II. Linear Programming

Thomas Sauerwald

Easter 2019

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Linear Programming (informal definition) _____

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

Linear Programming (informal definition) _____

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

Imagine you are a politician trying to win an election

Linear Programming (informal definition) ——

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising –

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters

Linear Programming (informal definition) ------

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising -

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you

Linear Programming (informal definition) -----

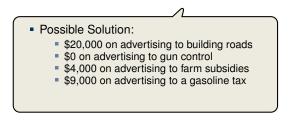
- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

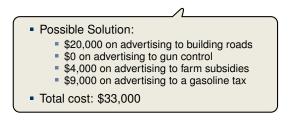
- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural	
build roads	-2	5	3	
gun control	8	2	-5	
farm subsidies	0	0	10	
gasoline tax	10	0	-2	

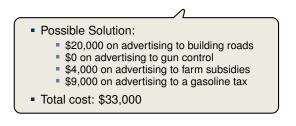


policy	urban	suburban	rural	
build roads	-2	5	3	
gun control	8	2	-5	
farm subsidies	0	0	10	
gasoline tax	10	0	-2	



policy	urban	suburban	rural	
build roads	-2	5	3	
gun control	8	2	-5	
farm subsidies	0	0	10	
gasoline tax	10	0	-2	

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.



What is the best possible strategy?

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$
- $3x_1 5x_2 + 10x_3 2x_4 \ge 25$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

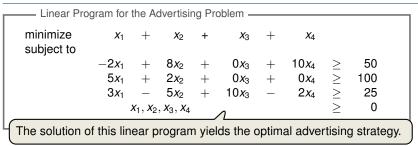
- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

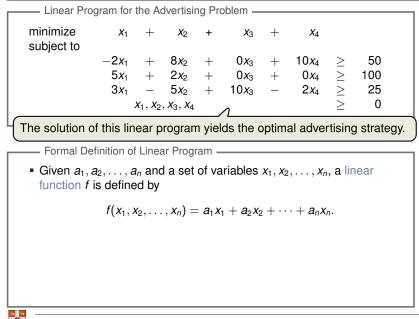
- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$
- $3x_1 5x_2 + 10x_3 2x_4 \ge 25$

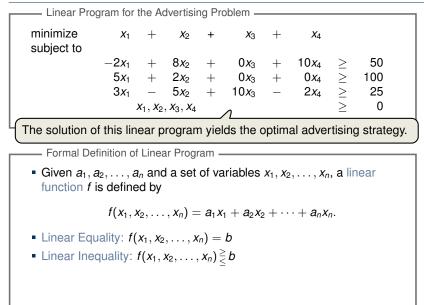
Objective: Minimize $x_1 + x_2 + x_3 + x_4$

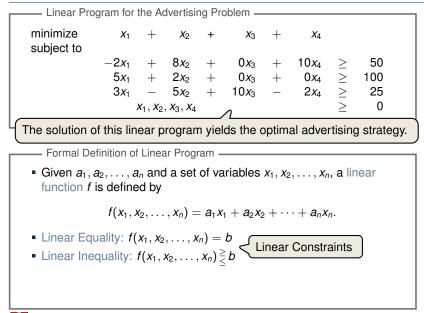
Linear Pro	ogram for	the A	dvertisi	ng Pro	oblem —					
minimize subject to	<i>X</i> ₁	+	<i>X</i> 2	+	<i>X</i> 3	+	<i>X</i> ₄			
	$-2x_{1}$	+	8 <i>x</i> ₂	+	0 <i>x</i> ₃	+	10 <i>x</i> 4	\geq	50	
	5 <i>x</i> 1	+	$2x_2$	+	0 <i>x</i> ₃	+	0 <i>x</i> ₄	\geq	100	
	3 <i>x</i> 1	_	5 <i>x</i> 2	+	10 <i>x</i> ₃	_	2 <i>x</i> ₄	\geq	25	
		x ₁ , x ₂	, x ₃ , x ₄					\geq	0	

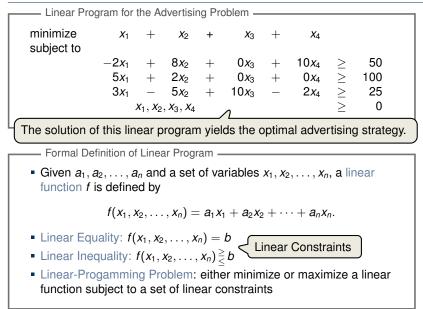






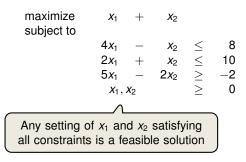


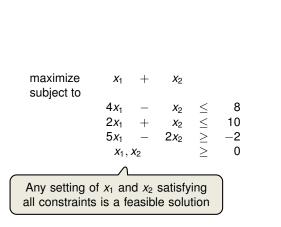


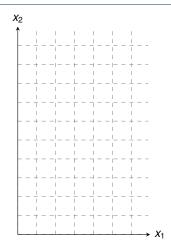


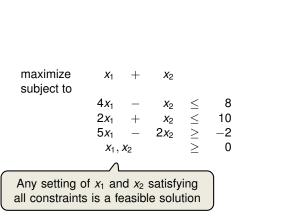
maximize subject to

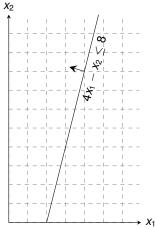
 $x_1 + x_2$

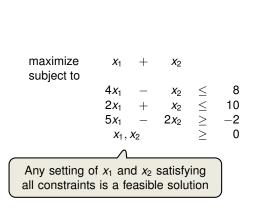


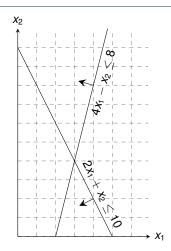


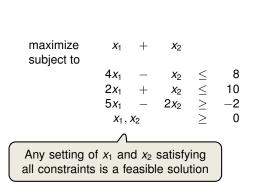


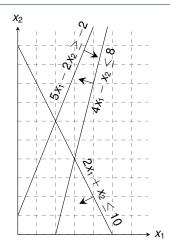


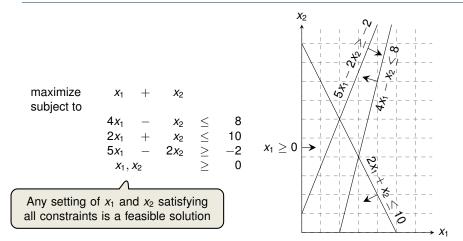


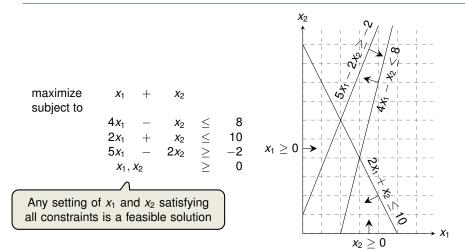


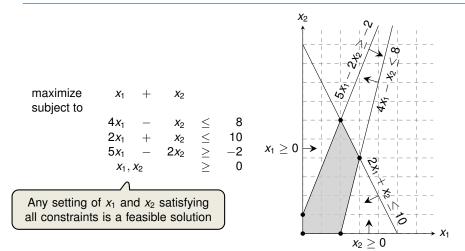












*X*₂ 54 maximize *X*₁ **X**2 $\begin{array}{cccc} - & x_2 & \leq & \mathbf{c} \\ + & x_2 & \leq & \mathbf{10} \\ - & 2x_2 & \geq & -\mathbf{c} \\ & & \geq \end{array}$ subject to $4x_{1}$ $2x_{1}$ $x_1 \ge 0$ 5*x*1 3 x_1, x_2 Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible. X_1

 $x_2 \ge 0$



*X*₂ 54 maximize *X*₁ **X**2 $\begin{array}{cccc} - & x_2 & \leq & \\ + & x_2 & \leq & 1' \\ - & 2x_2 & \geq & \\ & & \geq & \end{array}$ subject to $4x_{1}$ 8 10 $2x_1$ $x_1 \ge 0$ -2 5*x*1 x_1, x_2 +, Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

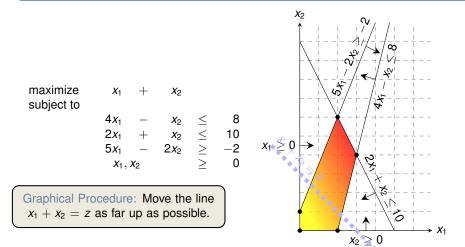
 X_1

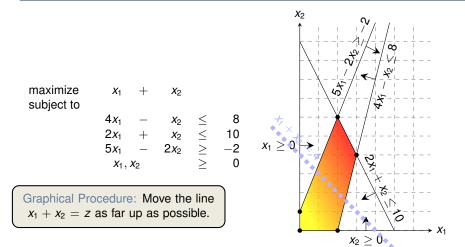
*X*₂ 54 maximize *X*₁ **X**2 $\begin{array}{cccc} - & x_2 & \leq & \\ + & x_2 & \leq & 1' \\ - & 2x_2 & \geq & \\ & & \geq & \end{array}$ subject to $4x_{1}$ 8 10 $2x_1$ $x_1 \ge 0$ -2 5*x*1 x_1, x_2 Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

 X_1

*X*₂ 5 maximize *X*1 **X**2 $\begin{array}{cccc}
\cdot & x_2 &\leq & \ddots \\
+ & x_2 &\leq & 1' \\
- & 2x_2 &\geq & \\
& \geq & \end{array}$ subject to $4x_1$ 8 10 $2x_1$ $x_1 \ge 0$ -2 → 5*x*1 x_1, x_2 Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible. X_1

•*x*₂ ≥ 0





*X*₂ \$ maximize *X*₁ **X**2 $\begin{array}{cccc} - & x_2 & \leq & \\ + & x_2 & \leq & 1' \\ - & 2x_2 & \geq & \\ & & \geq & \end{array}$ subject to $4x_{1}$ 8 10 $2x_{1}$ $x_1 \ge 0$ -2 5*x*1 x_1, x_2 Graphical Procedure: Move the line

 $x_1 + x_2 = z$ as far up as possible.

 X_1

*X*₂ \$ maximize *X*₁ **X**2 $\begin{array}{cccc}
\cdot & x_2 &\leq & \ddots \\
+ & x_2 &\leq & 1' \\
- & 2x_2 &\geq & \\
& \geq & \end{array}$ subject to $4x_{1}$ 8 10 $2x_1$ $x_1 \ge 0$ -2 5*x*1 x_1, x_2 Graphical Procedure: Move the line

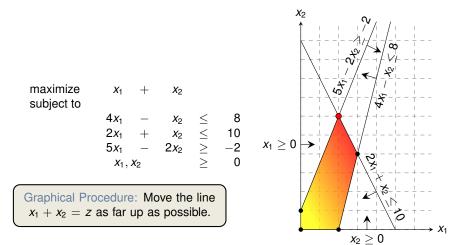
 $x_1 + x_2 = z$ as far up as possible.

