V. Approx. Algorithms: Travelling Salesman Problem

Thomas Sauerwald

Outline

Introduction

General TSP

Metric TSP

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer $\operatorname{cost} c(u, v)$ for each edge $(u, v) \in E$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

$3+2+1+3=9$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

$2+4+1+1=8$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!

$2+4+1+1=8$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

$2+4+1+1=8$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

$$
2+4+1+1=8
$$

Special Instances

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

$2+4+1+1=8$

Special Instances

- Metric TSP: costs satisfy triangle inequality:

$$
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w)
$$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

$2+4+1+1=8$

Special Instances

- Metric TSP: costs satisfy triangle inequality:

$$
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w)
$$

- Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

$2+4+1+1=8$

Special Instances

- Metric TSP: costs satisfy triangle inequality: $\left\{\begin{array}{l}\text { Even this version is } \\ \text { NP hard (Ex. 35.2-2) }\end{array}\right.$

$$
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w)
$$

- Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable $x(u, v)=1$ iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

Outline

Introduction

General TSP

Metric TSP

Hardness of Approximation

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Hardness of Approximation

> If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Hardness of Approximation

Theorem 35.3
If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Hardness of Approximation

Theorem 35.3
If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem

Hardness of Approximation

Theorem 35.3

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
G^{\prime}=\left(V, E^{\prime}\right)
$$

Hardness of Approximation

Theorem 35.3

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

$G=(V, E)$

$$
G^{\prime}=\left(V, E^{\prime}\right)
$$

Hardness of Approximation

Theorem 35.3

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)=\left\{\begin{array}{ll}
1 & \text { if }(u, v) \in E, \\
\rho|V|+1 & \text { otherwise. }
\end{array} \begin{array}{l}
\text { Large weight will render } \\
\text { this edge useless! }
\end{array}\right.
$$

$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$

Hardness of Approximation

Theorem 35.3

If $\mathrm{P} \neq \mathrm{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,
$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,
$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,
$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,
$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,
$G=(V, E)$

$$
1 \quad G^{\prime}=\left(V, E^{\prime}\right)
$$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$
\Rightarrow \quad c(T) \geq(\rho|V|+1)+(|V|-1)
$$

$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$
\Rightarrow \quad c(T) \geq(\rho|V|+1)+(|V|-1)=(\rho+1)|V| .
$$

$G=(V, E)$

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$
\Rightarrow \quad c(T) \geq(\rho|V|+1)+(|V|-1)=(\rho+1)|V| .
$$

- Gap of $\rho+1$ between tours which are using only edges in G and those which don't

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$
\Rightarrow \quad c(T) \geq(\rho|V|+1)+(|V|-1)=(\rho+1)|V| .
$$

- Gap of $\rho+1$ between tours which are using only edges in G and those which don't
- ρ-Approximation of TSP in G^{\prime} computes hamiltonian cycle in G (if one exists)

Hardness of Approximation

Theorem 35.3

If $P \neq N P$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

Proof:

- Let $G=(V, E)$ be an instance of the hamiltonian-cycle problem
- Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph with costs for each $(u, v) \in E^{\prime}$:

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If G has a hamiltonian cycle H, then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$
\Rightarrow \quad c(T) \geq(\rho|V|+1)+(|V|-1)=(\rho+1)|V| .
$$

- Gap of $\rho+1$ between tours which are using only edges in G and those which don't - ρ-Approximation of TSP in G^{\prime} computes hamiltonian cycle in G (if one exists)

Proof of Theorem 35.3 from a higher perspective

instances of Hamilton

instances of TSP

Proof of Theorem 35.3 from a higher perspective

instances of Hamilton

instances of TSP

Proof of Theorem 35.3 from a higher perspective

instances of Hamilton

instances of TSP

Proof of Theorem 35.3 from a higher perspective

instances of Hamilton

instances of TSP

Proof of Theorem 35.3 from a higher perspective

instances of Hamilton

instances of TSP

Proof of Theorem 35.3 from a higher perspective

Proof of Theorem 35.3 from a higher perspective

Outline

Introduction

General TSP

Metric TSP

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Approx-Tsp-TOUR(G, c)
1: select a vertex $r \in G . V$ to be a "root" vertex
2: compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM (G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: \quad in a preorder walk of $T_{\text {min }}$
6: return the hamiltonian cycle H

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Approx-Tsp-TOUR(G, c)
1: select a vertex $r \in G . V$ to be a "root" vertex
2: compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM (G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: \quad in a preorder walk of $T_{\text {min }}$
6: return the hamiltonian cycle H
Runtime is dominated by MST-PRIM, which is $\Theta\left(V^{2}\right)$.

