions it is suffi-
cient to show that property holds of an arbitrary expression if it holds of all its
subexpressions. Similarly with the natural numbers, if a property fails to hold

1.2. WELL-FOUNDED RELATIONS 5

of all natural numbers then there has to be a smallest natural number at which
it fails. The essential feature shared by both the subexpression relation and the
predecessor relation on natural numbers is that they do not give rise to infinite
descending chains. This is the feature required of a relation if it is to support
well-founded induction.

Definition: A well-founded relation is a binary relation ≺ on a set A such that
there are no infinite descending chains · · · ≺ ai ≺ · · · ≺ a1 ≺ a0. When a ≺ b
we say a is a predecessor of b.

Note a well-founded relation is necessarily irreflexive i.e., for no a do we
have a ≺ a, as otherwise there would be the infinite descending chain · · · ≺ a ≺
· · · ≺ a ≺ a. We shall generally write � for the reflexive closure of the relation
≺, i.e.

a � b ⇐⇒ a = b or a ≺ b.

(A relation ≺ for which � is a total order is traditionally called a well-order.)
Sometimes one sees an alternative definition of well-founded relation, in

terms of minimal elements:

Proposition 1.2 Let ≺ be a binary relation on a set A. The relation ≺ is
well-founded iff any nonempty subset Q of A has a minimal element, i.e. an
element m such that

m ∈ Q & ∀b ≺ m. b /∈ Q.

Proof.
“if”: Suppose every nonempty subset of A has a minimal element. If · · · ≺ ai ≺
· · · ≺ a1 ≺ a0 were an infinite descending chain then the set Q = {ai | i ∈ N}
would be nonempty without a minimal element, a contradiction. Hence ≺ is
well-founded.
“only if”: To see this, suppose Q is a nonempty subset of A. Construct a
chain of elements as follows. Take a0 to be any element of Q. Inductively,
assume a chain of elements an ≺ · · · ≺ a0 has been constructed inside Q. Either
there is some b ≺ an such that b ∈ Q or there is not. If not , then stop
the construction. Otherwise take an+1 = b. As ≺ is well-founded the chain
· · · ≺ ai ≺ · · · ≺ a1 ≺ a0 cannot be infinite. Hence it is finite, of the form
an ≺ · · · ≺ a0 with ∀b ≺ an. b /∈ Q. Take the required minimal element m to be
an. 2

Exercise 1.3 Let ≺ be a well-founded relation on a set B. Prove

(i) its transitive closure ≺+ is also well-founded,

(ii) its reflexive, transitive closure ≺∗ is a partial order.

Elements a, c ∈ B are in the transitive closure, i.e. a ≺+ c, iff

a = b1 ≺ · · · ≺ bn = c ,

for some b1, · · · , bn ∈ B. 2

6 CHAPTER 1. WELL-FOUNDED INDUCTION

1.3 Well-founded induction

Well-founded relations support an important proof principle.

The principle of well-founded induction
Let ≺ be a well founded relation on a set A. To show ∀a ∈ A. P (a) it suffices
to prove that for all a ∈ A

[∀b ≺ a. P (b)]⇒ P (a) .

The principle reduces showing that a property (the induction hypothesis) holds
globally to showing that the property is preserved locally by the well founded
relation.

We now prove the principle. The proof rests on the observation, Proposi-
tion 1.2, that any nonempty subset Q of a set A with a well-founded relation
≺ has a minimal element. To justify the principle, we assume ∀a ∈ A. ([∀b ≺
a. P (b)] ⇒ P (a)) and produce a contradiction by supposing ¬P (a) for some
a ∈ A. Then, as we have observed, there must be a minimal element m of the
set {a ∈ A | ¬P (a)}. But then ¬P (m) and yet ∀b ≺ m. P (b), which contradicts
the assumption.