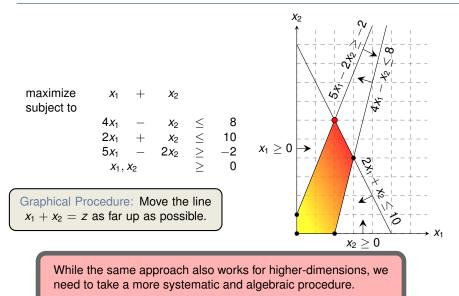
 X_1

*X*₂ \$ maximize *X*₁ **X**2 $\begin{array}{cccc} - & x_2 & \leq & \mathbf{c} \\ + & x_2 & \leq & \mathbf{10} \\ - & 2x_2 & \geq & -\mathbf{c} \\ & & \geq \end{array}$ subject to $4x_{1}$ $2x_{1}$ $x_1 \ge 0$ 5*x*1 x_1, x_2 Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

X2 +, 5 maximize *X*₁ **X**2 $\begin{array}{cccc} - & x_2 & \leq & \mathbf{c} \\ + & x_2 & \leq & \mathbf{10} \\ - & 2x_2 & \geq & -\mathbf{c} \\ & & \geq \end{array}$ subject to $4x_{1}$ $2x_{1}$ $x_1 \ge 0$ ≫ 5*x*1 x_1, x_2 Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

X2 +, 5 maximize *X*₁ **X**2 $\begin{array}{cccc} - & x_2 & \leq & \mathbf{c} \\ + & x_2 & \leq & \mathbf{10} \\ - & 2x_2 & \geq & -\mathbf{c} \\ & & \geq \end{array}$ subject to $4x_{1}$ $2x_{1}$ $x_1 \ge 0$ → 5*x*1 x_1, x_2 Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.





Outline

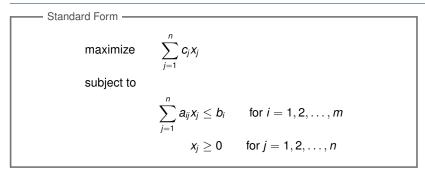
Introduction

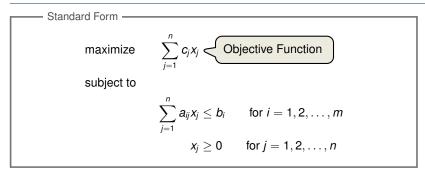
Standard and Slack Forms

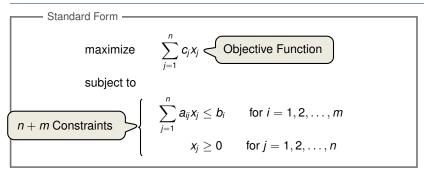
Formulating Problems as Linear Programs

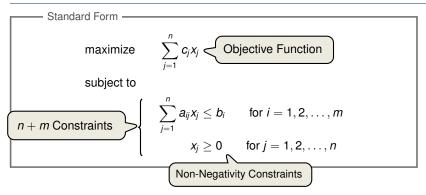
Simplex Algorithm

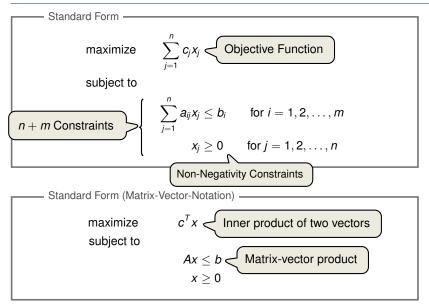
Finding an Initial Solution











Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions so that their objective values are identical.

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions so that their objective values are identical.

When switching from maximization to minimization, sign of objective value changes.

minimize	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	$^+$	<i>X</i> ₂	=	7
	<i>X</i> ₁	_	$2x_2$	\leq	4
	<i>X</i> 1			>	0

minimize	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> ₁	_	$2x_{2}$	\leq	4
	<i>X</i> ₁			\geq	0
		Neę	gate ol	ojecti	ve function

minimize	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>x</i> ₁	_	$2x_2$	\leq	4
	<i>x</i> ₁		x ₂ 2x ₂	\geq	0
		Ne ✔			ive function
maximize	$2x_1$	_	3 <i>x</i> ₂		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> 1	_	$2x_{2}$	\leq	4
	<i>X</i> ₁			~	•

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2 <i>x</i> ₁	_	3 <i>x</i> ₂		
<i>X</i> ₁	+	<i>X</i> 2	=	7
<i>X</i> ₁	_	$2x_{2}$	\leq	4
<i>x</i> ₁			\geq	0
	<i>x</i> ₁	<i>x</i> ₁ +	$x_1 + x_2$	$x_1 + x_2 =$

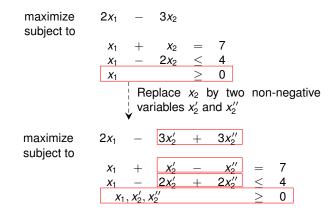
Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

maximize subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂						
	<i>x</i> ₁	+	<i>X</i> ₂	=	7				
	<i>x</i> ₁	—	$2x_{2}$	\leq	4				
	<i>x</i> ₁			\geq	0				
	,	Re var	place iables	x_2 b x'_2 ar	y tv nd x	VO	non-	negative	;

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:



3. There might be equality constraints.

3. There might be equality constraints.

maximize subject to

3. There might be equality constraints.

maximize subject to

$$2x_{1} - 3x'_{2} + 3x''_{2}$$

$$x_{1} + x'_{2} - x''_{2} = 7$$

$$x_{1} - 2x'_{2} + 2x''_{2} \le 4$$

$$x_{1,1}x'_{2,1}x''_{2,2} \ge 0$$

$$| \text{ Replace each equality}$$

$$| \text{ by two inequalities.}$$

3. There might be equality constraints.

maximize subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂ '	+	3 <i>x</i> ₂ "		
,	<i>X</i> 1	+	X_2'	_	x2''	=	7
	<i>x</i> ₁	-	$2x_{2}^{'}$	+	$2x_{2}^{''}$	\leq	4
	<i>X</i> 1	$, x_{2}', x_{2}'$	κ <u>"</u>			\geq	0
					equali	ty	
		¦ by	two in	equa	lities.		
		•					
maximize	$2x_{1}$	_	3 <i>x</i> 2	+	3 <i>x</i> 2″		
subject to							
	<i>X</i> 1	+	<i>x</i> ₂ '	_	<i>x</i> ₂ ''	\leq	7
	<i>X</i> 1	+	x_2'	—	x2"	\geq	7
	<i>x</i> ₁	_	$2x_{2}'$	+	$2x_{2}^{\prime\prime}$	\leq	4
	<i>X</i> 1	$, x_{2}', x_{2}'$	$x_{2}^{\prime\prime}$			\geq	0

4. There might be inequality constraints (with \geq instead of \leq).

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to

$$2x_1 - 3x'_2 + 3x''_2 \ x_1 + x'_2 - x''_2 \leq 7 \ x_1 + x'_2 - x''_2 \geq 7 \ x_1 - 2x'_2 + 2x''_2 \leq 4 \ x_1, x'_2, x''_2 \geq 0$$

...

Reasons for a LP not being in standard form:

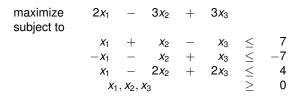
4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ ′	+	3 <i>x</i> ₂ ''		
	<i>X</i> ₁	+	x_2'	_	<i>x</i> ₂ ''	\leq	7
	<i>X</i> 1	+	<i>x</i> ₂ '	—	<i>x</i> ₂ ''	\geq	7
	<i>X</i> 1	_	$2x_{2}'$	+	2 <i>x</i> ₂ "	\leq	4
	<i>X</i> ₁	, x 2, x	<"<			\geq	0
		Ne	egate i	respe	ective ir	nequa	lities.

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ '	+	3 <i>x</i> ₂ "		
	<i>x</i> ₁	+	x_2'	_	<i>x</i> 2''	\leq	7
	<i>X</i> 1	+	x_2'	_	x_2''	2	7
	<i>x</i> ₁	_	$2x_{2}^{\prime}$	+	$2x_{2}^{''}$	\leq	4
	<i>X</i> ₁	, x ₂ ', x	<" 2			\geq	0
		↓ Ne	egate	respe	ective in	nequa	lities.
maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ '	+	3 <i>x</i> ₂ "		
	<i>X</i> ₁	+	x_2'	_	<i>x</i> ₂ ''	\leq	7
	$-x_1$	_	<i>x</i> ₂ '	+	X2"	\leq	-7
	<i>X</i> 1	_	2 <i>x</i> ₂ '	+	$2x_{2}^{''}$	\leq	4
	<i>X</i> ₁	, <i>x</i> ₂ ', <i>x</i>	x_{2}''			\geq	0



Rename	variable	e nan	nes (fo	r con	sisten	cy).)
maximize subject to	2 <i>x</i> ₁	_	$3x_2$	+	3 <i>x</i> ₃		
	<i>x</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7
	$-x_{1}$	_	<i>X</i> 2	+	<i>X</i> 3	\leq	-7
	<i>X</i> ₁	_	$2x_2$	+	$2x_{3}$	\leq	4
	<i>x</i> ₁	$, x_2, x_2$	x 3			\geq	0

Rename	variable	e nan	nes (fo	r con	sisten	cy).)
maximize	2 <i>x</i> ₁	_	$\sqrt{3x_2}$	+	3 <i>x</i> ₃		
subject to	<i>X</i> 1	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7
	$-x_{1}$	_	<i>X</i> 2	+	<i>X</i> 3	\leq	-7
	<i>X</i> ₁	_	$2x_{2}$	+	$2x_{3}$	\leq	4
	<i>X</i> ₁	$, x_2, x_2$	K ₃			\geq	0

It is always possible to convert a linear program into standard form.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

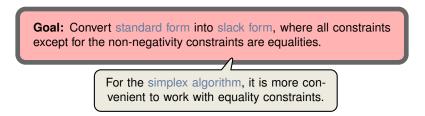
Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

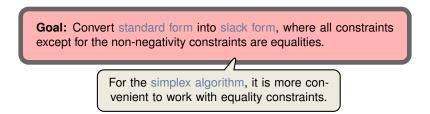
For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables



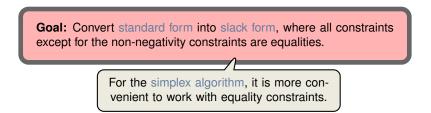
Introducing Slack Variables

• Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint



Introducing Slack Variables

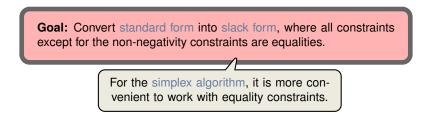
- Let $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by



Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint
- Introduce a slack variable s by

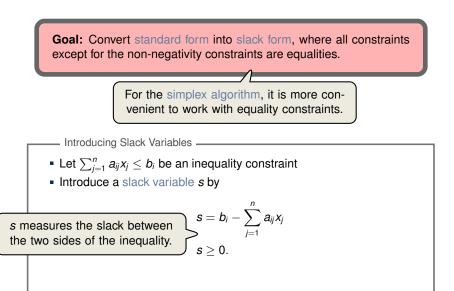
$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

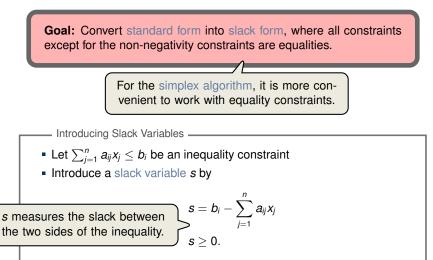


Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$s > 0.$$





Denote slack variable of the *i*th inequality by x_{n+i}

maximize $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \leq 7$ $-x_1 - x_2 + x_3 \leq -7$ $x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$ Introduce slack variables

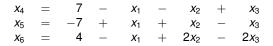
maximize $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \leq 7$ $-x_1 - x_2 + x_3 \leq -7$ $x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$ Introduce slack variables

