## Addendum

Theorem. If a linear program (in slack form) has an optimum solution, one of them occurs at a vertex.

Proof. First, we will slightly rearrange the slack form so that it becomes a matrix-vector multiplication: $A \cdot x=b$, where $x$ has dimension $n+m$ and $A$ has dimension $n \times(n+m)$ (this also means that this matrix $A$ is slightly different from the matrix $A$ on slide 20).

Suppose now $x$ is an optimal solution that is not a vertex. That means $x$ can be written as a strict convex combination, $x=\lambda \cdot y+(1-\lambda) \cdot z$ where $y$ and $z$ are feasible and $\lambda \in(0,1)$. Since the feasible region is convex, this implies that there exists a direction $d, d \neq(0, \ldots, 0)$, such that $x+d$ and $x-d$ are both feasible solutions, i.e.,

$$
A(x+d)=b, A(x-d)=b \quad \text { and } \quad(x+d) \geqslant 0,(x-d) \geqslant 0
$$

Since $A(x+d)=b$ and $A x=b$, we have

$$
A d=0 .
$$

Next consider $c^{T} d$ (here $c$ is the original vector of coefficients of the objective function appended by $m$ zeros).

We may assume that $c^{T} d \geqslant 0$ (otherwise, we simply replace $d$ by $-d$ ). We continue by a case distinction:

- Case 1: There exists a coordinate $j \in\{1, \ldots, n+m\}$ so that $d_{j}<0$. Consider the function $\lambda \mapsto x+\lambda \cdot d$, and let $\lambda^{\prime}>0$ be the smallest value such that a new coordinate of $x+\lambda^{\prime} \cdot d$ becomes zero. We will now verify the following three properties: (i) $x+\lambda^{\prime} \cdot d$ is a feasible solution, (ii) the objective value of $x+\lambda^{\prime} \cdot d$ is at least as high as the one of $x$ and (iii) the number of zero coordinates in $x+\lambda^{\prime} \cdot d$ is at least by one higher than in $x$.
(i) First, since $A d=0$ we have $A\left(x+\lambda^{\prime} d\right)=A x+\lambda^{\prime} A d=b+0=b$. Further, since $x \geqslant 0$ and $x+d \geqslant 0$, we also have that $x+\lambda^{\prime} d \geqslant 0$ thanks to the definition of $\lambda^{\prime}$. Therefore $x+\lambda^{\prime} d$ is a feasible solution.
(ii) We have $c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\underbrace{\lambda^{\prime}}_{>0} \cdot \underbrace{c^{T} d}_{\geqslant 0} \geqslant c^{T} x$, and hence $x+\lambda^{\prime} d$ must be also an optimal solution.
(iii) By definition of $\lambda^{\prime}>0$, we know that at least one coordinate in $x+\lambda^{\prime} d$ is zero which has not been zero in $x$. We now further show that if a coordinate is zero in $x$, it remains zero in $x+\lambda^{\prime} d$. Suppose we have $x_{i}=0$ for a coordinate $i \in\{1, \ldots, m+n\}$. Since $x+d \geqslant 0$ and $x-d \geqslant 0$, we conclude that $d_{i}=0$.
- Case 2: For all $j \in\{1, \ldots, n+m\}$ we have $d_{j} \geqslant 0$. This implies that $x+\lambda \cdot d$ is feasible for any $\lambda \geqslant 0$. If we have $c^{T} d>0$, then

$$
c^{T}(x+\lambda d)=c^{T} x+\lambda \cdot \underbrace{c^{T} d}_{>0},
$$

and we obtain a better solution for any $\lambda>0$ (in fact, by letting $\lambda \rightarrow \infty$ we even conclude that there is no optimal solution).
This leaves the case $c^{T} d=0$. However, in this case we can just replace $d$ by $-d$ still satisfying $c^{T}(-d) \geqslant 0$, but also having a direction which has at least one negative coordinate (since $d \neq(0, \ldots, 0))$. Hence we can apply Case 1.

In conclusion, starting with an arbitrary optimal solution $x$ which is not a vertex, we can either replace it by another optimal solution which has one more zero coordinate (Case 1) or we obtain a contradiction to the optimality of $x$ (Case 2). Since any feasible solution has $m+n$ coordinates, it follows that after at most $m+n$ iterations, we either reach an optimal solution that is a vertex, or, we reach an optimal solution and direction where Case 2 applies, in which case we obtain a contradiction.

