
Example sheet 2 hint sheet
Inference

Foundations of Data Science—DJW—2018/2019

This example sheet covers material up to Lecture 7 on 22 October. Questions 1(d), 3, 7(c), 8,
and 9 are conceptually challenging. Questions 5(c) and 9 are mathematically involved.

Questions 1 and 2 are core Bayesian questions. Questions 4 and 6 are core frequentist questions. The
rest are supplementary / mind-broadening.

Question 1. I sample X1, . . . , Xn from Uniform[0, θ]. The parameter θ is unknown, and I shall
use Θ ∼ Pareto(θm, α) as my prior, where θm > 0 and α > 1 are known:

P(Θ > θ) =
(θ/θm)

−α if θ ≥ θm
1 if θ < θm.

(a) What is the prior density of Θ?
(b) Find the posterior distribution for Θ.
(c) Find a 95% posterior confidence interval for Θ.
(d) Find a different 95% posterior confidence interval. Which is better? Why?

The keywords prior and posterior tell you this is about Bayesian inference.

For part (b), answer it like you answer every Bayesian question: write down the prior density Pr(θ),
write down the data density Pr(x1, . . . , xn | θ), then use Bayes’s rule i.e. multiply them and stick in a
constant factor to get the posterior density Pr(θ | x1, . . . , xn). In this question, I recommend you keep
track of bounds by using indicator functions, 1θ≥θm for the prior density and 10≤xi ≤θ for the data
density. After you apply Bayes’s rule, don’t try to find the normalizing constant—just look at your
posterior density function as a function of θ, recognize that you’ve seen it before, and write down the
standard name and parameters.

For part (c), you might perhaps have found [0.025, 0.975] quantile points of the posterior distribution.
Why these, and not [0, 0.95] or [0.05, 1]? Sketch the posterior density function, and sketch these
confidence intervals, and this will suggest the answer to part (d).

Question 2. I start with a prior belief that µ ∼ Normal(µ0, σ2
0). I then observe x1, . . . , xn,

which I take to be drawn from Normal(µ, ρ20). Find my posterior distribution for µ, taking σ0,
µ0, and ρ0 as known. Hint. The posterior distribution is also Normal, you just have to find the
parameters.

The keywords prior and posterior tell you this is about Bayesian inference. The important thing is to
write down the correct prior density, data density, and posterior density.

When you have written the posterior density for µ, remember: you want to simplify this expression
as a function of µ, and you don’t care about constant factors that don’t involve µ. You should end up
with exp(quadratic in µ), and you should try to simplify the quadratic.

The answer is surprisingly simple and interpretable: the posterior mean is Aµ0 + (1 − A)x̄ where x̄ is
the mean of the sample and A depends on the variances and on n. In other words, we shift our belief
from µ0 to something closer to the mean of the observed data.

Question 3. I have a coin, which might be biased. I toss it n times and get x heads. To reflect
my uncertainty about possible bias, my prior belief is that either the coin is unbiased (with
prior probability 1 − π); or it is biased (with prior probability π) in which case the probability
of heads is Θ ∼ Beta(δ, δ) with δ = 1. The probability of seeing x heads is thus Useful fact: the

Beta(α, β) distribution
has density

f (x) = κxα−1(1 − x)β−1

where κ is(
α+ β − 2

α − 1

)
(α+ β − 1)

Pr(x | m, θ) =
(

n
x
)θx(1 − θ)n−x if m = biased

(nx)(
1/2)x(1 − 1/2)n−x if m = unbiased
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where m indicates which of the two possibilities is true, and my prior is

Pr(m, θ) ∝ π1[m=biased](1 − π)1[m=unbiased]θδ−1(1 − θ)δ−1

1[A] is another way to
write the indicator
function 1A

(a) Find the posterior distribution of (M,Θ) given the data.
(b) Find P(M = unbiased | x), i.e. the posterior probability that the coin is unbiased.
(c) What is the posterior predictive probability that the next coin toss will be heads?
The discussion in section 3.3.3 may be helpful.