 $x_4 = 7 - x_1 - x_2 + x_3$

subject to

subject to

maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> 2	+	3 <i>x</i> ₃		
	<i>X</i> ₁	+	<i>X</i> ₂	—	<i>X</i> 3	\leq	7
	$-x_{1}$	_	<i>X</i> 2	+	<i>X</i> ₃	\leq	-7
	<i>X</i> ₁	_	$2x_{2}$	+	$2x_{3}$	\leq	4
	<i>X</i> ₁	, x ₂ , x	x 3			\geq	0
			↓ ↓	ntrod	uce sla	ack v	ariables



maximize $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \leq 7$ $-x_1 - x_2 + x_3 \leq -7$ $x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$ \downarrow Introduce slack variables

subject to

maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃				
	<i>X</i> ₁	+	<i>X</i> ₂	_	<i>X</i> 3	\leq	-	7	
	$-x_1$	_	<i>x</i> ₂	+		<	-7	7	
	<i>X</i> ₁	_	$2x_2$	+	$2x_{3}$	< < < <	4	4	
	<i>X</i> 1	$, x_2, x_2$	x 3			\geq	()	
			- li	ntrod	luce s	lack	varia	bles	
			↓						
maximize				2	$2x_1$	_	3 <i>x</i> 2	+	$3x_3$
subject to							-		Ū
	X4 =	=	7 -	_	<i>X</i> 1	_	<i>X</i> 2	+	<i>X</i> 3
	<i>X</i> 5 =	= -	-7 -	F	<i>X</i> 1	+	<i>X</i> 2	_	<i>X</i> 3
	<i>x</i> ₆ =	=	4 –	-	<i>X</i> ₁	+	2 <i>x</i> ₂	_	$2x_3$
	<i>X</i> ₁	X_2, X_2	x_3, x_4, x_4	5, X 6		>	0		

maximize subject to					2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃
	<i>X</i> 4	=	7	_	<i>X</i> ₁	_	<i>X</i> 2	+	<i>X</i> 3
	X 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3
	<i>X</i> 6	=	4	_	<i>X</i> ₁	+	$2x_2$	_	$2x_{3}$
		<i>x</i> ₁ , <i>x</i> ₂	, x ₃ , x ₄	, x ₅ , 2	<i>x</i> ₆	\geq	0		

maximize subject to					2 <i>x</i> ₁	_	3 <i>x</i> 2	+	3 <i>x</i> ₃	
-	<i>X</i> 4	=	7	_	<i>X</i> ₁	_	<i>X</i> 2	+	<i>X</i> 3	
	X 5	=	-7	+	<i>X</i> 1	+	<i>X</i> ₂	_	<i>X</i> 3	
	<i>X</i> 6	=	4	_			$2x_{2}$	_	$2x_{3}$	
		<i>x</i> ₁ , <i>x</i> ₂	, x ₃ , x ₄	, x ₅ , x	K 6	\geq	0			
			¦ Us ↓ ar	se vai id om	riable hit the	z to c nonn	denote egativi	obje ity co	ctive fu nstrain	nction ts.

maximize subject to					2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃	
-	<i>X</i> 4	=	7	_	<i>X</i> 1	_	<i>X</i> ₂	+	<i>X</i> 3	
	X 5	=	-7	+	<i>X</i> ₁	+	<i>x</i> ₂	_	<i>X</i> 3	
	<i>x</i> ₆	=	4	_	<i>X</i> 1	+	$2x_2$	_	$2x_3$	
		x_1, x_2	, x ₃ , x ₄	ı, x 5,	<i>x</i> ₆	\geq	0			
							denote legativ			unction nts.
	Ζ	=			$2x_1$	_	$3x_2$	+	3 <i>x</i> 3	
	<i>X</i> 4	=	7	—	<i>X</i> 1	—	<i>x</i> ₂	+	<i>X</i> 3	
	<i>X</i> 5	=	-7	+	<i>X</i> 1	+	<i>x</i> ₂	_	<i>X</i> 3	
	<i>x</i> ₆	=	4	_	<i>x</i> ₁	+	$2x_{2}$	_	$2x_{3}$	

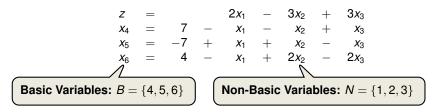
maximize subject to					2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃	
-	<i>X</i> 4	=	7	_	<i>X</i> ₁	_	<i>X</i> ₂	+	<i>X</i> 3	
	X 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> 2	_	<i>x</i> ₃	
	<i>x</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_{2}$	—	$2x_{3}$	
		x_1, x_2	$, x_3, x_4$	1, X 5,	<i>x</i> 6	\geq	0			
I					nit the				ective fi onstrair	unction nts.
	Ζ								~	
l	2	=			$2x_{1}$	-	3 <i>x</i> ₂	+	3 <i>x</i> 3	
l	Z X4	=	7	_	$\frac{2x_1}{x_1}$	-	3 <i>x</i> ₂ <i>x</i> ₂	+++++	3 <i>x</i> 3 <i>x</i> 3	
l		=	7 _7	- +		- - +	<i>x</i> ₂			
I	<i>x</i> ₄			- + -	<i>x</i> ₁		<i>x</i> ₂	+	<i>X</i> 3	

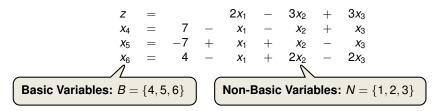
$$z = 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$
Basic Variables: $B = \{4, 5, 6\}$

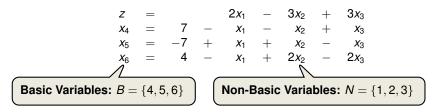




Slack Form (Formal Definition) Slack form is given by a tuple (N, B, A, b, c, v) so that

$$egin{aligned} z &= v + \sum_{j \in N} c_j x_j \ x_i &= b_i - \sum_{j \in N} a_{ij} x_j \ & ext{for } i \in B, \end{aligned}$$

and all variables are non-negative.



Slack Form (Formal Definition) Slack form is given by a tuple (N, B, A, b, c, v) so that $z = v + \sum_{j \in N} c_j x_j$ $x_i = b_i - \sum_{j \in N} a_{ij} x_j$ for $i \in B$, and all variables are non-negative. Variables/Coefficients on the right hand side are indexed by *B* and *N*.

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
- Slack Form Notation

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

• $B = \{1, 2, 4\}, N = \{3, 5, 6\}$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix},$$

Slack Form (Example)

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

Slack Form (Example)

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

$$v = 28$$

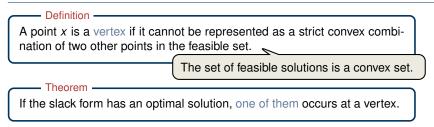
Definition

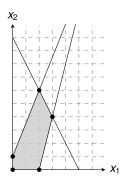
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

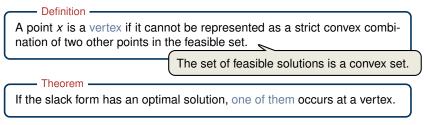
Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set. \sim

The set of feasible solutions is a convex set.

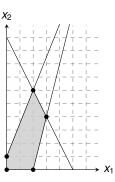


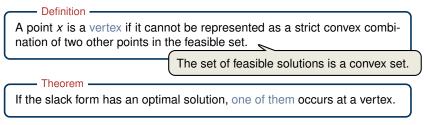




Proof Sketch (informal and non-examinable):

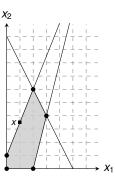
• Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

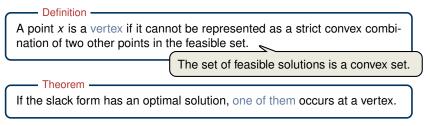




Proof Sketch (informal and non-examinable):

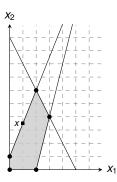
• Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

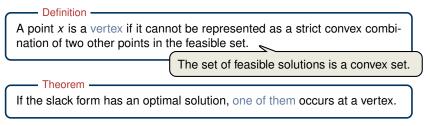




Proof Sketch (informal and non-examinable):

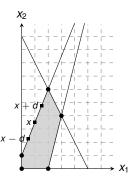
■ Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x - d and x + d are feasible

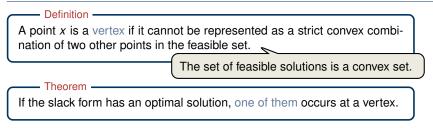




Proof Sketch (informal and non-examinable):

■ Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x - d and x + d are feasible

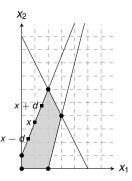


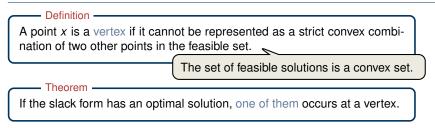


Proof Sketch (informal and non-examinable):

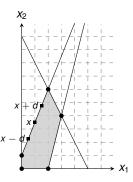
■ Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible

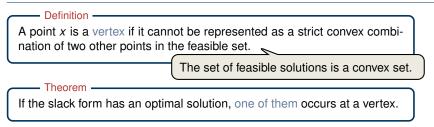
• Since
$$A(x + d) = b$$
 and $Ax = b \Rightarrow Ad = 0$



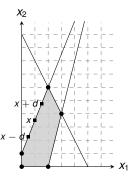


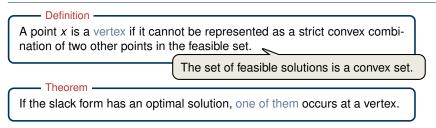
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)



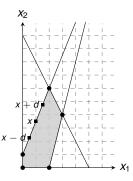


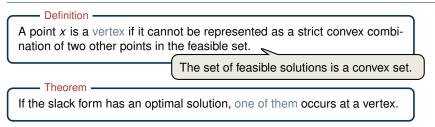
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$



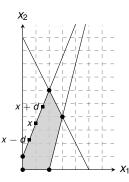


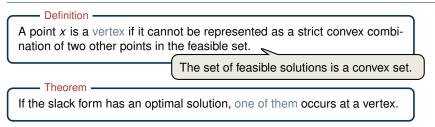
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with $d_j < 0$



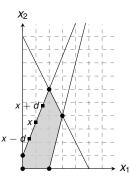


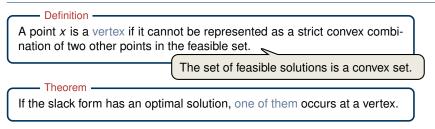
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with $d_j < 0$
 - Increase λ from 0 to λ' until a new entry of x + λd becomes zero





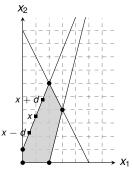
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists *j* with $d_j < 0$
 - Increase λ from 0 to λ' until a new entry of x + λd becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d \ge 0$

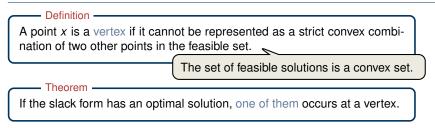




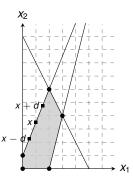
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with $d_j < 0$
 - Increase λ from 0 to λ' until a new entry of x + λd becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d \ge 0$

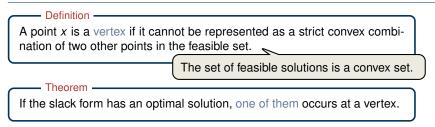
$$c^{T}(x + \lambda^{T}d) = c^{T}x + c^{T}\lambda'd \geq c^{T}\lambda$$



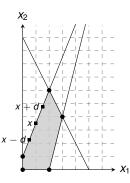


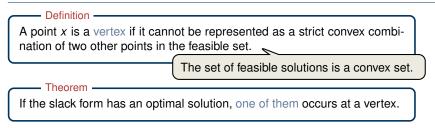
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$



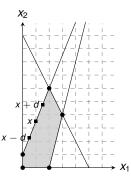


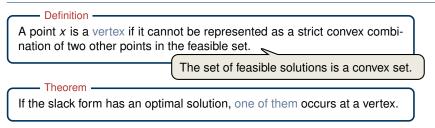
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$



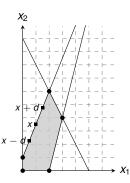


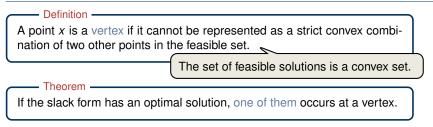
- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$



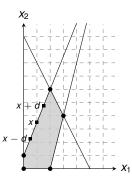


- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - \Rightarrow This contradicts the assumption that there exists an optimal solution.





