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Syllabus for this part of the course

◮ Inductive definitions using rules
and proofs by rule induction.

◮ Abstract syntax trees.

◮ Regular expressions and pattern matching.

◮ Finite automata and regular languages:
Kleene’s theorem.

◮ The Pumping Lemma.
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Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity
Theory, Semantics of Programming Languages

Part II Natural Language Processing, Optimising Compilers,
Denotational Semantics, Temporal Logic and Model
Checking

N.B. we do not cover the important topic of context-free grammars, which prior to 2013/14 was
part of the CST IA course Regular Languages and Finite Automata that has been subsumed into
this course.
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Formal Languages
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Alphabets

An alphabet is specified by giving a finite set, Σ, whose
elements are called symbols. For us, any set qualifies as a
possible alphabet, so long as it is finite.

Examples:

◮ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 10-element set of decimal digits.

◮ {a, b, c, . . . , x, y, z}, 26-element set of lower-case characters of
the English language.

◮ {S | S ⊆ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, 210-element set of all
subsets of the alphabet of decimal digits.

Non-example:

◮ N = {0, 1, 2, 3, . . .}, set of all non-negative whole numbers is
not an alphabet, because it is infinite.
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Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε,

notation for the
string of length 0

a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

In general, an denotes the string of length n just containing a symbols
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Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

◮ If Σ = ∅ (the empty set), then what is Σ
∗?

7



Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

◮ If Σ = ∅ (the empty set), then Σ
∗ = {ε}.
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Concatenation of strings

The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ
∗ are u = ab, v = ra and

w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra
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Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ
∗ a (formal)

language over the alphabet Σ.

We will use inductive definitions to describe languages in terms of

grammatical rules for generating subsets of Σ
∗.
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Inductive Definitions
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Axioms and rules

for inductively defining a subset of a given set U

◮ axioms
a

are specified by giving an element a of U

◮ rules
h1 h2 · · · hn

c

are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)
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Derivations

Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element u ∈ U is in the subset is by definition

a finite rooted tree with vertexes labelled by ele-
ments of U and such that:

◮ the root of the tree is u (the conclusion of
the whole derivation),

◮ each vertex of the tree is the conclusion of a
rule whose hypotheses are the children of the
node,

◮ each leaf of the tree is an axiom.
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Example

U = {a, b}∗

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb
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Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 15

◮ abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

◮ abaab is not in that subset (there is no derivation with that
conclusion – why?)

(In fact u ∈ {a, b}∗ is in the subset iff it contains the same number of a and b symbols.)
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Example: transitive closure

Given a binary relation R ⊆ X × X on a set X, its
transitive closure R+ is the smallest (for subset
inclusion) binary relation on X which contains R and which
is transitive (∀x, y, z ∈ X. (x, y) ∈ R+ & (y, z) ∈ R+ ⇒ (x, z) ∈ R+).

R+ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)
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Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

19



Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 20) to prove this
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Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S ⊆ U is closed under the axioms and rules if

◮ for every axiom
a

, it is the case that a ∈ S

◮ for every rule
h1 h2 · · · hn

c
, if h1, h2, . . . , hn ∈ S, then c ∈ S.
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Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

We use the theorem as method of proof: given a property P(u) of
elements of U, to prove ∀u ∈ I. P(u) it suffices to show

◮ base cases: P(a) holds for each axiom
a

◮ induction steps: P(h1) & P(h2) & · · · & P(hn)⇒ P(c)

holds for each rule
h1 h2 · · · hn

c

(To see this, apply the theorem with S = {u ∈ U | P(u)}.)

20



Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 20) to prove this, since
S ⊆ X × X being closed under the axioms & rules is the same

as it containing R, being reflexive and being transitive.
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Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 15.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)
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Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 15.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

◮ induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It’s not so easy to show ∀u ∈ {a, b}∗. P(u)⇒ u ∈ I – rule induction for I is not much help for
that.)
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Abstract Syntax Trees
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Concrete syntax: strings of symbols

◮ possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

◮ or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =

if x > 100 then x − 10

else f ( f ( x + 11 ) )

in f 1 end

(∗ v a l u e i s 9 9 ∗)
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Abstract syntax: finite rooted trees

◮ vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) – in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

◮ label of the root gives the ‘outermost form’ of the whole phrase

E.g. for the ML expression
on Slide 25:

let

fun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f 1
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Regular expressions (concrete syntax)

over a given alphabet Σ.