The keywords prior and posterior tell you this is a question about Bayesian inference. The setup is
long and convoluted, but part (a) is exactly like every other Bayesian question: write down the prior
Pr(m, θ), write down the density Pr(x | m, θ), and multiply them together (with a constant factor) to
get the posterior Pr(m, θ | x). It’s up to you whether to write the cases out longhand (as I did for
Pr(x | m, θ)) or to use the indicator function notation (as I did for Pr(m, θ)). I use the longhand
notation myself, except for situations where it gets too cumbersome.

Part (b) is about nuisance parameters as in page 35 of lecture notes. You’ve found Pr(m, θ | x), and
you want Pr(m | x), so integrate out θ to get the marginal distribution of m.

Part (c) is about posterior predictive probabilities, and it is the same style of calculation as on page 35
of lecture notes, using the law of total probability. Integrate out the parameters (m, θ) — or, to be
precise, sum over m since it’s discrete, and integrate over θ since it’s continuous.

Question 4. We are given a dataset x1, . . . , xn which we believe is drawn from Normal(µ, σ2)
where the parameters µ and σ2 are unknown.
(a) Find the maximum likelihood estimators µ̂ and σ̂.
(b) Given δ1 > 0 and δ2 > 0, give pseudocode to compute

P
(
σ ∈ [σ̂ − δ1, σ̂ + δ2]

)
using parametric resampling, and also using non-parametric resampling.

(c) Give pseudocode to compute a 95% confidence interval for σ.

The keyword resampling tells you this is a question about frequentist inference.

For part (b), the first thing to ask yourself is: what is the random variable in this probability expression?
It’s not σ since (according to a frequentist) unknown parameters should be treated as fixed unknown
quantities, not as random variables. It’s not δ1 or δ2, since they’re given. It must be σ̂. But in what
sense is σ̂ random? The only way to make sense of this probability expression is if we view σ̂ as a
function of a random dataset,

P
(
σ ∈ [σ̂(X) − δ1, σ̂(X) + δ2]

)
where X refers to a random sample of n values, drawn from the distribution specified in the question.
This probability expression involves σ (which we don’t know), and it involves X (whose distribution
depends on µ and σ, which we don’t know), so we can’t compute it directly. You should instead use
the bootstrap resampling procedure, page 39 of lecture notes.

There are two ways to interpret (c).

• It could mean “We’ve found a maximum likelihood estimator σ̂(x), that returns an estimate of σ
given the data x; now find the spread of values we might expect to see if we re-ran the experiment
and computed σ̂ again” and you can answer this by resampling the dataset and looking at the
σ̂(X∗) you get.

• Or it could mean “In part (b) we computed the confidence level of an interval for nature’s true
unknown σ; now tune the parameters δ1 and δ2 so as to give the answer 95%”.

I think the second interpretation is more natural here, since the question said “a 95% confidence
interval for σ” rather than “a 95% confidence interval for σ̂”. There is an obvious brute force answer.
There is also a cunning algorithmic answer, for which you need to ‘unwrap’ the code you wrote for
part (b) and ask “what value of the inputs would give me the output I want?” (This is a question you
find yourself asking whenever you’re debugging—what on earth could possibly have led to the answer
it’s showing me?)
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Question 5. I have a coin which might be biased. I toss it n times and get X heads where
X ∼ Binom(n, θ) and θ is unknown.
(a) Show that the maximum likelihood estimator for θ given X is θ̂ = X/n.
(b) Find functions lo and hi such that P

(
θ̂ ≥ lo(θ) and θ̂ ≤ hi(θ)

)
≈ 0.95.

(c) Rearrange your answer to (b) to give an approximate 95% confidence interval for θ in
terms of θ̂. A pseudocode answer is easier than an algebraic answer.

The hint in part (b) is the ≈ sign: we’re looking for an approximate 95% confidence interval, so look
at the rule of thumb for approximate confidence intervals on page 19 of lecture notes.

For part (c), I really do want you to just rearrange your answer. Don’t do any clever data science or
probability, just rewrite the expression as θ ∈ [. . . , . . . ].

The point of this question is that it gives you a confidence interval, without having to go via the
resampling / bootstrap route. It’s a useful trick for fast code.

Question 6. A common task in data processing is counting the number of unique items in
a collection. When the collection is too large to hold in memory, we may wish to use fast
approximation methods, such as the following: Given a collection of items A1, A2, . . . , compute
the hash of each item X1 = h(A1), X2 = h(A2), . . . , then compute

T = max
1≤i≤n

Xi .