- Rewrite LP s.t. Ax = b. Let *x* be optimal but not a vertex $\Rightarrow \exists$ vector *d* s.t. x - d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - \Rightarrow This contradicts the assumption that there exists an optimal solution.



Outline

Introduction

Standard and Slack Forms

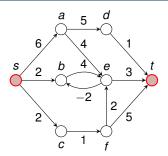
Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

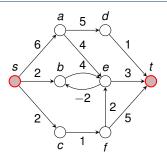
Single-Pair Shortest Path Problem

• Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$



Single-Pair Shortest Path Problem -

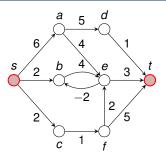
- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*



Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*

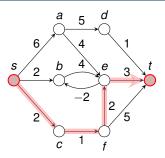
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that
 $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



Single-Pair Shortest Path Problem -

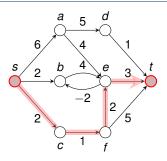
- Given: directed graph G = (V, E) with edge weights $w : E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that
 $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



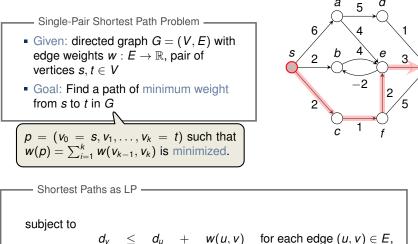
- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that
 $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

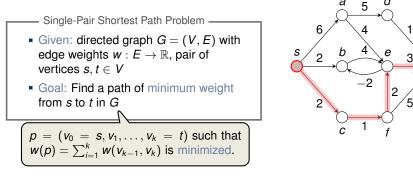


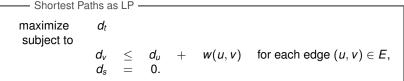
Shortest Paths as LP -

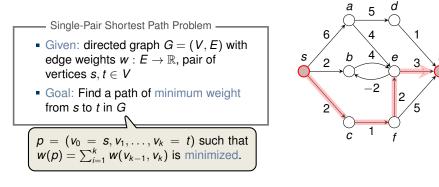
subject to

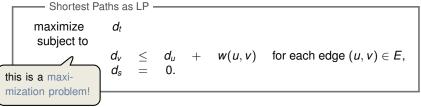


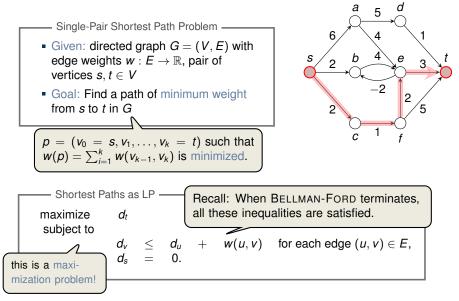
$$egin{array}{rcl} d_v &\leq d_u &+ w(u,v) & ext{for each edge} (u,v) \in E \ d_{ ext{s}} &= 0. \end{array}$$

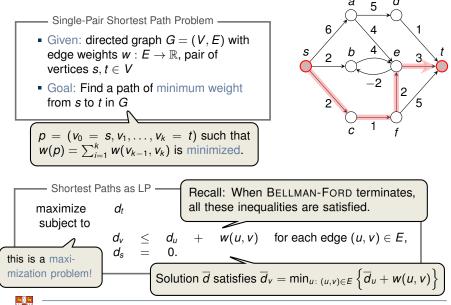








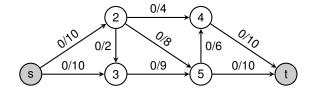




- Maximum Flow Problem -

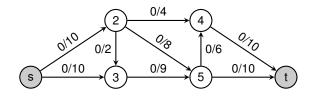
• Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$

- Maximum Flow Problem
- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$



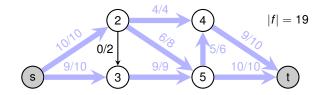
- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation



- Maximum Flow Problem

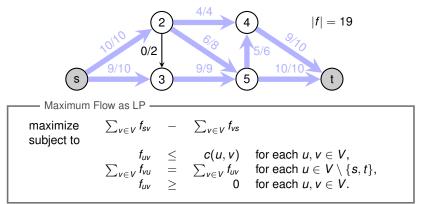
- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation

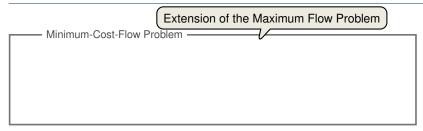


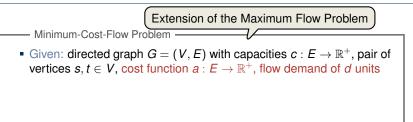
Maximum Flow

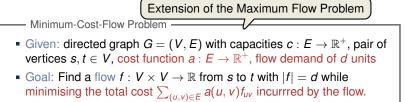
- Maximum Flow Problem -

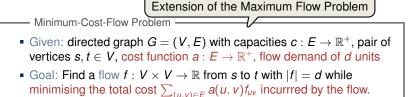
- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation











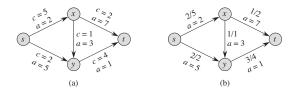


Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

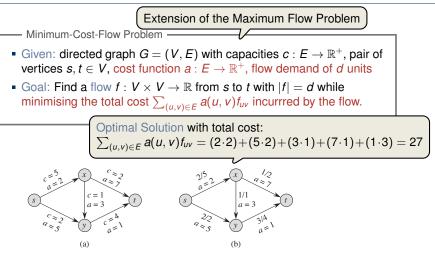
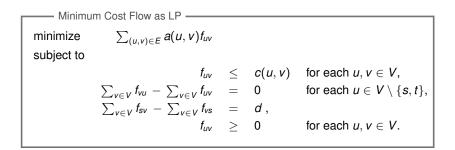


Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum Cost Flow as LPminimize
subject to $\sum_{(u,v)\in E} a(u,v)f_{uv}$ $f_{uv} \leq c(u,v)$ for each $u,v \in V$,
 $\sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} = 0$ for each $u \in V \setminus \{s,t\}$,
 $\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} = d$,
 $f_{uv} \geq 0$ for each $u, v \in V$.



Real power of Linear Programming comes from the ability to solve **new problems**!

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm: Introduction

Simplex Algorithm _____

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm: Introduction

Simplex Algorithm _____

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Simplex Algorithm: Introduction

Simplex Algorithm -----

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

 $3x_1 + x_2 + 2x_3$

maximize subject to

 $3x_1 + x_2 + 2x_3$

maximize subject to

maximize subject to

24

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

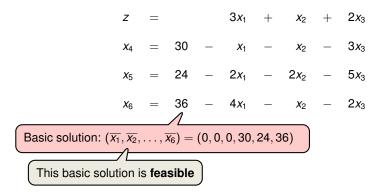
$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

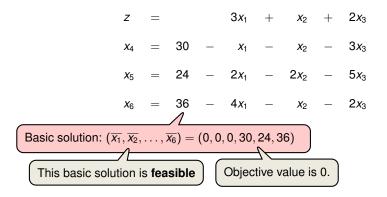
$$z = 3x_1 + x_2 + 2x_3$$

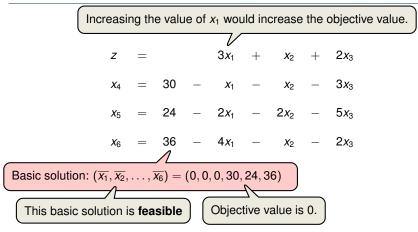
$$x_4 = 30 - x_1 - x_2 - 3x_3$$

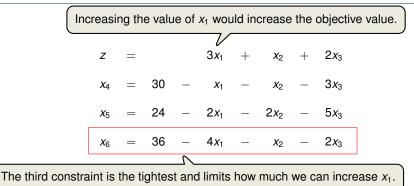
$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

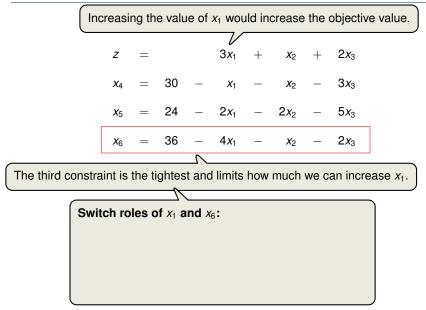
$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

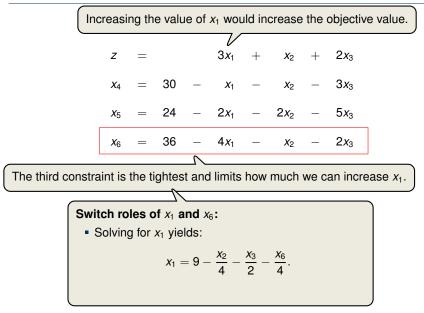


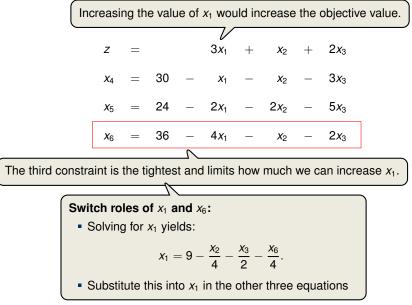












$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

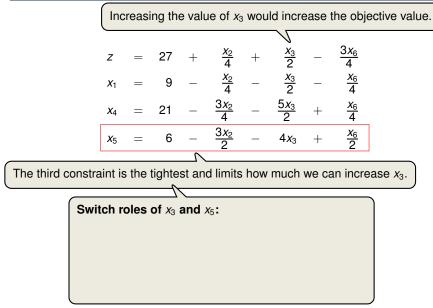
$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

Increasing the value of x_3 would increase the objective value of x_3 would be a state of x_3 wou									
Z	=	27	+	<u>x₂</u> 4	+	$\frac{X_3}{2}$	_	$\frac{3x_6}{4}$	
<i>X</i> ₁	=	9	_	$\frac{x_2}{4}$	_	$\frac{x_{3}}{2}$	_	$\frac{x_6}{4}$	
X4	=	21	_	$\frac{3x_2}{4}$	_	<u>5x₃</u> 2	+	$\frac{x_6}{4}$	
<i>X</i> 5	=	6	_	$\frac{3x_2}{2}$	_	4 <i>x</i> ₃	+	<u>x₆</u> 2	
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27)

(Inc	reasi	ng the	e valu	ue of x	3 wou	ld incre	ease	the obje	ective valu	ie.
z	=	27	+	$\frac{X_2}{4}$	+	$\frac{X_3}{2}$	_	$\frac{3x_{6}}{4}$		
<i>X</i> ₁	=	9	_	$\frac{x_2}{4}$	_	$\frac{x_{3}}{2}$	_	$\frac{X_6}{4}$		
<i>X</i> 4	=	21	_	$\frac{3x_2}{4}$	_	$\frac{5x_{3}}{2}$	+	$\frac{x_6}{4}$		
x 5	=	6	_	<u>3x₂</u> 2	_	4 <i>x</i> ₃	+	<u>x₆ 2</u>		

The third constraint is the tightest and limits how much we can increase x_3 .