Example: If we take the relation ≺ to be the predecessor relation

n ≺ m iff m = n + 1

on the non-negative integers the principle of well-founded induction specialises
to mathematical induction. 2

Example: If we take ≺ to be the “strictly less than” relation < on the non-
negative integers, the principle specialises to strong induction: To show P (n)
for all nonnegative integers n, it suffices to show

(∀m < n. P (m))⇒ P (n)

for all nonnegative integers n. 2

Example: If we take ≺ to be the relation between syntactic expressions such
that a ≺ b holds iff a is an immediate subexpression of b we obtain the principle
of structural induction as a special case of well-founded induction. 2

Proposition 1.2 provides an alternative to proofs by the principle of well-
founded induction. Suppose A is a well-founded set. Instead of using well-
founded induction to show every element of A satisfies a property, we can con-
sider the subset of A for which the property fails, i.e. the subset Q of coun-
terexamples. By Proposition 1.2, to show Q is ∅ it is sufficient to show that
Q cannot have a minimal element. This is done by obtaining a contradiction
from the assumption that there is a minimal element in Q. Whether to use this

1.4. BUILDING WELL-FOUNDED RELATIONS 7

approach or the principle of well-founded induction is largely a matter of taste,
though sometimes, depending on the problem, one approach can be more direct
than the other.

A special instance of Proposition 1.2 is well-known to be equivalent to math-
ematical induction. It is the principle that every nonempty subset of natural
numbers has a least element.

Exercise 1.4 For a suitable well-founded relation on strings, use the “no coun-
terexample” approach described above to show there is no string u which satisfies
au = ub for two distinct symbols a and b. 2

Well-founded induction is the most important principle in proving the ter-
mination of programs. Uncertainties about termination arise because of loops
or recursions in a program. If it can be shown that execution of a loop or re-
cursion in a program decreases the value in a well-founded set then execution
must eventually terminate.

1.4 Building well-founded relations

Applying the principle of well-founded induction often depends on a judicious
choice of well-founded relation.

1.4.1 Fundamental well-founded relations

We have already made use of well-founded relations like that of proper subex-
pression on syntactic sets, or < on natural numbers.

Here are some ways to construct further well-founded relations. Recall that
we use x � y to mean (x ≺ y or x = y).

We use some basic set theory, in particular products of sets, covered later in
the course.

1.4.2 Transitive closure

If ≺ is well-founded relation on A, then so is its transitive closure ≺+. Clearly
any infinite descending chain

· · · ≺+ an ≺+ · · · ≺+ a1 ≺+ a0

with respect to ≺+ would induce an infinite descending chain with respect to
≺. (This was part of an earlier exercise!)

1.4.3 Product

If ≺1 is well-founded on A1 and ≺2 is well-founded on A2 then taking

(a1, a2) � (a′1, a
′
2)⇔def a1 �1 a′1 and a2 �2 a′2

determines a relation ≺= (� \idA1×A2) in A1 ×A2 called the product relation:

8 CHAPTER 1. WELL-FOUNDED INDUCTION

Proposition 1.5 The product relation of well-founded relations is well-founded.

Proof. Suppose ≺1 is well-founded on A1 and ≺2 is well-founded on A2.
Assume their product relation ≺ is not well-founded, i.e. that there is an infinite
descending chain

· · · ≺ (xn, yn) ≺ · · · ≺ (x1, y1) ≺ (x0, y0) .

But then, from the definition of the product relation ≺, either

· · · ≺1 xnk
≺1 · · · ≺1 xn1 ≺1 xn0

or
· · · ≺2 ynk

≺2 · · · ≺2 yn1
≺2 yn0

,

which contradicts the well-foundedness of ≺1 and ≺2. 2

We’ll see applications of the product of well-founded relations in the next
section. However product relations are not as generally applicable as those
produced by lexicographic products.

1.4.4 Lexicographic products

Let ≺1 be well-founded on A1 and ≺2 be well-founded on A2. Define their
lexicographic product by

(a1, a2) ≺lex (a′1, a
′
2) iff a1 ≺1 a′1 or (a1 = a′1 & a2 ≺2 a′2) .

Proposition 1.6 The lexicographic product of well-founded relations is well-
founded.

Proof. Suppose ≺1 is well-founded on A1 and ≺2 is well-founded on A2.
Assume their lexicographic product ≺lex is not well-founded, i.e. that there is
an infinite descending chain

· · · ≺ (xn, yn) ≺ · · · ≺ (x1, y1) ≺ (x0, y0) .

From the definition of the lexicographic relation ≺lex

· · · �1 xn �1 · · · �1 x1 �1 x0 .

