
Practical challenge 2
Inference

Foundations of Data Science—DJW—2018/2019

These questions are optional. They are not intended for supervision, and they are not
examinable material. They are to give you practical experience of work based on the theo-
retical material covered in lectures, if you want it, and to reinforce your skills in scientific
computing.

If you want guidance, you can (i) ask your fellow students for help in the Moodle forum,
(ii) come to the practical classes in the second half of term and ask demonstrators, (iii) wait
until model solutions are released, after the practical classes.

Question 1. This question asks you to investigate racial bias in police stop-and-search
behaviour. We will restrict attention to records with police_force=’cambridgeshire’. We will
work with the model

P(Yi = find) = θei
where Yi ∈ {find, nothing} is the outcome listed for record i, ei is the ethnicity, and

θ =
(
θAsian, θBlack, θMixed, θOther, θWhite

)
is an unknown parameter.

1 !wget ”https :// teachingf i les . blob . core .windows. net/founds/stop−and−search . csv”
2 police = pandas . read_csv( ’ stop−and−search . csv ’ )
3 ok = ~pandas . i snu l l ( police [ ’Officer−defined ethnicity ’ ] ) & \
4 ( police [ ’ police_force ’ ] == ’cambridgeshire ’ )
5 y = police . loc [ok , ’Outcome’ ] = ’Nothing found − no further action ’
6 ETHNICITY_LEVELS = [ ’Asian ’ , ’Black ’ , ’White ’ , ’Mixed ’ , ’Other ’ ]
7 ethnicity_code = {k: i for i ,k in enumerate(ETHNICITY_LEVELS)}
8 e = np. array ( [ ethnicity_code [v ] for v in police . loc [ok , ’Officer−defined ethnicity ’ ] ] )

(a) As a prior distribution, let θ consist of 5 independent random variables drawn from
Beta(δ, δ) where δ = 0.5. Calculate the posterior distribution. Implement a function
posterior_sample(size) that generates size independent samples of θ drawn from the
posterior distribution. Each sample should be a vector of length 5.

(b) Given a sample of θ, define the overall bias score to be

d(θ) = max
e,e′

|θe − θe′ |.

Plot a histogram of the posterior distribution of d(θ).
(c) Repeat part (b) but for d3(θ) instead, which is defined like d(θ) but restricted to e, e′ ∈

{Asian,Black,White}. Explain why the two histograms have very different shapes.
(d) Find a Bayesian 95% confidence interval for d3(θ) of the form

P
(
d3(θ) ≤ c) = 95%.

(e) Find a 95% frequentist confidence interval for d3(θ) of the same form as in part (d).
Explain your resampling strategy.

(f) Consider testing the hypothesis θBlack = θAsian = θWhite. Let the test statistic be
d3(θ̂(x)), where θ̂(x) is the maximum likelihood estimate for θ given dataset x. Plot a
histogram showing the distribution of this test statistic assuming that the hypothesis
is true. Explain your resampling strategy. Do you accept the hypothesis?
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The next question is about computational Bayesian inference. We typically want to report
readouts on the posterior distribution Pr(θ | x) ∝ Pr(θ) f (θ), where f (θ) = Pr(data | θ). When
we can’t solve this analytically, we can compute with it numerically, as follows. First, draw
a random sample {θ1, θ2, . . . , θn} from the prior distribution. Second, attach weights to each
value in the sample, to get the weighted empirical distribution{

(θ1,w1), (θ2,w2), . . . , (θn,wn)
}

where wi =
f (θi)∑
j f (θ j)

.

Third, compute whatever probability we’re interested in by

P(θ ∈ A | data) ≈
n∑

i=1

wi1θi ∈A , E
(
h(θ) | data) ≈

n∑
i=1

wih(θi).

This is like working with a standard empirical distribution, but using weights wi rather than
giving every observation equal weight 1/n.

Question 2. This question asks you to look for anomalies in a subset of MP expense claims.
Informally, an anomaly is something that lies outside the usual distribution. Formally,
we can think of values in the dataset as drawn from a mixture of two distributions, one
distribution for the usual state of affairs, another for anomalies. We can express this as

PrX(x | ξ, θ, ϕ) = ξ Prusual(x | θ) + (1 − ξ)Pranom(x | ϕ)

where ξ ∈ [0, 1] is the probability that the observation is usual, and θ and ϕ respectively
parameterize the usual and anomalous distributions.

1 !wget ”https :// teachingf i les . blob . core .windows. net/founds/expense . csv”
2 expense = pandas . read_csv( ’expense . csv ’ ,
3 dtype={’Reason I f Not Paid ’ : np. str_}) # type hint
4 x = expense . loc [( expense [ ’Year ’]==’18_19’ ) & (expense [ ’Category ’]==’Office Costs ’ ) ,
5 ’Amount Claimed ’ ] . values
6 plt . h ist (x [x>0], bins=10**np. linspace (.0001 , 4.2 , 35))
7 plt . gca () . set_xscale (”log”)

100 101 102 103 104

expense amount [£]

0

100

200

300

400

For this dataset, consider the probability model

Prusual(x | µ, σ) = 1x>0

x
√
2πσ2

e−(log x−µ)2 / 2σ2

Pranom(x | α) = α

2(|x | + 1)α+1

and use the following prior distribution on the unknown parameters:

8 def rpr ior ( s ize=1):
9 ξ = np.random. beta(a=9, b=1, s ize=size )

10 µ = np.random.normal(np. log(10**1.4) , scale=np. log (10) , s ize=size )
11 σ = np. log(6) * np. ones( s ize )
12 α = 1 * np. ones( s ize )
13 return np.column_stack( [ ξ ,µ ,σ ,α ] )

(a) What are the common names for Prusual and Pranom?
(b) Find the posterior distribution of the unknown parameters.
(c) Find the posterior predictive probability Pusual(X ≤ x). Differentiate to get the density

function, and superimpose it on a histogram of the data.

2