	Increasing the value of x_3 would increase the objective value.										
	Z	=	27	+	<u>x2</u> 4	+	<u>X₃</u> 2	_	$\frac{3x_{6}}{4}$		
	<i>X</i> 1	=	9	_	$\frac{x_2}{4}$		$\frac{x_{3}}{2}$		$\frac{x_6}{4}$		
	<i>X</i> 4	=	21	-	$\frac{3x_2}{4}$	_	$\frac{5x_{3}}{2}$	+	$\frac{x_6}{4}$		
	X 5	=	6	_	$\frac{3x_2}{2}$	—	4 <i>x</i> ₃	+	<u>x₆ 2</u>		
e third constra	third constraint is the tightest and limits how much we can increase x_3 .										
Switch roles of x ₃ and x ₅ : Solving for x ₃ yields:											
		ig ioi	•••		$-\frac{3x_2}{8}$	$-\frac{x_5}{4}$	$-\frac{x_{6}}{8}$.				
										J	

The

	Increasing the value of x_3 would increase the objective value.										
	z	=	27	+	<u>x2</u> 4	+	X3 2	_	$\frac{3x_{6}}{4}$		
	<i>X</i> 1	=	9	_	$\frac{x_2}{4}$	_	$\frac{x_{3}}{2}$	_	$\frac{x_6}{4}$		
	<i>X</i> 4	=	21	_	$\frac{3x_2}{4}$	_	$\frac{5x_{3}}{2}$	+	$\frac{x_6}{4}$		
	x 5	=	6	_	$\frac{3x_2}{2}$	_	4 <i>x</i> ₃	+	<u>x₆ 2</u>		
				\neg							
e third constra	third constraint is the tightest and limits how much we can increase x_3 .										
				\sim							
Swi	tch r	oles	of x_3	and $ angle$	K 5:						
 Solving for x₃ yields: 											
			x 3 =	$=\frac{3}{2}$ -	$-\frac{3x_2}{8}$	$-\frac{x_5}{4}$	$-\frac{x_{6}}{8}$.				
 Substitute this into x₃ in the other three equations 											

The

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

Increasing the value of x_2 would increase the objective value.

z	=	<u>111</u> 4	+	<u>X2</u> 16	_	<u>x</u> 5 8	_	$\frac{\frac{11x_6}{16}}{\frac{5x_6}{16}}$
<i>x</i> ₁	=	<u>33</u> 4	_	<u>x₂</u> 16	+	<u>x</u> 5 8	_	<u>5x₆ 16</u>
x 3	=	<u>3</u> 2	_	$\frac{3x_2}{8}$	_	$\frac{x_{5}}{4}$	+	$\frac{x_6}{8}$
<i>X</i> 4	=	<u>69</u> 4	+	<u>3x2</u> 16	+	<u>5x5</u> 8	_	<u>x₆ 16</u>

The second constraint is the tightest and limits how much we can increase x_2 .

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}.$$

• Substitute this into *x*₂ in the other three equations

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

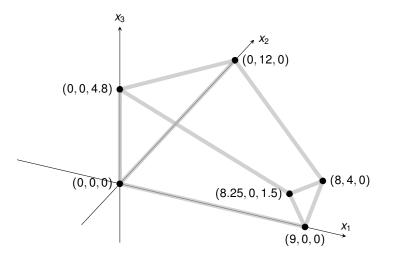
All coefficients are negative, and hence this basic solution is optimal!

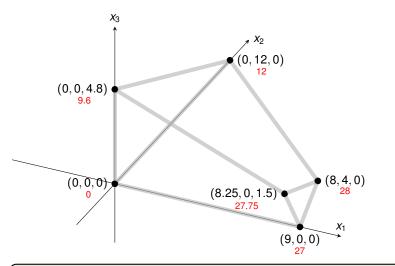
$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

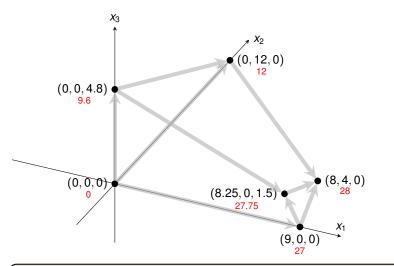
$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

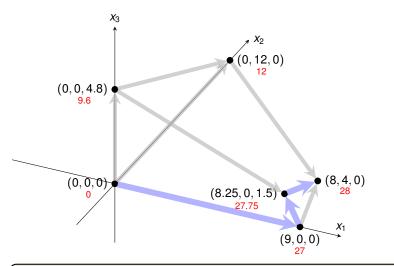




Exercise: How many basic solutions (including non-feasible ones) are there?



Exercise: How many basic solutions (including non-feasible ones) are there?



Exercise: How many basic solutions (including non-feasible ones) are there?

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	$2x_{3}$
<i>x</i> ₄	=	30	_	<i>x</i> ₁	_	<i>x</i> ₂	_	3 <i>x</i> ₃
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	_	2 <i>x</i> ₂	_	5 <i>x</i> ₃
<i>x</i> ₆	=	36	-	4 <i>x</i> ₁	-	<i>x</i> ₂	-	2 <i>x</i> ₃

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	$2x_{3}$
<i>x</i> ₄	=	30	_	<i>x</i> ₁	-	<i>x</i> ₂	_	3 <i>x</i> ₃
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	-	2 <i>x</i> ₂	_	5 <i>x</i> ₃
<i>x</i> ₆	=	36	_	$4x_{1}$	_	<i>x</i> ₂	_	2 <i>x</i> ₃
				v Sw	itch ro	les of x	2 and	X 5

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	$2x_{3}$
<i>x</i> ₄	=	30	_	<i>x</i> ₁	_	<i>x</i> ₂	_	3 <i>x</i> ₃
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	_	2 <i>x</i> ₂	_	5 <i>x</i> ₃
<i>x</i> ₆	=	36	_	$4x_{1}$	_	<i>x</i> ₂	_	2 <i>x</i> ₃
				Sw	itch ro	les of x	2 and	X 5
Ζ	=	12	+	▼ 2 <i>x</i> 1	-	$\frac{x_3}{2}$	_	$\frac{x_{5}}{2}$
<i>x</i> ₂	=	12	_	<i>x</i> ₁	_	$\frac{5x_{3}}{2}$	_	$\frac{x_{5}}{2}$
<i>x</i> ₄	=	18	-	<i>x</i> ₂	-	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$
<i>x</i> ₆	=	24	_	3 <i>x</i> 1	+	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	$2x_{3}$
<i>x</i> ₄	=	30	-	<i>x</i> ₁	_	<i>x</i> ₂	-	3 <i>x</i> 3
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	-	2 <i>x</i> ₂	-	5 <i>x</i> ₃
<i>x</i> ₆	=	36	-	$4x_{1}$	_	<i>x</i> ₂	-	2 <i>x</i> ₃
				Sw	itch ro	les of x	2 and	X 5
z	=	12	+	▼ 2 <i>x</i> 1	_	$\frac{x_3}{2}$	_	$\frac{x_{5}}{2}$
<i>x</i> ₂	=	12	_	<i>x</i> ₁	_	$\frac{5x_{3}}{2}$	_	$\frac{x_{5}}{2}$
<i>x</i> ₄	=	18	_	<i>x</i> ₂	-	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$
<i>x</i> ₆	=	24	-	3 <i>x</i> 1	+	$\frac{x_3}{2}$	+	$\frac{x_{5}}{2}$
				¦ Sw ¥	itch ro	les of x	1 and	<i>x</i> ₆

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃
<i>x</i> ₄	=	30	_	<i>x</i> ₁	-	<i>x</i> ₂	—	3 <i>x</i> ₃
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	-	2 <i>x</i> ₂	—	5 <i>x</i> ₃
<i>x</i> ₆	=	36	-	$4x_{1}$	-	<i>x</i> ₂	_	2 <i>x</i> ₃
				Sw	itch ro	les of x2	and	X 5
Z	=	12	+	♥ 2 <i>x</i> 1	_	$\frac{x_3}{2}$	_	$\frac{x_5}{2}$
<i>x</i> ₂	=	12	-	<i>x</i> ₁	_	$\frac{5x_3}{2}$	_	$\frac{x_5}{2}$
<i>x</i> ₄	=	18	-	<i>x</i> ₂	-	$\frac{x_3}{2}$	+	$\frac{x_{5}}{2}$
<i>x</i> ₆	=	24	-	3 <i>x</i> 1	+	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$
				Sw	itch ro	les of x	and	<i>x</i> ₆
z	=	28	_	$\frac{x_3}{6}$	-	$\frac{x_{5}}{6}$	_	$\frac{2x_{6}}{3}$
<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	$\frac{x_5}{6}$	_	$\frac{x_{6}}{3}$
<i>x</i> ₂	=	4	-	$\frac{8x_3}{3}$	_	$\frac{2x_5}{3}$	+	$\frac{x_6}{3}$
<i>x</i> ₄	=	18	-	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$		

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	$2x_{3}$
<i>x</i> ₄	=	30	_	<i>x</i> ₁	_	<i>x</i> ₂	_	3 <i>x</i> ₃
<i>x</i> 5	=	24	_	2 <i>x</i> ₁	_	2 <i>x</i> ₂	_	5 <i>x</i> ₃
<i>x</i> ₆	=	36	-	4 <i>x</i> ₁	-	<i>x</i> ₂	-	2 <i>x</i> ₃

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃
<i>x</i> ₄	=	30	_	<i>x</i> ₁	-	<i>x</i> ₂	_	3 <i>x</i> ₃
<i>x</i> 5	=	24	-	2 <i>x</i> ₁	_	2 <i>x</i> ₂	_	5 <i>x</i> ₃
<i>x</i> ₆	=	36	_	4 <i>x</i> ₁	_	<i>x</i> ₂	_	2 <i>x</i> ₃
				¦ Sw ¥	itch ro	les of x	3 and	<i>x</i> 5

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃	
<i>x</i> ₄	=	30	_	<i>x</i> ₁	_	<i>x</i> ₂	-	3 <i>x</i> 3	
<i>x</i> 5	=	24	_	2 <i>x</i> ₁	_	2 <i>x</i> ₂	-	5 <i>x</i> 3	
<i>x</i> ₆	=	36	_	4 <i>x</i> ₁	_	<i>x</i> ₂	-	2 <i>x</i> ₃	
				↓ Sw	vitch ro	oles of	x_3 and	<i>x</i> 5	
z	=	<u>48</u> 5	+	11 5	$\frac{x_1}{5}$	+	<u>x₂</u> 5	_	$\frac{2x_{5}}{5}$
<i>x</i> ₄	=	<u>78</u> 5	+	:	$\frac{x_1}{5}$	+	$\frac{x_2}{5}$	+	$\frac{3x_5}{5}$
<i>x</i> 3	=	<u>24</u> 5	_	2	x ₁ 5	-	$\frac{2x_2}{5}$	_	$\frac{x_{5}}{5}$
<i>x</i> ₆	=	<u>132</u> 5	-	<u>16</u>	<u>x₁</u>	-	<u>x₂</u> 5	+	$\frac{2x_{3}}{5}$

	Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃	
	<i>x</i> ₄	=	30	_	<i>x</i> ₁	-	<i>x</i> ₂	-	3 <i>x</i> ₃	
	<i>x</i> 5	=	24	-	2 <i>x</i> ₁	-	2 <i>x</i> ₂	-	5 <i>x</i> ₃	
	<i>x</i> ₆	=	36	-	4 <i>x</i> ₁	-	<i>x</i> ₂	-	2 <i>x</i> ₃	
					y Swi	tch rol	les of	x_3 and	<i>x</i> 5	
	z	=	<u>48</u> 5	+	11x 5	<u>1</u>	+	<u>x₂</u> 5	_	$\frac{2x_{5}}{5}$
	<i>x</i> ₄	=	<u>78</u> 5	+	<u>x</u>	<u>.</u>	+	<u>x₂</u> 5	+	$\frac{3x_{5}}{5}$
	<i>x</i> 3	=	<u>24</u> 5	_	$\frac{2x}{5}$	<u>1</u>	_	$\frac{2x_2}{5}$	_	$\frac{x_{5}}{5}$
	<i>x</i> ₆	=	<u>132</u> 5	_	<u>16x</u> 5	<u>í1</u>	_	$\frac{x_2}{5}$	+	$\frac{2x_{3}}{5}$
Switch roles of	of x_1 ar	nd x ₆₋								