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Approx-Tsp-TOUR(G, c)
1: select a vertex $r \in G . V$ to be a "root" vertex
2: compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM (G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: \quad in a preorder walk of $T_{\text {min }}$
6: return the hamiltonian cycle H
Runtime is dominated by MST-PRIM, which is $\Theta\left(V^{2}\right)$.

Remember: In the Metric-TSP problem, G is a complete graph.

Run of Approx-Tsp-Tour

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }}$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }}$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\min } \checkmark$
2. Perform preorder walk on MST $T_{\text {min }}$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\min } \checkmark$
2. Perform preorder walk on MST $T_{\min } \checkmark$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\min } \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Approximate Solution: Objective 921

Optimal Solution: Objective 699

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

solution H of Approx-Tsp

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge

solution H of Approx-Tsp

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge

solution H of Approx-Tsp spanning tree T as a subset of H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and

solution H of Approx-Tsp spanning tree T as a subset of H^{*}

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$

solution H of Approx-Tsp

spanning tree T as a subset of H^{*}

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)

solution H of ApPROX-TSP

optimal solution H^{*}

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)

minimum spanning tree $T_{\text {min }}$

optimal solution H^{*}

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right)
$$

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\text {min }}\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Walk $W=(a, b, c, \nprec, h, \nprec, \notin, d, e, f, \notin, g, \notin, \not \subset, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Tour $H=(a, b, c, h, d, e, f, g, a)$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\text {min }}\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\text {min }}\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W)
$$

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W) \leq 2 c\left(H^{*}\right)
$$

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W) \leq 2 c\left(H^{*}\right)
$$

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W) \leq 2 c\left(H^{*}\right)
$$

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Christofides Algorithm
Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Christofides Algorithm
—— Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Christofides Algorithm

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Christofides(G, c)
: select a vertex $r \in G . V$ to be a "root" vertex
compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching $M_{\text {min }}$ with minimum weight in the complete graph
5: \quad over the odd-degree vertices in $T_{\text {min }}$
6: let H be a list of vertices, ordered according to when they are first visited
7: \quad in a Eulearian circuit of $T_{\text {min }} \cup M_{\text {min }}$
: return the hamiltonian cycle H

Christofides Algorithm

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Christofides(G, c)

: select a vertex $r \in G . V$ to be a "root" vertex
compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching $M_{\text {min }}$ with minimum weight in the complete graph
5: \quad over the odd-degree vertices in $T_{\text {min }}$
6: let H be a list of vertices, ordered according to when they are first visited
: \quad in a Eulearian circuit of $T_{\text {min }} \cup M_{\text {min }}$
return the hamiltonian cycle H
Theorem (Christofides'76)
There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Run of Christofides

Run of Christofides

1. Compute MST $T_{\text {min }}$

Run of Christofides

1. Compute MST $T_{\text {min }}$

Run of Christofides

1. Compute MST $T_{\min } \checkmark$

Run of Christofides

1. Compute MST $T_{\text {min }} \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\text {min }}$

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\text {min }}$

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\text {min }}$

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\text {min }}$

Run of Christofides

1. Compute MST $T_{\text {min }} \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$

Run of Christofides

1. Compute MST $T_{\text {min }} \checkmark$
2. Add a minimum-weight perfect matching $M_{\min }$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\text {min }} \cup M_{\text {min }}$

All vertices in $T_{\text {min }} \cup M_{\text {min }}$ have even degree!

Run of Christofides

1. Compute MST $T_{\text {min }} \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\text {min }} \cup M_{\text {min }} \checkmark$

All vertices in $T_{\text {min }} \cup M_{\text {min }}$ have even degree!

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\min } \cup M_{\min } \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\min } \cup M_{\min } \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\min } \cup M_{\min } \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\min } \cup M_{\min } \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\min } \cup M_{\min } \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\min } \cup M_{\min } \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\text {min }} \cup M_{\text {min }} \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\min } \cup M_{\min } \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\text {min }} \cup M_{\text {min }} \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\text {min }} \cup M_{\text {min }} \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle

Run of Christofides

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\text {min }}$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\text {min }} \cup M_{\text {min }} \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle \checkmark

Run of Christofides

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST $T_{\min } \checkmark$
2. Add a minimum-weight perfect matching $M_{\min }$ of the odd vertices in $T_{\min } \checkmark$
3. Find an Eulerian Circuit in $T_{\text {min }} \cup M_{\text {min }} \checkmark$
4. Transform the Circuit into a Hamiltonian Cycle \checkmark