Let Σ
′ be the 6-element set {ǫ, ∅, |, ∗, (, )} (assumed disjoint from Σ)

U = (Σ ∪ Σ
′)∗

axioms:
a ǫ ∅

rules:
r

(r)

r s

r|s

r s

rs

r

r∗

(where a ∈ Σ and r, s ∈ U)
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Some derivations of regular expressions
(assuming a, b ∈ Σ)

ǫ

a

b

b∗

ab∗

ǫ|ab∗

ǫ a

ǫ|a

b

b∗

ǫ|ab∗

ǫ

a b

ab

ab∗

ǫ|ab∗

ǫ

a

b

b∗

(b∗)

a(b∗)

(a(b∗))

ǫ|(a(b∗))

ǫ a

ǫ|a

(ǫ|a)

b

b∗

(b∗)

(ǫ|a)(b∗)

ǫ

a b

ab

(ab)

(ab)∗

((ab)∗)

ǫ|((ab)∗)
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Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).
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Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) as an ML datatype declaration:

datatype ′a RE = Union of (′a RE) ∗ (′a RE)
| Concat of (′a RE) ∗ (′a RE)
| Star of ′a RE

| Null

| Empty

| Sym of ′a

(the type ′
a RE is parameterised by a type variable ′

a standing for the alphabet Σ)
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Some abstract syntax trees of regular expressions
(assuming a, b ∈ Σ)

1. 2. 3.

Union

Null Concat

Syma Star

Symb

Concat

Union

Null Syma

Star

Symb

Union

Null Star

Concat

Syma Symb

(cf. examples on Slide 28)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Syma, Star(Symb)))

2. Concat(Union(Null, Syma), Star(Symb))

3. Union(Null, Star(Concat(Syma, Symb)))

31



Relating concrete and abstract syntax

for regular expressions over an alphabet Σ, via an
inductively defined relation ∼ between strings and trees:

a ∼ Syma ǫ ∼ Null ∅ ∼ Empty

r ∼ R

(r) ∼ R

r ∼ R s ∼ S

r|s ∼ Union(R, S)

r ∼ R s ∼ S

rs ∼ Concat(R, S)

r ∼ R

r∗ ∼ Star(R)
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For example:

ǫ|(a(b∗)) ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Concat(Union(Null, Syma), Star(Symb))

Thus ∼ is a ‘many-many’ relation between strings and trees.

◮ Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ∼ parse(r).

◮ Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying
pp(R) ∼ R.

(See CST IB Compiler construction course.)
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Matching

Each regular expression r over an alphabet Σ determines a
language L(r) ⊆ Σ

∗. The strings u in L(r) are by
definition the ones that match r, where

◮ u matches the regular expression a (where a ∈ Σ) iff u = a

◮ u matches the regular expression ǫ iff u is the null string ε

◮ no string matches the regular expression ∅

◮ u matches r|s iff it either matches r, or it matches s

◮ u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

◮ u matches r∗ iff either u = ε, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.
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Inductive definition of matching

U = Σ
∗ ×{regular expressions over Σ}

axioms:
(a, a) (ε, ǫ) (ε, r∗)

rules:

(u, r)

(u, r|s)

(u, s)

(u, r|s)

(v, r) (w, s)

(vw, rs)

(u, r) (v, r∗)

(uv, r∗)

abstract syntax trees

(No axiom/rule involves the empty regular expression ∅ – why?)
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Examples of matching

Assuming Σ = {a, b}, then:

◮ a|b is matched by each symbol in Σ

◮ b(a|b)∗ is matched by any string in Σ
∗ that starts with a ‘b’