			Ζ	=			3 <i>x</i> ₁	+	<i>x</i> ₂	+	2 <i>x</i> ₃	
			<i>x</i> ₄	=	30	-	<i>x</i> ₁	-	<i>x</i> ₂	-	3 <i>x</i> ₃	
			<i>x</i> 5	=	24	-	2 <i>x</i> ₁	-	2 <i>x</i> ₂	-	5 <i>x</i> ₃	
			<i>x</i> ₆	=	36	-	4 <i>x</i> ₁	-	<i>x</i> ₂	-	2 <i>x</i> ₃	
							↓ Sw	itch ro	les of	x_3 and	<i>x</i> ₅	
			z	=	<u>48</u> 5	+	11. 5	<u>x₁</u>	+	<u>x₂</u> 5	-	$\frac{2x_{5}}{5}$
			<i>x</i> ₄	=	<u>78</u> 5	+		x ₁ 5	+	$\frac{x_2}{5}$	+	$\frac{3x_{5}}{5}$
			<i>x</i> 3	=	<u>24</u> 5	-	2	x ₁ 5	_	$\frac{2x_2}{5}$	-	$\frac{x_{5}}{5}$
			<i>x</i> ₆	=	<u>132</u> 5	-	<u>16</u>	<u>x₁</u>	-	$\frac{x_2}{5}$	+	$\frac{2x_3}{5}$
S	witch	roles o	of x_1 a	and x_{6}								
<u>111</u> 4	+	<u>x2</u> 16	-	<u>x</u> 5 8	-	$\frac{11x_{6}}{16}$						
<u>33</u> 4	-	<u>x2</u> 16	+	$\frac{x_5}{8}$	-	$\frac{5x_{6}}{16}$						
33 4 3 2	-	$\frac{3x_2}{8}$	_	$\frac{x_5}{4}$	+	$\frac{x_6}{8}$						
<u>69</u> 4	+	$\frac{3x_2}{16}$	+	$\frac{5x_{5}}{8}$	-	$\frac{x_{6}}{16}$						

z =

 $X_1 =$

 $x_3 =$

 $X_4 =$

				Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃	
				<i>x</i> ₄	=	30	-	<i>x</i> ₁	-	<i>x</i> ₂	-	3 <i>x</i> ₃	
				<i>x</i> 5	=	24	-	2 <i>x</i> ₁	_	2 <i>x</i> ₂	-	5 <i>x</i> ₃	
				<i>x</i> ₆	=	36	-	4 <i>x</i> ₁	_	<i>x</i> ₂	-	2 <i>x</i> ₃	
								¦ Sw	itch ro	oles of	x ₃ and	<i>x</i> 5	
				z	=	<u>48</u> 5	+	. <u>11</u> 5	к <u>1</u>	+	<u>x₂</u> 5	_	$\frac{2x_5}{5}$
				<i>x</i> ₄	=	<u>78</u> 5	+	-	κ ₁ 5	+	<u>x₂ 5</u>	+	$\frac{3x_5}{5}$
				<i>x</i> 3	=	<u>24</u> 5	-	22	κ ₁	_	$\frac{2x_2}{5}$	-	$\frac{x_5}{5}$
				<i>x</i> ₆	=	<u>132</u> 5	-	<u>16</u> 5	κ ₁	_	$\frac{x_2}{5}$	+	$\frac{2x_3}{5}$
	S	witch	roles	of x_1 a	and x_{6}						Switch	n roles	of x_2 and x_3
=	<u>111</u> 4	+	<u>x₂</u> 16	-	$\frac{x_5}{8}$	-	$\frac{11x_{6}}{16}$				-		
=	<u>33</u> 4	-	$\frac{x_2}{16}$	+	$\frac{x_5}{8}$	-	$\frac{5x_{6}}{16}$						
=	<u>3</u> 2	-	$\frac{3x_2}{8}$	-	$\frac{x_5}{4}$	+	$\frac{x_6}{8}$						
=	<u>69</u> 4	+	$\frac{3x_2}{16}$	+	$\frac{5x_{5}}{8}$	_	<u>x₆ 16</u>						

z x₁ x₃ x₄

					Ζ	=			3 <i>x</i> 1	$^+$	<i>X</i> ₂	2 -	+	2 <i>x</i> ₃				
					<i>x</i> ₄	=	30	-	<i>x</i> ₁	-	<i>x</i> ₂	2 -	-	3 <i>x</i> 3				
					<i>x</i> 5	=	24	-	2 <i>x</i> ₁	_	2 <i>x</i> ₂	2 -	_	5 <i>x</i> 3				
					<i>x</i> ₆	=	36	-	4 <i>x</i> ₁	_	<i>X</i> 2	2 -	-	2 <i>x</i> ₃				
									↓ Sw	itch r	oles o	f x ₃ a	ind x _e	5				
					z	=	<u>48</u> 5	+	112 5	<u>x₁</u>	+	$\frac{x_2}{5}$	-	_ 2	2 <i>x</i> 5 5			
					<i>x</i> ₄	=	<u>78</u> 5	+	-	x ₁ 5	+	$\frac{x_2}{5}$	+	+ 3	$\frac{3x_5}{5}$			
					<i>x</i> ₃	=	<u>24</u> 5	_	2	x ₁ 5	_	$\frac{2x_2}{5}$	-	_	$\frac{x_5}{5}$			
					<i>x</i> ₆	=	<u>132</u> 5	_	<u>16</u> 5	<u>x₁</u>	-	$\frac{x_2}{5}$	4	+ 2	$\frac{2x_3}{5}$			
		S	witch	roles o	of x_1 a	and x_{6}	'					Swi	tch ro	oles of	x ₂ an	d <i>x</i> 3		
	=	<u>111</u> 4	+	$\frac{x_2}{16}$	-	$\frac{x_5}{8}$	_	$\frac{11x_{6}}{16}$		z	=	28	-	$\frac{x_3}{6}$	_	$\frac{x_5}{6}$	_	$\frac{2x_{6}}{3}$
1	=	<u>33</u> 4	-	$\frac{x_2}{16}$	+	$\frac{x_5}{8}$	-	$\frac{5x_{6}}{16}$		<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	$\frac{x_{5}}{6}$	_	$\frac{x_6}{3}$
3	=	<u>3</u> 2	_	$\frac{3x_2}{8}$	_	$\frac{x_5}{4}$	+	$\frac{x_6}{8}$		<i>x</i> ₂	=	4	_	$\frac{8x_3}{3}$	_	$\frac{2x_{5}}{3}$	+	$\frac{x_6}{3}$
1	=	<u>69</u> 4	+	$\frac{3x_2}{16}$	+	$\frac{5x_{5}}{8}$	-	$\frac{x_{6}}{16}$		<i>X</i> 4	=	18	-	$\frac{x_3}{2}$	+	$\frac{x_{5}}{2}$		

z x₁ x₃ x₄

 $\mathsf{PIVOT}(N, B, A, b, c, v, l, e)$

- 1 // Compute the coefficients of the equation for new basic variable x_e .
- 2 let \widehat{A} be a new $m \times n$ matrix 3 $\hat{b}_e = b_l/a_{le}$ 4 for each $j \in N - \{e\}$ 5 $\hat{a}_{ei} = a_{li}/a_{le}$ 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 10 **for** each $j \in N - \{e\}$ $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 11 $\hat{a}_{il} = -a_{ie}\hat{a}_{el}$ 12 13 // Compute the objective function. 14 $\hat{v} = v + c_a \hat{b}_a$ 15 for each $i \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ 17 $\hat{c}_{l} = -c_{e}\hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ 20 $\hat{B} = B - \{l\} \cup \{e\}$ 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation 4 for each $j \in N - \{e\}$ 5 $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 for each $j \in N - \{e\}$ 10 $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 11 12 $\hat{a}_{il} = -a_{ia}\hat{a}_{al}$ 13 // Compute the objective function. 14 $\hat{v} = v + c_a \hat{b}_a$ 15 for each $i \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ 17 $\hat{c}_l = -c_a \hat{a}_{al}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ 20 $\hat{B} = B - \{l\} \cup \{e\}$ 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation 4 for each $j \in N - \{e\}$ 5 $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 Substituting x_e into for each $j \in N - \{e\}$ 10 other equations. $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 11 12 $\hat{a}_{il} = -a_{ia}\hat{a}_{al}$ 13 // Compute the objective function. 14 $\hat{v} = v + c_a \hat{b}_a$ 15 for each $i \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ 17 $\hat{c}_{l} = -c_{e}\hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ 20 $\hat{B} = B - \{l\} \cup \{e\}$ 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation 4 for each $j \in N - \{e\}$ 5 $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 Substituting x_e into for each $j \in N - \{e\}$ 10 other equations. $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 11 12 $\hat{a}_{il} = -a_{ia}\hat{a}_{al}$ 13 // Compute the objective function. 14 $\hat{v} = v + c_a \hat{b}_a$ Substituting x_e into 15 for each $i \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ objective function. 17 $\hat{c}_{l} = -c_{e}\hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ 20 $\hat{B} = B - \{l\} \cup \{e\}$ 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation 4 for each $j \in N - \{e\}$ 5 $\hat{a}_{ei} = a_{Ii}/a_{Ie}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 Substituting x_e into for each $j \in N - \{e\}$ 10 other equations. $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 11 12 $\hat{a}_{il} = -a_{ia}\hat{a}_{al}$ 13 // Compute the objective function. $\hat{v} = v + c_a \hat{h}_a$ 14 Substituting x_e into 15 for each $j \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ objective function. 17 $\hat{c}_{l} = -c_{e}\hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ Update non-basic 20 $\hat{B} = B - \{l\} \cup \{e\}$ and basic variables 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation for each $j \in N - \{e\}$ [Need that $a_{le} \neq 0$] 4 5 $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 Substituting x_e into for each $j \in N - \{e\}$ 10 other equations. $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 11 12 $\hat{a}_{il} = -a_{ia}\hat{a}_{al}$ 13 // Compute the objective function. $\hat{v} = v + c_a \hat{h}_a$ 14 Substituting xe into 15 for each $j \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ objective function. 17 $\hat{c}_{l} = -c_{e}\hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ Update non-basic 20 $\hat{B} = B - \{l\} \cup \{e\}$ and basic variables 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

1.
$$\overline{x}_j = 0$$
 for each $j \in \widehat{N}$.

2.
$$\overline{x}_e = b_l/a_{le}$$
.

3. $\overline{x}_i = b_i - a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

1.
$$\overline{x}_i = 0$$
 for each $j \in \widehat{N}$.

2.
$$\overline{x}_e = b_l/a_{le}$$
.

3. $\overline{x}_i = b_i - a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

1.
$$\overline{x}_i = 0$$
 for each $j \in \widehat{N}$.

2.
$$\overline{x}_e = b_l/a_{le}$$
.

3. $\overline{x}_i = b_i - a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \widehat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \widehat{b}_e = b_l/a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

1.
$$\overline{x}_i = 0$$
 for each $j \in \widehat{N}$.

2.
$$\overline{x}_e = b_l/a_{le}$$
.

3. $\overline{x}_i = b_i - a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \widehat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \widehat{b}_e = b_l / a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

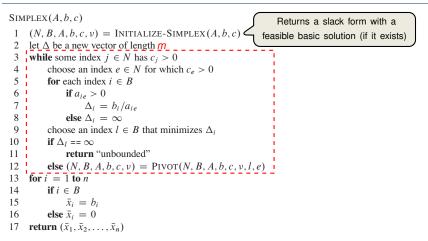
Example before was a particularly nice one!