But ≺1 is well-founded so from some stage on, say m ≥ n, this chain is constant.
But then from the definition of the lexicographic relation ≺,

· · · ≺2 yn+i ≺2 · · · ≺2 yn+1 ≺2 yn ,

which contradicts the well-foundedness of ≺2. 2

Exercise 1.7 Let ≺ be a well-founded relation on a set X such that � is a
total order. Show it need not necessarily make the set

{x ∈ X | x ≺ y}

finite for all y ∈ X.
[Recall a total order is a partial order ≤ such that x ≤ y or y ≤ x for all its
elements x, y. Hint: Consider the lexicographic product of < and < on N×N.]

2

1.5. APPLICATIONS 9

1.4.5 Inverse image

Let f be a function from A to B and ≺B a well-founded relation on B. Then
≺A is well-founded on A where

a ≺A a′ ⇔def f(a) ≺B f(a′)

for a, a′ ∈ A.

Exercise 1.8 Show the inverse image of a well-founded relation is a well-
founded relation. 2

1.5 Applications

1.5.1 Euclid’s algorithm for gcd

We can use well-founded induction to show the correctness of Euclid’s algorithm
for calculating the greatest common divisor of a pair of positive natural num-
bers.1 One way to formulate Euclid’s algorithm is through a reduction relation
−→E between pairs of positive natural numbers defined as follows:

(m,n) −→E (m,n−m) if m < n ,

(m,n) −→E (m− n, n) if n < m .

So (m,n) reduces to (m,n−m) if m < n and to (m−n, n) if n < m. Notice there
is no reduction when m = n; in this case the reduction terminates. (To illustrate
well-founded induction, I have chosen a simplified version of Euclid’s algorithm
in which the division algorithm of the notes, based on successive subtractions,
is built into the algorithm for finding the gcd.)

It is easy to check that the following properties hold for the hcf of natural
numbers:

Proposition 1.9

(a) gcd(m,n) = gcd(m,n−m) if m < n,

(b) gcd(m,n) = gcd(m− n, n) if n < m,

(c) gcd(m,m) = m.

Proof. The highest common factor of natural numbers m and n, gcd(m,n), is
characterised by:

(i) gcd(m,n) divides m and n;

(ii) if k divides m and n, then k divides gcd(m,n).

1Another name for greatest common divisor is highest common factor (hcf).

10 CHAPTER 1. WELL-FOUNDED INDUCTION

In all cases the proof proceeds by showing any divisor of the left is also a divisor
of the right and vice versa; two natural numbers with the same divisors must
be equal. As an example we show (a) gcd(m,n) = gcd(m,n − m) assuming
m < n. Suppose k divides the lhs gcd(m,n). Then k certainly divides m and
n by (i), and so divides m and n −m. Thus k divides the rhs gcd(m,n −m)
by (ii). Suppose now that k divides the rhs gcd(m,n −m). Then k divides m
and n −m by (i). It follows that k divides m and n, and so the lhs gcd(m,n)
by (ii). 2

Euclid’s reduction terminates with the gcd of the positive natural numbers
it starts with:

Theorem 1.10 For all m,n ∈ N with m,n > 0,

(m,n) −→∗E (gcd(m,n), gcd(m,n)) .

(The relation −→∗E relates pairs which are equal or related by −→+
E, i.e. con-

nected by a −→E chain.)

Proof. Let ≺ between positive natural numbers be the well-founded relation
constructed as the product of < and < on positive natural numbers. Take

P (m,n)⇔def (m,n) −→∗E (gcd(m,n), gcd(m,n))

as the induction hypothesis. We prove P (m,n) for all positive natural numbers
m,n by well-founded induction.

Let (m,n) be a pair of positive natural numbers. Assume P (m′, n′) for all
(m′, n′) ≺ (m,n). Consider the cases:

Case m < n. In this case (m,n) −→E (m,n−m) and because P (m,n−m) by
the induction hypothesis,

(m,n−m) −→∗E (gcd(m,n−m), gcd(m,n−m)) .

Hence
(m,n) −→∗E (gcd(m,n−m), gcd(m,n−m)) ,

by the properties of the reflexive transitive closure −→∗E . Also gcd(m,n) =
gcd(m,n−m). Thus P (m,n) in this case.