◮ ((a|b)(a|b))∗ is matched by any string of even length in Σ
∗

◮ (a|b)∗(a|b)∗ is matched by any string in Σ
∗

◮ (ε|a)(ε|b)|bb is matched by just the strings ε, a, b, ab, and bb

◮ ∅b|a is just matched by a
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Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
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Finite Automata

41



Example of a finite automaton

M , q0
a

b

q1

b

a q2

b

a q3

a

b

◮ set of states: {q0, q1, q2, q3}

◮ input alphabet: {a, b}

◮ transitions, labelled by input symbols: as indicated by the above
directed graph

◮ start state: q0

◮ accepting state(s): q3
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Language accepted
by a finite automaton M

◮ Look at paths in the transition graph from the start
state to some accepting state.

◮ Each such path gives a string of input symbols, namely
the string of labels on each transition in the path.

◮ The set of all such strings is by definition the

language accepted by M, written L(M).

Notation: write q
u
−→∗ q′ to mean that in the automaton there is a

path from state q to state q′ whose labels form the string u.

(N.B. q
ε
−→∗ q′ means q = q′.)
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Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

For example

◮ aaab ∈ L(M), because q0
aaab
−−→∗ q3

◮ abaa 6∈ L(M), because ∀q(q0
abaa
−−→∗ q ⇔ q = q2)
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Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

Claim:
L(M) = L((a|b)∗aaa(a|b)∗)

set of all strings matching the

regular expression (a|b)∗aaa(a|b)∗

(qi (for i = 0, 1, 2) represents the state in the process of reading a string in which the last i
symbols read were all as)
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Non-deterministic
finite automaton (NFA)

is by definition a 5-tuple M = (Q, Σ, ∆, s, F), where:

◮ Q is a finite set (of states)

◮ Σ is a finite set (the alphabet of input symbols)

◮ ∆ is a subset of Q × Σ × Q (the transition relation)

◮ s is an element of Q (the start state)

◮ F is a subset of Q (the accepting states)

Notation: write “q
a
−→ q′ in M” to mean (q, a, q′) ∈ ∆.
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Example of an NFA

Input alphabet: {a, b}.

States, transitions, start state, and accepting states as shown:

q0

a

b

a q1
a q2

a q3

a

b

For example {q | q1
a
−→ q} = {q2}

{q | q1
b
−→ q} = ∅

{q | q0
a
−→ q} = {q0, q1}.

The language accepted by this automaton is the same as for the automaton on
Slide 44, namely {u ∈ {a, b}∗ | u contains three consecutive a’s}.
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Deterministic finite automaton (DFA)
A deterministic finite automaton (DFA) is an NFA
M = (Q, Σ, ∆, s, F) with the property that for each state
q ∈ Q and each input symbol a ∈ ΣM, there is a unique

state q′ ∈ Q satisfying q
a
−→ q′.

In a DFA ∆ ⊆ Q × Σ × Q is the graph of a function Q × Σ → Q,
which we write as δ and call the next-state function.

Thus for each (state, input symbol)-pair (q, a), δ(q, a) is the unique
state that can be reached from q by a transition labelled a:

∀q′(q
a
−→ q′ ⇔ q′ = δ(q, a))
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Example of a DFA

with input alphabet {a, b}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

next-state function:

δ a b
q0 q1 q0

q1 q2 q0

q2 q3 q0

q3 q3 q3
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Example of an NFA

with input alphabet {a, b, c}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

M is non-deterministic, because for example {q | q0
c
−→ q} = ∅.
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An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

Notation: write “q
ε
−→ q′ in M” to mean (q, q′) ∈ T .

(N.B. for NFAεs, we always assume ε 6∈ Σ.)
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Language accepted by an NFAε

M = (Q, Σ, ∆, s, F, T)

◮ Look at paths in the transition graph (including
ε-transitions) from start state to some accepting state.

◮ Each such path gives a string in Σ
∗, namely the string

of non-ε labels that occur along the path.

◮ The set of all such strings is by definition the

language accepted by M, written L(M).