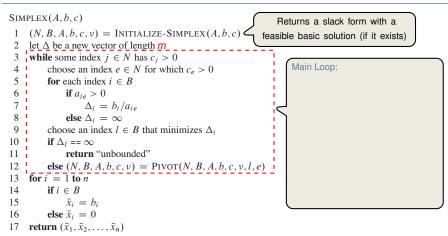
The formal procedure SIMPLEX

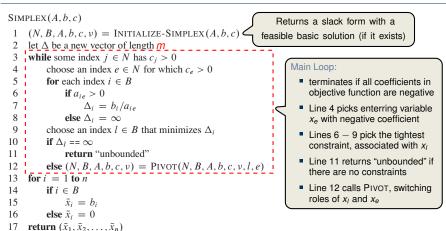
```
SIMPLEX(A, b, c)
     (N, B, A, b, c, v) = INITIALIZE-SIMPLEX(A, b, c)
 2
     let \Delta be a new vector of length m
 3
     while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
 4
 5
          for each index i \in B
 6
                if a_{ie} > 0
 7
                     \Delta_i = b_i / a_{ie}
 8
                else \Delta_i = \infty
 9
          choose an index l \in B that minimizes \Delta_i
10
          if \Delta_l == \infty
11
                return "unbounded"
12
          else (N, B, A, b, c, v) = \text{PIVOT}(N, B, A, b, c, v, l, e)
13
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
17
     return (\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n)
```

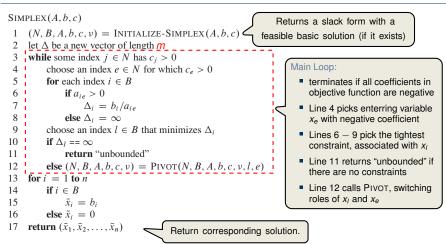

The formal procedure SIMPLEX

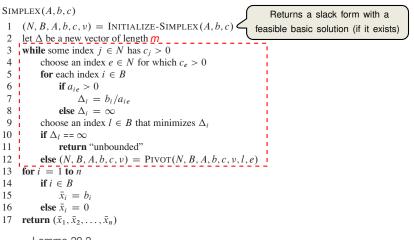
SIMPLEX(A, b, c)Returns a slack form with a $(N, B, A, b, c, \nu) =$ INITIALIZE-SIMPLEX(A, b, c)feasible basic solution (if it exists) 2 let Δ be a new vector of length *m* 3 while some index $j \in N$ has $c_i > 0$ choose an index $e \in N$ for which $c_e > 0$ 4 5 for each index $i \in B$ 6 **if** $a_{ie} > 0$ 7 $\Delta_i = b_i / a_{ie}$ 8 else $\Delta_i = \infty$ 9 choose an index $l \in B$ that minimizes Δ_i if $\Delta_l == \infty$ 10 11 return "unbounded" 12 else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)13 for i = 1 to n14 if $i \in B$ $\bar{x}_i = b_i$ 15 else $\bar{x}_i = 0$ 16 17 return $(\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n)$





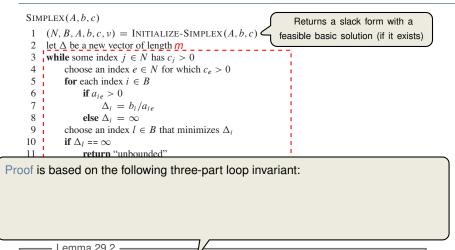






- Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.



Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

SIMPLEX(A, b, c)	Returns a slack form with a
1 $(N, B, A, b, c, v) = $ INITIALIZE-SIMPLEX (A, b, c)	feasible basic solution (if it exists)
2 let Δ be a new vector of length m	
3 while some index $j \in N$ has $c_i > 0$	
4 choose an index $e \in N$ for which $c_e > 0$	
5 for each index $i \in B$	
6 i if $a_{ie} > 0$	
7 $\Delta_i = b_i / a_{ie}$	
8 else $\Delta_i = \infty$	
9 choose an index $l \in B$ that minimizes Δ_i	
10 if $\Delta_l == \infty$	
11 return "unbounded"	1

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,

Lemma 29.2 -

3. the basic solution associated with the (current) slack form is feasible.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

$$z = x_1 + x_2 + x_3$$

 $x_4 = 8 - x_1 - x_2$
 $x_5 = x_2 - x_3$

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$

 \downarrow Pivot with x_1 entering and x_4 leaving
 \checkmark

$$z = x_{1} + x_{2} + x_{3}$$

$$x_{4} = 8 - x_{1} - x_{2}$$

$$x_{5} = x_{2} - x_{3}$$

$$\downarrow Pivot with x_{1} entering and x_{4} leaving$$

$$z = 8 + x_{3} - x_{4}$$

$$x_{1} = 8 - x_{2} - x_{4}$$

$$x_{5} = x_{2} - x_{3}$$

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$Z = X_1 + X_2 + X_3$$

$$X_4 = 8 - X_1 - X_2$$

$$X_5 = X_2 - X_3$$
Pivot with x_1 entering and x_4 leaving
$$V$$

$$Z = 8 + X_3 - X_4$$

$$X_1 = 8 - X_2 - X_3$$
Cling: If additionally slack form at two
as are identical, SIMPLEX fails to terminate!
$$Z = 8 + X_2 - X_4$$

$$V$$
Pivot with x_3 entering and x_5 leaving
$$V$$

$$Z = 8 + X_2 - X_4 - X_5$$

$$X_1 = 8 - X_2 - X_4$$

$$X_3 = X_2 - X_4$$

Cy iteratior Cycling: SIMPLEX may fail to terminate.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

1. Bland's rule: Choose entering variable with smallest index

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

- Anti-Cycling Strategies -
- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7 -

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7 ·

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

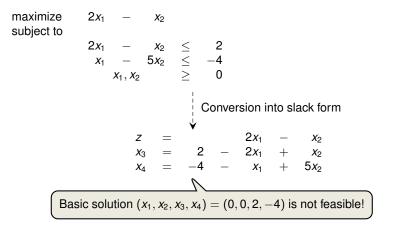
Finding an Initial Solution

maximize $2x_1 - x_2$ subject to

Finding an Initial Solution

maximize $2x_1 - x_2$ subject to $2x_1 - x_2 \le 2$ $x_1 - 5x_2 \le -4$ $x_1, x_2 \ge 0$ \downarrow Conversion into slack form

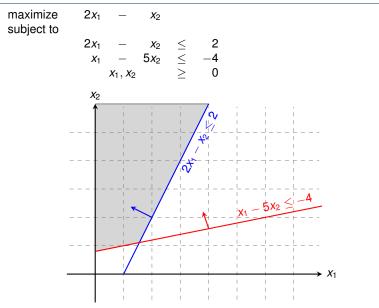
Finding an Initial Solution



Geometric Illustration

maximize subject to	$2x_1 - x_2$
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	$egin{array}{rcccccccccccccccccccccccccccccccccccc$
	X ₂
	\uparrow / \sim
	$x_1 - 5x_2 \leq -4$
	X_1

Geometric Illustration



Geometric Illustration

maximize subject to	$2x_1 - x_2$
	$2x_1 - x_2 \leq 2$
	$2x_1 - x_2 \leq 2$ $x_1 - 5x_2 \leq -4$ $x_1, x_2 \geq 0$ Questions: How to determine whether
	$x_1, x_2 \ge 0$ • How to determine whether x_2 there is any feasible solution?
	 If there is one, how to determine an initial basic solution?
	$\sqrt{2}$
	$x_1 - 5x_2 \le -4$

 $\sum_{j=1}^{n} c_j x_j$

maximize subject to

$$\begin{array}{rcl} \sum_{j=1}^n a_{ij} x_j &\leq & b_i \quad \text{ for } i=1,2,\ldots,m,\\ x_j &\geq & 0 \quad \text{ for } j=1,2,\ldots,n \end{array}$$

 $\sum_{j=1}^{n} c_j x_j$

maximize subject to

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \text{for } i = 1, 2, \dots, m,$$
$$x_j \geq 0 \quad \text{for } j = 1, 2, \dots, n$$
$$\bigcup_{i=1}^{n} \text{Formulating an Auxiliary Linear Program}$$

maximize subject to	$\sum_{j=1}^{n} c_j X_j$				
•	$\sum_{i=1}^{n} a_{ii} x_i < b_i$ for $i = 1, 2,, m$,				
	$\begin{array}{rcl} \sum_{j=1}^n a_{ij} x_j &\leq & b_i \text{ for } i=1,2,\ldots,m, \\ x_j &\geq & 0 \text{ for } j=1,2,\ldots,n \end{array}$				
	↓ Formulating an Auxiliary Linear Program				
maximize	$-x_0$				
subject to					
	$\begin{array}{rcl} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{ for } i = 1, 2, \dots, m, \\ x_{i} & \geq & 0 & \text{ for } j = 0, 1, \dots, n \end{array}$				
	$x_j \geq 0$ for $j = 0, 1, \dots, n$				

maximize subject to	$\sum_{j=1}^{n} c_j x_j$			
-	$\sum_{j=1}^{n} a_{j}$	$\sum_{ij} X_j \leq X_i > X_i$	b _i 0	for $i = 1, 2,, m$, for $j = 1, 2,, n$
		↓ Formu	lating	g an Auxiliary Linear Program
		•		
maximize	$-x_0$			
subject to				
-	$\sum_{i=1}^{n} a_{ij} x_j -$	$x_0 \leq$	bi	for $i = 1, 2,, m$, for $j = 0, 1,, n$
	,	$x_i >$	0	for $i = 0, 1,, n$
Lemma 29.11				
Let <i>L_{aux}</i> be the auxiliary LP of a linear program <i>L</i> in standard form. Then				
L is feasible	if and only if the opt	imal obje	ctive	value of <i>L_{aux}</i> is 0.

maximize subject to	$\sum_{j=1}^{n} c_j$	ij x j			
,		$\sum_{j=1}^{n} a_{ij} x_j x_j$	\leq	<i>b</i> i 0	for $i = 1, 2,, m$, for $j = 1, 2,, n$
↓ Formulating an Auxiliary Linear Program					g an Auxiliary Linear Program
maximize	$-x_0$				
subject to		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	\leq	b _i	for <i>i</i> = 1, 2, , <i>m</i> ,
		x_j	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$
Lemma 29.11					
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.					

Proof.

maximize subject to	$\sum_{j=1}^{n} a_{j}$	C _j X _j			
		$\sum_{j=1}^{n} a_{ij} x_j x_j$	\leq \sim	b _i 0	for $i = 1, 2,, m$, for $j = 1, 2,, n$
		¦ F ¥	ormula	ting	an Auxiliary Linear Program
maximize subject to	$-x_0$				
		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	$\leq l$	b _i	for $i = 1, 2,, m$,
		$\Sigma_{j=1}$, X_{j}	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$
Lemma 29.11					
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.					

Proof.

• " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$

maximize subiect to	$\sum_{j=1}^{n}$	C _j X _j				
		$\sum_{j=1}^{n} a_{ij} x_j$	\leq	b _i 0	for $i = 1, 2,, m$, for $j = 1, 2,, n$	
			Formu	ılating	g an Auxiliary Linear Program	
maximize subiect to	- <i>x</i> ₀					
,		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	\leq	bi	for $i = 1, 2,, m$,	
		$x_j = 1$	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$	
Lemma	29.11 -					
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.						

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.

maximize subject to	$\sum_{j=1}^{n}$	C _j X _j				
		$\sum_{j=1}^{n} a_{ij} x_j$	\leq	bi	for $i = 1, 2,, m$, for $j = 1, 2,, n$	
		Xj	\geq	0	for $j = 1, 2,, n$	
		¦ F ¥	ormula	ating	g an Auxiliary Linear Program	
maximize subject to	- <i>x</i> ₀					
,		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	\leq	bi	for $i = 1, 2,, m$,	
		$X_j = X_j$	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$	
Lemma	29.11 —					
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.						