Case n < m. This case is very similar.

Case m = n. In this case
(m,n) −→∗E (m,n)

as −→∗E is reflexive. Also gcd(m,n) = m = n. Thus P (m,n) in this case.

In all possible cases for (m,n) we can derive P (m,n) from the assumption
that P (m′, n′) holds for all ≺-predecessors (m′, n′). Hence by well-founded
induction we have established P (m,n) for all positive natural numbers m,n. 2

1.5. APPLICATIONS 11

1.5.2 Eulerian graphs

Well-founded induction is a proof principle of widespread applicability. Here’s an
example of its use in graph theory. A graph is a pair (V,E) consisting of a set of
vertices V and a set of edges E—an edge between vertices v and v′ is represented
as an unordered pair {v, v′}. A graph is connected iff any two vertices v, v′ are
connected by a path of edges {v0, v1}, {v1, v2}, · · · , {vn−1, vn} where v = v0 and
vn = v′. A circuit of a graph consists of a path {v0, v1}, {v1, v2}, · · · , {vn−1, vn}
for which v0 = vn. A circuit is Eulerian iff it visits each edge exactly once.
When does a finite connected graph have a Eulerian circuit? The answer to this
question, the theorem below, is due to the great mathematician Leonhard Euler
(1707-1783). Reputedly he was asked by the townspeople of Königsberg whether
it was possible to go for a walk in the town so as to cross each of its numerous
bridges exactly once (Was it? See the figure and Theorem 1.11 below).

HH "
""
(((

((XXXXPPPPPPP(((
(��

��
��hhQQ

��(((l
ll

��
��hhHH

E
E((((c

cc

((((XXXXXXXXXXX��
���

���
���

�

A
A
A

A
A
A

�
�
�

�
�
�

�
�
��

�
�
�
�

B
B
B
B

B
B
B
B

Theorem 1.11 A finite connected graph has an Eulerian circuit iff every vertex
has even degree, i.e. has an even number of edges connected to it.

Proof.
“only if”: Consider a finite connected graph. Assume it has an Eulerian circuit.
Because the graph is connected, each vertex must appear at least once in the
circuit (why?). Each occurrence of a vertex in the Eulerian circuit is accompa-
nied by a pair of distinct edges—one going into the vertex and one going out.
All edges appear precisely once in the Eulerian circuit, so each vertex has even
degree.
“if”: For finite connected graphs G1 = (V1, E1) and G2 = (V2, E2), define

G1 � G2 ⇐⇒ V1 ⊆ V2 & E1 ⊆ E2 .

The relation ≺ between finite connected graphs is an example of the product of
two well-founded relations, so is itself well-founded. We shall use well-founded
induction to establish the following property of all finite connected graphs:

if each vertex has even degree, then the graph has an Eulerian circuit.

We take the above as our induction hypothesis.
Let G be a finite connected graph in which each vertex has even degree.

Assume that for all graphs G′ with G′ ≺ G if each vertex of G′ has even degree,

12 CHAPTER 1. WELL-FOUNDED INDUCTION

then G′ has an Eulerian circuit. That is, we assume the induction hypothesis
for all G′ ≺ G.

We first find a circuit C in the graph. Starting at some vertex (it doesn’t
matter which) form a maximal path along edges in which no edge appears more
than once. Because the graph is finite such a path must contain a loop, the
circuit C. Any occurrence of a vertex in C is accompanied by a pair of distinct
edges—one ingoing and one outgoing. Remove all the edges of C from the graph
G. This will result in one or more connected components G′, where all vertices
of G′ have even degree and G′ ≺ G. Hence, each such connected component
has an Eulerian circuit. Linking these into C we obtain an Eulerian circuit for
G. 2

1.6 Well-founded recursion

One sees definition by structural induction and definition by induction. Such
definitions are a form of recursive definition: the result of a function on an ar-
gument is defined in terms of the results of the same function on strictly smaller
arguments. For example, earlier in Section ?? we saw the definition by struc-
tural induction of the length of Boolean propositions. A well-known example
from mathematics is that of the Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, · · ·. They
are given by a recurrence relation

fib(0) = 0, fib(1) = 1, fib(n) = fib(n− 1) + fib(n− 2) for n > 1 ,

in which the nth Fibonacci number is defined in terms of the two preceding
numbers.