Notation: write q
u
⇒ q′ to mean that there is a path in M from state

q to state q′ whose non-ε labels form the string u ∈ Σ
∗.
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An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

For this NFAε we have, e.g.: q0
aa
⇒ q2, q0

aa
⇒ q3 and q0

aa
⇒ q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)∗(aa|bb)(a|b)∗ .
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Example of the subset construction

M

q1

a

q0

ε

ε

a

q2

b

next-state function for PM
a b

∅ ∅ ∅

{q0} {q0, q1, q2} {q2}
{q1} {q1} ∅

{q2} ∅ {q2}
{q0, q1} {q0, q1, q2} {q2}
{q0, q2} {q0, q1, q2} {q2}
{q1, q2} {q1} {q2}

{q0, q1, q2} {q0, q1, q2} {q2}
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Theorem. For each NFAε M = (Q, Σ, ∆, s, F, T) there
is a DFA PM = (P(Q), Σ, δ, s′ , F′) accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

◮ set of states is the powerset P(Q) = {S | S ⊆ Q} of the set
Q of states of M

◮ same input alphabet Σ as for M

◮ next-state function maps each (S, a) ∈ P(Q)× Σ to

δ(S, a) , {q′ ∈ Q | ∃q ∈ S. q
a
⇒ q′ in M}

◮ start state is s′ , {q′ ∈ Q | s
ε
⇒ q′}

◮ subset of accepting sates is F′ , {S ∈ P(Q) | S ∩ F 6= ∅}

To prove the theorem we show that L(M) ⊆ L(PM) and L(PM) ⊆ L(M).
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Regular Languages
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Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.
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(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).
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(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &

u2 ∈ L(M2)}
Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

65



(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &

u2 ∈ L(M2)}
Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(iv) Induction step for r∗: given NFAε M, construct an NFAε

Star(M) satisfying

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}
Thus L(r∗) = L(Star(M)) when L(r) = L(M).
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NFAs for regular expressions a, ǫ, ∅

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings
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Union(M1, M2)

s1 M1

q0

ε

ε
s2 M2

accepting states = union of accepting states of M1 and M2

67



For example,

if Ma = a

and Mb = b

then Union(Ma, Mb) =

a
ε

ε

b
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Concat(M1, M2)

s1 M1
ε s2 M2

accepting states are those of M2
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For example,

if M1 =
a

ε

ε

ε

ε b

ε

and M2 =
a

then Concat(M1, M2) =
a

ε

a ε ε

ε

ε b

ε
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Star(M)

q0
ε s M

ε

the only accepting state of Star(M) is q0

(N.B. doing without q0 by just looping back to s
and making that accepting won’t work – Exercise 4.1.)
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For example,

if M =

a
ε

ε

b

then Star(M) =
a

ε

ε

ε

ε b

ε
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Example

Regular expression (a|b)∗a

whose abstract syntax tree is

Concat

Star

Union

Syma Symb

Syma

is mapped to the NFAε Concat(Star(Union(Ma, Mb)), Ma) =

a

ε

a ε ε

ε

ε b

ε

(cf. Slides 68, 71 and 74).
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Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
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Decidability of matching

We now have a positive answer to question (a) on Slide 38.
Given string u and regular expression r:

◮ construct an NFAε M satisfying L(M) = L(r);

◮ in PM (the DFA obtained by the subset construction, Slide 59)
carry out the sequence of transitions corresponding to u from the
start state to some state q (because PM is deterministic, there is
a unique such transition sequence);

◮ check whether q is accepting or not: if it is, then
u ∈ L(PM) = L(M) = L(r), so u matches r; otherwise
u /∈ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2n

states if M has n. This makes the method described above potentially inefficient – more efficient
algorithms exist that don’t construct the whole of PM.)
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Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.
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Example of a regular language

Recall the example DFA we used earlier:

M , q0
a

b

q1

b

a q2

b

a q3

a

b

In this case it’s not hard to see that L(M) = L(r) for

r = (a|b)∗aaa(a|b)∗
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Example

M , 1

a0

b
a

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗
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Example

M , 1

a0

b
a

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗

WRONG!
since baabaa ∈ L(M)
but baabaa 6∈ L(a∗|a∗b(ab)∗aaa∗)

