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TSP

Travelling Salesman Problem (http://xkcd.com/399/)
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Aside: Held–Karp algorithm

I Use a dynamic programming approach. Main idea: solve
the slightly simpler problem of the shortest path visiting all
nodes, then route the end to the beginning.

I Assume (wlog) that the path starts from node 1. Given a
node x and set of nodes S with 1 ∈ S, maintain the solution
dp(x , S) as the shortest path length starting from 1, visiting
all nodes in S, and ending in x.

I Base case: dp (1, {1}) � 0.

I Recurrence relation:

dp(x , S) �
min

y∈S

{
dp

(
y , S \ {x}

)
+ cyx

}
x ∈ S ∧ 1 ∈ S

+∞ otherwise
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TSP

Aside: Held–Karp algorithm

I Finally, dp(x ,V) will give the shortest path visiting all
nodes, starting in 1 and ending in x.

I Now the optimum TSP length is simply:

min
x∈V

{
dp(x ,V) + cx1

}
The cycle itself can be extracted by backtracking.

I The set S can be efficiently maintained as an n-bit number,
with the i-th bit indicating whether or not the i-th node is in
S.

I Complexity: O(n22n) time, O(n2n) space.
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TSP

LP formulation

I We will be using indicator variables xi j, which should be
set to 1 if the edge i ↔ j is included in the optimum cycle,
and 0 otherwise. To avoid duplication, we impose i > j.

I An adequate linear program is as follows:

minimise
∑n

i�1
∑i−1

j�1 ci j xi j

subject to
∀i. 1 ≤ i ≤ n

∑
j<i xi j +

∑
j>i x ji � 2

∀i , j. 1 ≤ j < i ≤ n xi j ≤ 1
∀i , j. 1 ≤ j < i ≤ n xi j ≥ 0

I This is intentionally an incompletely specified problem:
I We allow for subcycles in the returned path.
I We allow for “partially used edges” (0 < xi j < 1) – this LP

approximates an integer program.
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LP solution

I If the Simplex algorithm finds a correct cycle (with no
subcycles or partially used edges) on the underspecified
LP instance, then we have successfully solved the
problem!

I Otherwise, we need to resort to further specifying the
problem by adding additional constraints (manually or
automatically).
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Further constraints: subcycles

I If the returned solution contains a subcycle, we may
eliminate it by adding an explicit constraint against it, and
then attempt solving the LP again.

I For a subcycle containing nodes from a set S ⊂ V, we may
demand at least two edges between S and V \ S:∑

i∈S
j∈V\S

xmax(i , j),min(i , j) ≥ 2

I We will not add all of these contraints – why?

I We often don’t need to add all the constraints in order to
reach a valid solution.
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Further constraints: partially used edges

I If the returned solution contains a partially used edge, we
may attempt a branch&bound strategy on it.

I For a partially used edge a ↔ b, we initially add a
constraint xab � 1, and continue solving the LP.

I Once a valid solution has been found, we remove all the
constraints added since then, add a new constraint xab � 0,
and solve the LP again.

I We may stop searching a branch if we reach a worse
objective value than the best valid solution found so far.

I The optimum solution is the better out of the two obtained
solutions! If we choose the edges wisely, we may often
obtain a valid solution in a complexity much better than
exponential.
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Demo: abstract

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN 
PROBLEM* 

G. DANTZIG, R. FULKERSON, AND S. JOHNSON 
The Rand Corporation, Santa Monica, California 

(Received August 9, 1954) 

It is shown that a certain tour of 49 cities, one in each of the 48 states and 
Washington, D. C., has the shortest road distance. 

THE TRAVELING-SALESMAN PROBLEM might be described as 
follows: Find the shortest route (tour) for a salesman starting from a 

given city, visiting each of a specified group of cities, and then returning to 
the original point of departure. More generally, given an n by n sym- 
metric matrix D= (d1i), where doi represents the 'distance' from I to J, 
arrange the points in a cyclic order in such a way that the sum of the d1j 
between consecutive points is minimal. Since there are only a finite 
number of possibilities (at most (n - 1)!) to consider, the problem is 
to devise a method of picking out the optimal arrangement which is 
reasonably efficient for fairly large values of n. Although algorithms have 
been devised for problems of similar nature, e.g., the optimal assignment 
problem,3"78 little is known about the traveling-salesman problem. We 
do not claim that this note alters the situation very much; what we shall do 
is outline a way of approaching the problem that sometimes, at least, en- 
ables one to find an optimal path and prove it so. In particular, it will be 
shown that a certain arrangement of 49 cities, one in each of the 48 states 
and Washington, D. C., is best, the djj used representing road distances as 
taken from an atlas. 

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It 
appears to have been discussed informally among mathematicians at mathematics 
meetings for many years. Surprisingly little in the way of results has appeared in 
the mathematical literature.10 It may be that the minimal-distance tour problem 
was stimulated by the so-called Hamiltonian game' which is concerned with finding 
the number of different tours possible over a specified network. The latter problem 
is cited by some as the origin of group theory and has some connections with the 
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be 
credited with stimulating interest in the traveling-salesman problem in many quar- 
ters. As early as 1937, he tried to obtain near optimal solutions in reference to 
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re- 
call that they heard about the problem first in a seminar talk by Hassler Whitney 
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall 
the problem). The relations between the traveling-salesman problem and the 
transportation problem of linear programming appear to have been first explored by 
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and 
H. Kuhn.4 5'6 

393 

Exactly solving TSP using the Simplex algorithm Andrej Ivašković, Thomas Sauerwald
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Demo: nodes

Now we will make advantage of these techniques to solve the
TSP problem for 42 cities in the USA—using the Held-Karp
algorithm would require ∼ 4 hours (and unreasonable amounts
of memory)!
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Demo: adjacency matrix
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Demo: final solution
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Demo: materials

I The full implementation of this TSP solver in C++ (along
with all the necessary files to perform this demo) may be
found at:
https://github.com/PetarV-/Simplex-TSP-Solver

I Methods similar to these have been successfully applied
for solving far larger TSP instances. For example:
http://www.math.uwaterloo.ca/tsp/
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