If the hash function is well designed, then each Xi can be treated as uniformly distributed in
[0, 1], and unequal items will yield independent Xi.
(a) Show that P(T ≤ t) = tm, where m is the number of unique items in the collection. Find

the density function for T .
(b) Find the maximum likelihood estimator for m.
(c) Explain how to use the resampling method to find a confidence interval for m.

The keyword resampling tells you this is a question about frequentist inference.

There are two challenges in part (c). First challenge: what is it actually asking for? As in question 4,
is it asking for a confidence interval for the maximum likelihood estimator m̂, i.e. for numbers lo and
hi such that

P(m̂(X) ∈ [lo, hi]) ≈ 95%?

Or is it asking for a confidence interval for the true unknown parameter m, i.e. for an output procedure
i.e. an interval

P(m ∈ [lo(X), hi(X)]) ≈ 95%?

(In this case, lo and hi have to be random variables, i.e. functions of the data X , since there needs to
be something random for this probability expression to make sense.) I meant the latter.

Next, what functions lo(X) and hi(X) should you use? It’s up to you to invent whatever interval you
like. Have a look at the example page 37 for a suggestion.

From here on, it’s a straightforward application of bootstrap resampling... except for the very subtle
question of how to resample. Here’s one way to think about resampling. The dataset consists of
n values in [0, 1], coming from m distinct Uniform[0, 1] random variables plus n − m repeats. The
unknown parameter in this statement is m. What is the parametric-resampling way to deal with
unknown parameters?

Question 7. I have built a text sentiment analyzer, and I hope to prove it is better than the
state of the art analyzer. I ran them both on a validation set of documents, and obtained a
collection of values xi ∈ {–, 0,+}, 1 ≤ i ≤ n, where + means that mine did better, – means that
mine did worse, and 0 means that both did just as well.
(a) For the model Pr(–) = Pr(+) = q/2, Pr(0) = 1−q, find the maximum likelihood estimate

for q.
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(b) Let n0 be the number of cases where xi = 0, and similarly n– and n+. Consider the test
statistic t = n+ + n0/2. Explain how to use resampling to find the distribution of t under
the hypothesis that both analyzers are equally good. Give pseudocode for a hypothesis
test.

(c) Let the alternative hypothesis be that my analyzer is better. Find a test statistic for
comparing the two hypotheses, based on likelihood ratio. Likelihood ratio is defined on
page 44 of the notes.

The keyword hypothesis test tells you that this question is about pages 43–44 from lecture notes. The
actual problem is taken from Machine Learning and Real World Data, where you were asked to conduct
the so-called sign test, which uses exactly the test statistic from part (b).

The general mechanism of a hypothesis test is always exactly the same, laid out on page 43 of lecture
notes. There are three places that call for creativity:

• What test statistic should I use? (In general this is entirely up to you. In this case, the question
tells you.)

• How do I resample the data? In other words, assuming that H0 is true, what would I expect to
see if I re-ran the experiment? Part (a) is a hint, about how you might do parametric resampling.

• Should I do a one-sided or two-sided test? In other words, if H0 isn’t true, then what would I
expect the test statistic to return—will it always be large positive, or can it be both large positive
and large negative?

Part (c) is about likelihood ratio tests, which are described in lecture notes but which weren’t covered
in lectures (and which are non-examinable). It’s a good way to invent a test statistic, if you have
no other ideas. Let Pr(–) = p1, Pr(+) = p2, Pr(0) = 1 − p1 − p2, and let lik(p1, p2 | data) be the
likelihood function. The null hypothesis is that p1 = p2 and the alternative hypothesis is p1 < p2, so
the likelihood ratio is

maxq lik(q/2, q/2 | data)
maxp1,p2 : p1<p2 lik(p1, p2 | data) .

The calculus is a bit fiddly, but the eventual answer is intuitively sensible.

Compare this question to what you did (or will do) in IA/IB Machine Learning and Real World Data.
(i) What test statistic should you use? It’s up to you to invent whatever you like. It’s not handed
down to you from above. The test statistic “score 0.5 for each case where the two sentiment analyzers
agree” isn’t a kludge, it’s an arbitrary choice, and any arbitrary choice is acceptable. (ii) How do you
actually do the test? The method used in MLRD is a kludge, and now that you know resampling you
know how to do the test properly.