Exercise 1.12 There are five equally-spaced stepping stones in a straight line
across a river. The distance d from the banks to the nearest stone is the same
as that between the stones. You can hop distance d or jump 2d. So for example
you could go from one river bank to the other in 6 hops. Alternatively you might
first jump, then hop, then jump, then hop. How many distinct ways could you
cross the river (you always hop or jump forwards)?

Describe how many distinct ways you could cross a river with n similarly
spaced stepping stones. 2

In the same manner as in the definitions of length length and fib above, we
are entitled to define functions on an arbitrary well-founded set. Suppose B
is a set with a well-founded relation ≺. Definition by well-founded induction,
traditionally called well-founded recursion, allows the definition of a function f
from B by specifying its value f(b) at an arbitrary b in B in terms of f(b′) for
b′ ≺ b. In more detail:

Definition by well-founded recursion
Suppose B is a set with a well-founded relation ≺. Suppose C is a set and
F (b, c1, · · · , ck, · · ·) is an expression such that

∀b ∈ B, c1, · · · , ck, · · · ∈ C. F (b, c1, · · · , ck, · · ·) ∈ C .

1.6. WELL-FOUNDED RECURSION 13

Then, a recursive definition of the form, for all b ∈ B,

f(b) = F (b, f(b1), · · · , f(bk), · · ·) ,

where b1 ≺ b, · · · , bk ≺ b, · · ·, determines a unique function f from B to C (i.e.,
there is a unique function f from B to C which satisfies the recursive definition).

You can check that definitions by mathematical induction, structural in-
duction, and, in particular of the Fibonacci numbers fit the general scheme of
definition by well-founded recursion.

Well-founded recursion and induction constitute a general method often ap-
propriate when functions are intended to be total. For example, it immediately
follows from well-founded recursion that that there is a unique total function
on the nonnegative integers such that

ack(m,n) =


n + 1 if m = 0 ,
ack(m− 1, 1) if m 6= 0, n = 0 ,
ack(m− 1, ack(m,n− 1)) otherwise ,

for all m,n ∈ N; observe that the value of ack at the pair (m,n) is defined in
terms of its values at the lexicographically smaller pairs (m−1, 1) and (m,n−1).

This is Ackermann’s function. Ackermann’s function provided a counterex-
ample to the conjecture that all computable functions are primitive recursive—it
grows way too fast.2 As a recursive program Ackermann’s function looks like:

A(x, y) = if x = 0 then y + 1 else
if y = 0 then A(x− 1, 1) else

A(x− 1, A(x, y − 1))

In practice a program to calculate Ackermann’s function won’t terminate in a
reasonable time on any machine for all but the smallest values.

A great many recursive programs are written so that some measure within
a well-founded set decreases as they are evaluated. Not all recursive definitions
are well-founded; it’s a fact of life that programs may fail to terminate, and
so in general determine partial functions from input to output. The techniques
of semantics, domain theory (where least fixed points play a central role) or
operational semantics (based on inductive definitions) apply in this broader
situation.3

Exercise 1.13 (McCarthy’s 91 function) Show the relation ≺, where

n ≺ m⇔ m < n ≤ 101,

for n,m ∈ N, is well-founded.

2Computable and primitive recursive functions are central topics in the second-year CS
course on “Computability.”

3Cf. the Part IB course ‘Semantics’ and the Part II course ‘Denotational Semantics.’

14 CHAPTER 1. WELL-FOUNDED INDUCTION

Deduce by well-founded recursion that there is a function f from N to N
satisfying

f(x) =

{
x− 10 if x > 100 ,
f(f(x + 11)) otherwise ,

for all x ∈ N.
Show by well-founded induction with respect to ≺ that

f(x) =

{
x− 10 if x > 100 ,
91 otherwise ,

for all x ∈ N. 2

For more on well-founded induction and recursion see the notes “Set Theory for
Computer Science” on my homepage. They contain a proof to justify definition
by well-founded recursion and explain how inductive definitions by rules lead to
a technique of well-founded induction via the notion of derivations.