We need an algorithm for constructing a suitable r for each M
(plus a proof that it is correct).
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Lemma. Given an NFA M = (Q, Σ, ∆, s, F), for each
subset S ⊆ Q and each pair of states q, q′ ∈ Q, there is a
regular expression rS

q,q′ satisfying

L(rS
q,q′) = {u ∈ Σ

∗ | q
u
−→∗ q′ in M with all inter-

mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
q1, . . . , qk say, then L(M) = L(r) with r , r1| · · · |rk where

ri = r
Q
s,qi

(i = 1, . . . , k)

(in case k = 0, we take r to be the regular expression ∅).
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M , 1

a0

b
a

2

b

a

By direct inspection we have:

r
{0}
i,j 0 1 2

0

1 ∅ ε a
2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b
1

2

(we don’t need the unfilled entries in the tables)
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Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
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Not(M)

Given DFA M = (Q, Σ, δ, s, F),
then Not(M) is the DFA with

◮ set of states = Q
◮ input alphabet = Σ

◮ next-state function = δ

◮ start state = s
◮ accepting states = {q ∈ Q | q 6∈ F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u ∈ Σ
∗ | u 6∈ L(M)}
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Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2, then
L1 ∩ L2 = L(Not(PM)) where M is the NFAε

Union(Not(M1), Not(M2)). �

[It is not hard to directly construct a DFA And(M1, M2) from M1 and M2 such that
L(And(M1, M2)) = L(M1)∩ L(M2) – see Exercise 4.7.]
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Regular languages are
closed under intersection

Corollary: given regular expressions r1 and r2,there is a
regular expression, which we write as r1 & r2, such that

a string u matches r1 & r2 iff it matches both r1

and r2.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1)∩ L(r2). Then we can use
Kleene (b) to construct a regular expression r1 & r2 with
L(r1 & r2) = L(r1)∩ L(r2). �
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Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
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Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?
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Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Answer: yes (Exercise 2.3)

How can we decide all such questions?

95



Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r)) ∩ L(s) = ∅ = (Σ
∗ \ L(s)) ∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

96



Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r)) ∩ L(s) = ∅ = (Σ
∗ \ L(s)) ∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any given DFA M, whether or not it accepts some string.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.
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The Pumping Lemma
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Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
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Examples of languages that are
not regular

◮ The set of strings over {(, ), a, b, . . . , z} in which the
parentheses ‘(’ and ‘)’ occur well-nested.

◮ The set of strings over {a, b, . . . , z} which are
palindromes, i.e. which read the same backwards as
forwards.

◮ {anbn | n ≥ 0}

100



The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1

(i.e. v 6= ε)

◮ |u1v| ≤ ℓ

◮ for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway], u1vvu2 ∈ L,

u1vvvu2 ∈ L, etc.)
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Suppose L = L(M) for a DFA M = (Q, Σ, δ, s, F).
Taking ℓ to be the number of elements in Q, if n ≥ ℓ,
then in

s = q0

a1−→ q1

a2
−→ q2 · · ·

aℓ−→ qℓ
︸ ︷︷ ︸

ℓ+1 states

· · ·
an
−→ qn ∈ F

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some
0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

s = q0
u1 ∗qi

v

∗
= qj

u2 ∗qn ∈ F

where

u1 , a1 . . . ai v , ai+1 . . . aj u2 , aj+1 . . . an
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How to use the Pumping Lemma
to prove that a language L

is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

no matter how w is split into three, w = u1vu2,
with |u1v| ≤ ℓ and |v| ≥ 1, there is some n ≥ 0

for which u1vnu2 is not in L






(†)
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Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†) on Slide 104.]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 , {ap | p prime}
[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3 has length ≥ ℓ and

has property (†).]
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Example of a non-regular language
with the pumping lemma property

L , {cmanbn | m ≥ 1 & n ≥ 0} ∪ {ambn | m, n ≥ 0}

satisfies the pumping lemma property on Slide 101 with
ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular – see Exercise 5.1.
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