
Example sheet 2
Inference

Foundations of Data Science—DJW—2018/2019

This example sheet covers material up to Lecture 7 on 22 October. Questions 1(d), 3, 7(c), 8,
and 9 are conceptually challenging. Questions 5(c) and 9 are mathematically involved.

Question 1. I sample X1, . . . , Xn from Uniform[0, θ]. The parameter θ is unknown, and I shall
use Θ ∼ Pareto(θm, α) as my prior, where θm > 0 and α > 1 are known:

P(Θ > θ) =
(θ/θm)

−α if θ ≥ θm
1 if θ < θm.

(a) What is the prior density of Θ?
(b) Find the posterior distribution for Θ.
(c) Find a 95% posterior confidence interval for Θ.
(d) Find a different 95% posterior confidence interval. Which is better? Why?

Question 2. I start with a prior belief that µ ∼ Normal(µ0, σ0)
2. I then observe x1, . . . , xn,

which I take to be drawn from Normal(µ, ρ20). Find my posterior distribution for µ, taking σ0,
µ0, and ρ0 as known. Hint. The posterior distribution is also Normal, you just have to find the
parameters.

Question 3. I have a coin, which might be biased. I toss it n times and get x heads. To reflect
my uncertainty about possible bias, my prior belief is that either the coin is unbiased (with
prior probability 1 − π); or it is biased (with prior probability π) in which case the probability
of heads is Θ ∼ Beta(δ, δ) with δ = 1. The probability of seeing x heads is thus Useful fact: the

Beta(α, β) distribution
has density

f (x) = κxα−1(1 − x)β−1

where κ is(
α+ β − 2

α − 1

)
(α+ β − 1)

Pr(x | m, θ) =
(

n
x
)θx(1 − θ)n−x if m = biased

(nx)(
1/2)x(1 − 1/2)n−x if m = unbiased

where m indicates which of the two possibilities is true, and my prior is

Pr(m, θ) ∝ π1[m=biased](1 − π)1[m=unbiased]θδ−1(1 − θ)δ−1

1[A] is another way to
write the indicator
function 1A

(a) Find the posterior distribution of (M,Θ) given the data.
(b) Find P(M = unbiased | x), i.e. the posterior probability that the coin is unbiased.
(c) What is the posterior predictive probability that the next coin toss will be heads?
The discussion in section 3.3.3 may be helpful.

Question 4. We are given a dataset x1, . . . , xn which we believe is drawn from Normal(µ, σ2)
where the parameters µ and σ2 are unknown.
(a) Find the maximum likelihood estimators µ̂ and σ̂.
(b) Given δ1 > 0 and δ2 > 0, give pseudocode to compute

P
(
σ ∈ [σ̂ − δ1, σ̂ + δ2]

)
using parametric resampling, and also using non-parametric resampling.

(c) Give pseudocode to compute a 95% confidence interval for σ.

Question 5. I have a coin which might be biased. I toss it n times and get X heads where
X ∼ Binom(n, θ) and θ is unknown.
(a) Show that the maximum likelihood estimator for θ given X is θ̂ = X/n.
(b) Find functions lo and hi such that P

(
θ̂ ≥ lo(θ) and θ̂ ≤ hi(θ)

)
≈ 0.95.

(c) Rearrange your answer to (b) to give an approximate 95% confidence interval for θ in
terms of θ̂. A pseudocode answer is easier than an algebraic answer.
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Question 6. A common task in data processing is counting the number of unique items in
a collection. When the collection is too large to hold in memory, we may wish to use fast
approximation methods, such as the following: Given a collection of items A1, A2, . . . , compute
the hash of each item X1 = h(A1), X2 = h(A2), . . . , then compute

T = max
1≤i≤n

Xi .

If the hash function is well designed, then each Xi can be treated as uniformly distributed in
[0, 1], and unequal items will yield independent Xi.
(a) Show that P(T ≤ t) = tm, where m is the number of unique items in the collection. Find

the density function for T .
(b) Find the maximum likelihood estimator for m.
(c) Explain how to use the resampling method to find a confidence interval for m.

Question 7. I have built a text sentiment analyzer, and I hope to prove it is better than the
state of the art analyzer. I ran them both on a validation set of documents, and obtained a
collection of values xi ∈ {–, 0,+}, 1 ≤ i ≤ n, where + means that mine did better, – means that
mine did worse, and 0 means that both did just as well.
(a) For the model Pr(–) = Pr(+) = q/2, Pr(0) = 1−q, find the maximum likelihood estimate

for q.
(b) Let n0 be the number of cases where xi = 0, and similarly n– and n+. Consider the test

statistic t = n+ + n0/2. Explain how to use resampling to find the distribution of t under
the hypothesis that both analyzers are equally good. Give pseudocode for a hypothesis
test.

(c) Let the alternative hypothesis be that my analyzer is better. Find a test statistic for
comparing the two hypotheses, based on likelihood ratio. Likelihood ratio is defined on
page 44 of the notes.

Question 8. Suppose we have a dataset x1, . . . , xn and we want to fit a distribution to it, so
that we can generate new values. One way to measure the goodness of fit is the perplexity
score,

log perplexity = −E log Pr(X)

where X is a new value and Pr denotes the probability density for the fitted distribution. (Lower
step functionperplexity is better. If we wanted to choose between fitting a Normal distribution and fitting

an Exponential distribution, for example, we’d choose whichever has lowest perplexity.) But
we don’t know the distribution of X — that’s why we’re trying to fit a distribution in the first
place — so instead we can approximate the perplexity by

cts interpolation

log perplexity ≈ −1
n

n∑
i=1

log Pr[−i](xi)

where Pr[−i] denotes the distribution fitted to the dataset with xi omitted. This is called
leave-one-out cross validation, and is discussed in section 3.3.2 of lecture notes.

Given the dataset [3.1, 4.2, 7.8, 10.0], which version of the empirical distribution is better:
the step function or the continuous interpolation?

Question 9. An engineer friend tells you “Bayesianism is the Apple of inference. You just
work out the posterior, and everything Just Works™, and you don’t need to worry about
irritating things like confounded variables.” What do you think? Illustrate your answer with The maximum a

posteriori (MAP)
estimate is the
parameter value that
maximimizes the
posterior density.

reference to a random sample drawn from X ∼ Normal(µ+ ν, σ2) where µ and ν are unknown
parameters. What is the maximum a posteriori estimate of (µ, ν) when the sample is large?

Question 10. You have two coins from the same mint. You believe that the coins might
be biased, and that they are likely to have similar bias, but you don’t know what that bias
might be. Invent a Bayesian prior distribution for (θ1, θ2) that expresses this belief, where
θ1 and θ2 are the two bias parameters. Your distribution should have the property that any
(θ1, θ2) ∈ [0, 1]2 is possible, but that small |θ1− θ2 | are more likely. A good way to visualize your
distribution is to generate samples and show a scatterplot, using low opacity for the points.
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