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio): Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):
 Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):
 Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

$$
\begin{equation*}
c(W)=c\left(T_{\min }\right)+c\left(M_{\min }\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
$$

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

$$
\begin{equation*}
c(W)=c\left(T_{\min }\right)+c\left(M_{\min }\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
$$

- Let $H_{o d d}^{*}$ be an optimal tour on the odd-degree vertices in $T_{\text {min }}$

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

$$
\begin{equation*}
c(W)=c\left(T_{\text {min }}\right)+c\left(M_{\text {min }}\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
$$

- Let $H_{o d d}^{*}$ be an optimal tour on the odd-degree vertices in $T_{\text {min }}$
- Taking edges alternately, we obtain two matchings M_{1} and M_{2} such that $c\left(M_{1}\right)+c\left(M_{2}\right)=c\left(H_{o d d}^{*}\right)$

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

$$
\begin{equation*}
c(W)=c\left(T_{\min }\right)+c\left(M_{\min }\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
$$

- Let $H_{o d d}^{*}$ be an optimal tour on the odd-degree vertices in $T_{\text {min }}$
- Taking edges alternately, we obtain two matchings M_{1} and M_{2} such that $c\left(M_{1}\right)+c\left(M_{2}\right)=c\left(H_{o d d}^{*}\right)$
- By shortcutting and the triangle inequality,

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

$$
\begin{equation*}
c(W)=c\left(T_{\text {min }}\right)+c\left(M_{\text {min }}\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
$$

- Let $H_{o d d}^{*}$ be an optimal tour on the odd-degree vertices in $T_{\text {min }}$
- Taking edges alternately, we obtain two matchings M_{1} and M_{2} such that $c\left(M_{1}\right)+c\left(M_{2}\right)=c\left(H_{o d d}^{*}\right)$
- By shortcutting and the triangle inequality,

$$
\begin{equation*}
c\left(M_{\min }\right) \leq \frac{1}{2} c\left(H_{o d d}{ }^{*}\right) \leq \frac{1}{2} c\left(H^{*}\right) \tag{2}
\end{equation*}
$$

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

$$
\begin{equation*}
c(W)=c\left(T_{\text {min }}\right)+c\left(M_{\text {min }}\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
$$

- Let $H_{o d d}^{*}$ be an optimal tour on the odd-degree vertices in $T_{\text {min }}$
- Taking edges alternately, we obtain two matchings M_{1} and M_{2} such that $c\left(M_{1}\right)+c\left(M_{2}\right)=c\left(H_{o d d}^{*}\right)$
- By shortcutting and the triangle inequality,

$$
\begin{equation*}
c\left(M_{\min }\right) \leq \frac{1}{2} c\left(H_{o d d}{ }^{*}\right) \leq \frac{1}{2} c\left(H^{*}\right) \tag{2}
\end{equation*}
$$

- Combining 1 with 2 yields

Proof of the Approximation Ratio

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree $T_{\text {min }}$ and the minimum-weight matching $M_{\text {min }}$ exactly once:

$$
\begin{equation*}
c(W)=c\left(T_{\min }\right)+c\left(M_{\min }\right) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \tag{1}
\end{equation*}
$$

- Let $H_{o d d}^{*}$ be an optimal tour on the odd-degree vertices in $T_{\text {min }}$
- Taking edges alternately, we obtain two matchings M_{1} and M_{2} such that $c\left(M_{1}\right)+c\left(M_{2}\right)=c\left(H_{o d d}^{*}\right)$
- By shortcutting and the triangle inequality,

$$
\begin{equation*}
c\left(M_{\min }\right) \leq \frac{1}{2} c\left(H_{o d d}{ }^{*}\right) \leq \frac{1}{2} c\left(H^{*}\right) \tag{2}
\end{equation*}
$$

- Combining 1 with 2 yields

$$
c(W) \leq c\left(H^{*}\right)+c\left(M_{\min }\right) \leq c\left(H^{*}\right)+\frac{1}{2} c\left(H^{*}\right)=\frac{3}{2} c\left(H^{*}\right)
$$

Concluding Remarks

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Concluding Remarks

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Arora'96, Mitchell'96)
There is a PTAS for the Euclidean TSP Problem.

Concluding Remarks

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)
There is a PTAS for the Euclidean TSP Problem.

Concluding Remarks

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010
Theorem (Arora'96, Mitchell'96)
There is a PTAS for the Euclidean TSP Problem.
"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

Concluding Remarks

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.
"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