Question 8. Suppose we have a dataset x1, . . . , xn and we want to fit a distribution to it, so
that we can generate new values. One way to measure the goodness of fit is the perplexity
score,

log perplexity = −E log Pr(X)

where X is a new value and Pr denotes the probability density for the fitted distribution. (Lower
step functionperplexity is better. If we wanted to choose between fitting a Normal distribution and fitting

an Exponential distribution, for example, we’d choose whichever has lowest perplexity.) But
we don’t know the distribution of X — that’s why we’re trying to fit a distribution in the first
place — so instead we can approximate the perplexity by

cts interpolation

log perplexity ≈ −1
n

n∑
i=1

log Pr[−i](xi)

where Pr[−i] denotes the distribution fitted to the dataset with xi omitted. This is called
leave-one-out cross validation, and is discussed in section 3.3.2 of lecture notes.

Given the dataset [3.1, 4.2, 7.8, 10.0], which version of the empirical distribution is better:
the step function or the continuous interpolation?

This question is very sophisticated. It’s research level, not undergraduate level! Nonetheless, the
answer is very short, and it doesn’t actually need any maths or any coding.
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What’s the probability density function Pr(x) for the step function distribution? It’s 0 for almost all
x, since the step function is flat almost everywhere. Technically, log Pr(x) is undefined, but it’s more
useful to take the limit as Pr(x) → 0 and say log Pr(x) = −∞ for almost all x. This is enough to let
you decide which of the two versions of the empirical distribution function is better.

I think the answer is fascinating. What features of the data come into play in the answer? Can you
invent a dataset where the step function is better, and another dataset where the continuous version
is better?

Question 9. An engineer friend tells you “Bayesianism is the Apple of inference. You just
work out the posterior, and everything Just Works™, and you don’t need to worry about
irritating things like confounded variables.” What do you think? Illustrate your answer with The maximum a

posteriori (MAP)
estimate is the
parameter value that
maximimizes the
posterior density.

reference to a random sample drawn from X ∼ Normal(µ+ ν, σ2) where µ and ν are unknown
parameters. What is the maximum a posteriori estimate of (µ, ν) when the sample is large?

The keyword confounded variables tells you that this question relates to page 54 of notes (only covered
in the lecture on 2018-10-29). The keyword Bayesian says it’s related to Bayesianism, page 33. This
question requires you to make a novel connection between two separate parts of notes.

The question suggests a probability model, X ∼ Normal(µ + ν, σ2), where µ and ν are unknown
parameters. Start by analyzing this model in the Bayesian manner: invent a prior distribution for
the unknown parameters, write out the density for a sample (X1, X2, . . . , Xn) drawn from the specified
distribution, then find the posterior distribution. Question 2 is useful here.

Next, think about confounded variables as we discussed them on page 54 of lecture notes. When
variables are confounded, we can’t learn their values by maximum likelihood estimation. But then—
how come the Bayesian says “I know the posterior distribution of (µ, ν)” but the machine learner
(maximum likelihood estimation) says “I can’t estimate (µ, ν)”?

The question tells you to compute the Bayesian maximum a posteriori estimates, and explains what
this means. The answer is messy, but if you take the limit as n → ∞ it simplifies into something that
gives insight into the difference between Bayesian and MLE.

Question 10. You have two coins from the same mint. You believe that the coins might
be biased, and that they are likely to have similar bias, but you don’t know what that bias
might be. Invent a Bayesian prior distribution for (θ1, θ2) that expresses this belief, where
θ1 and θ2 are the two bias parameters. Your distribution should have the property that any
(θ1, θ2) ∈ [0, 1]2 is possible, but that small |θ1− θ2 | are more likely. A good way to visualize your
distribution is to generate samples and show a scatterplot, using low opacity for the points.

There are many ways to answer this. Try to answer it using the trick from page 56 of lecture notes, the
softmax/logit function, which maps R → [0, 1]. How could you program a random number generator
to produce a pair (X1, X2) ∈ R2, such that any point in R2 is possible but |X1 − X2 | ≈ 0 is more likely?
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