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0. Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}

maximize subject to	$\sum_{j=1}^{n}$	C _j X _j				
		$\sum_{j=1}^{n} a_{ij} x_j$	\leq	bi	for $i = 1, 2,, m$, for $j = 1, 2,, n$	
		Xj	\geq	0	for $j = 1, 2,, n$	
		¦ F ¥	ormu	lating	g an Auxiliary Linear Program	
maximize subject to	- <i>x</i> ₀					
		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	\leq	bi	for $i = 1, 2,, m$,	
		x_j	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$	
Lemma	29.11 -					
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.						

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0

maximize subject to	$\sum_{j=1}^{n}$	C _j X _j					
		$\sum_{j=1}^{n} c_{j}$	a _{ij} X _j	\leq	b _i	for $i = 1, 2,, m$, for $j = 1, 2,, n$	
			¦ Fo	ormul	ating	an Auxiliary Linear Program	
			•				
maximize	$-x_0$						
subject to							
		$\sum_{i=1}^{n} a_{ij} x_j$ –	- <i>x</i> ₀	\leq	bi	for $i = 1, 2,, m$,	
			Xj	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$	
Lemma	29.11 -						
	بريد مما		line e e			Lington doubter Them	
				•	0	L in standard form. Then	
L is feasible if and only if the optimal objective value of L _{aux} is 0.							

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy *L*.

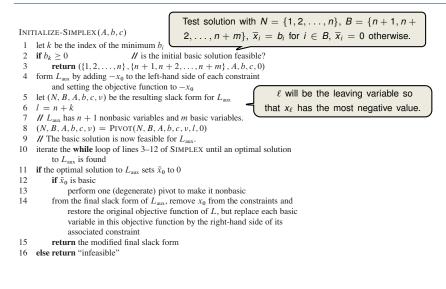
maximize subject to	$\sum_{j=1}^{n}$	$C_j X_j$					
		$\sum_{j=1}^{n} a_{ij} x_j x_j$	≤ ≥	<i>b</i> i 0	for $i = 1, 2,, m$, for $j = 1, 2,, n$		
		· · · · · · · · · · · · · · · · · · ·	Formu	lating	g an Auxiliary Linear Program		
maximize subject to	- <i>X</i> ₀						
,		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	\leq	bi	for $i = 1, 2,, m$,		
		$x_j = x_j$	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$		
Lemma	29.11 -						
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.							

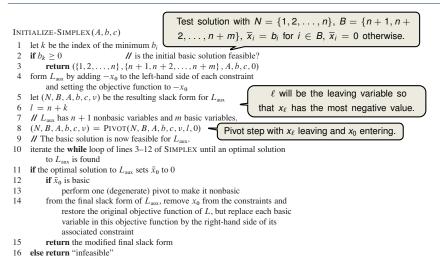
- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy *L*. \Box

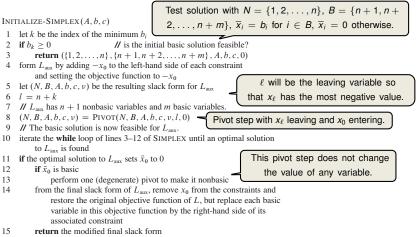
INITIALIZE-SIMPLEX (A, b, c)

- 1 let k be the index of the minimum b_i
- 2 if $b_k \ge 0$ // is the initial basic solution feasible?
- 3 **return** $(\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)$
- 4 form L_{aux} by adding $-x_0$ to the left-hand side of each constraint and setting the objective function to $-x_0$
- 5 let (N, B, A, b, c, v) be the resulting slack form for L_{aux}
- $6 \quad l = n + k$
- 7 // L_{aux} has n + 1 nonbasic variables and m basic variables.
- 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
- 9 // The basic solution is now feasible for L_{aux} .
- 10 iterate the **while** loop of lines 3–12 of SIMPLEX until an optimal solution to L_{aux} is found
- 11 if the optimal solution to L_{aux} sets \bar{x}_0 to 0
- 12 **if** \bar{x}_0 is basic
- 13 perform one (degenerate) pivot to make it nonbasic
- 14 from the final slack form of L_{aux} , remove x_0 from the constraints and restore the original objective function of L, but replace each basic variable in this objective function by the right-hand side of its associated constraint
- 15 return the modified final slack form
- 16 else return "infeasible"

Test solution with $N = \{1, 2, ..., n\}, B = \{n + 1, n + ..., n\}$ INITIALIZE-SIMPLEX(A, b, c)2,..., n + m}, $\overline{x}_i = b_i$ for $i \in B$, $\overline{x}_i = 0$ otherwise. 1 let k be the index of the minimum b_i 2 if $b_{\mu} > 0$ // is the initial basic solution feasible? 3 return $(\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)$ form L_{aux} by adding $-x_0$ to the left-hand side of each constraint 4 and setting the objective function to $-x_0$ let (N, B, A, b, c, v) be the resulting slack form for L_{max} 5 l = n + k6 7 // L_{aux} has n + 1 nonbasic variables and m basic variables. 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)9 // The basic solution is now feasible for L_{aux} . iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution 10 to L_{max} is found **if** the optimal solution to L_{aux} sets \bar{x}_0 to 0 12 if \bar{x}_0 is basic 13 perform one (degenerate) pivot to make it nonbasic 14 from the final slack form of L_{aux} , remove x_0 from the constraints and restore the original objective function of L, but replace each basic variable in this objective function by the right-hand side of its associated constraint 15 return the modified final slack form 16 else return "infeasible"

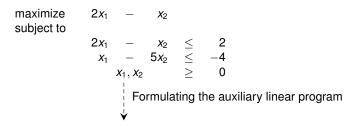


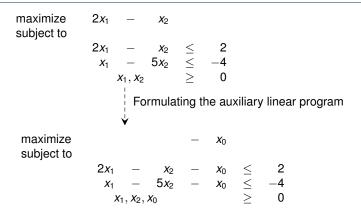


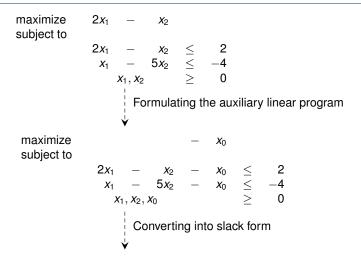


16 else return "infeasible"

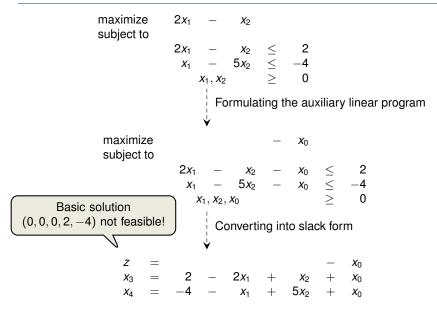
maximize subject to	2 <i>x</i> ₁	_	<i>X</i> 2		
	$2x_{1}$	_	<i>X</i> 2	\leq	2
	<i>x</i> ₁	_	5 <i>x</i> ₂	\leq	-4
		<i>x</i> ₁ , <i>x</i> ₂		\geq	0







maximize subject to	$2x_1 - x_2$
	$egin{array}{rcccccccccccccccccccccccccccccccccccc$
	$x_1, x_2 \ge 0$
	Formulating the auxiliary linear program
	\checkmark
maximize subject to	$- x_0$
	$2x_1 - x_2 - x_0 \leq 2$
	$egin{array}{rcccccccccccccccccccccccccccccccccccc$
	$x_1, x_2, x_0 \geq 0$
	Converting into slack form
<i>z</i> =	
$x_{3} =$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$x_{4} =$	$-4 - x_1 + 5x_2 + x_0$

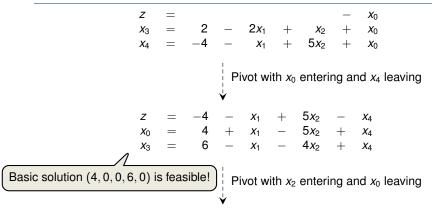


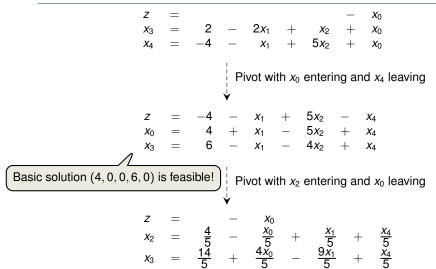
Ζ								<i>X</i> 0
<i>X</i> 3	=	2	_	$2x_{1}$	+	<i>X</i> 2	+	<i>x</i> ₀
X_4	=	-4	_	<i>X</i> 1	+	$5x_2$	+	<i>X</i> 0

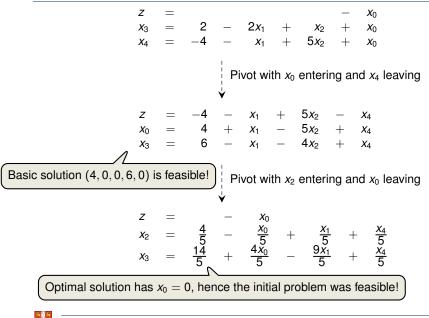
Ζ = *X*0 = 2 $- 2x_1$ *X*3 $+ x_2$ *X*0 +-4+ 5*x*₂ **X**4 $- x_1$ = + X_0 Pivot with x_0 entering and x_4 leaving ¥

Ζ = _ X_0 2*x*₁ 2 *X*3 +**X**2 *X*0 = _ +-4 *X*1 $5x_2$ **X**4 + += _ X_0 Pivot with x_0 entering and x_4 leaving ¥ Ζ -4 *X*1 $+ 5x_2$ = _ _ X_4 $x_1 - 5x_2$ *x*₀ 4 ++= X_4 6 $-4x_{2}$ X_3 = _ *X*1 + X_4

Ζ = X_0 _ 2 $2x_{1}$ *X*3 +*X*2 = _ +*X*₀ -4 $5x_2$ **X**4 *X*1 + += X_0 _ Pivot with x_0 entering and x_4 leaving Ý Ζ -4 5*x*₂ _ *X*1 + _ XΔ *X*0 4 +*X*1 $-5x_{2}$ += X_4 6 X_3 = _ *X*1 _ $4x_2$ +XΔ Basic solution (4, 0, 0, 6, 0) is feasible!







$$z = - x_0$$

$$x_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

Set $x_0 = 0$ and express objective function
by non-basic variables

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$= 0 \text{ and express objective function}$$

$$y$$

$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{4}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$z_{1} - x_{2} = 2x_{1} - (\frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5})$$

$$x_{2} = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = -\frac{4}{5} + \frac{3x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = -\frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$
Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$z_{1} - x_{2} = 2x_{1} - (\frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5})$$

$$y = \frac{5}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{4}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$
Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12 ·

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

Theorem 29.13 (Fundamental Theorem of Linear Programming) — Any linear program *L*, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

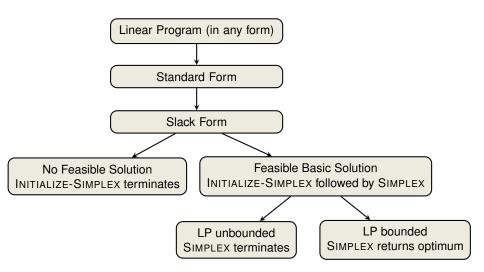
If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Theorem 29.13 (Fundamental Theorem of Linear Programming) Any linear program *L*, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)



____ Linear Programming _____

extremely versatile tool for modelling problems of all kinds

Linear Programming ______

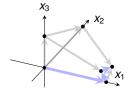
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Linear Programming _____

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm -

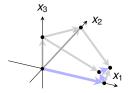
In practice: usually terminates in polynomial time, i.e., O(m + n)



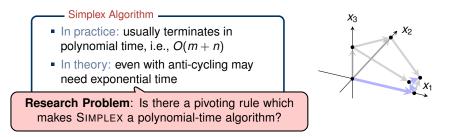
- Linear Programming ______
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm .

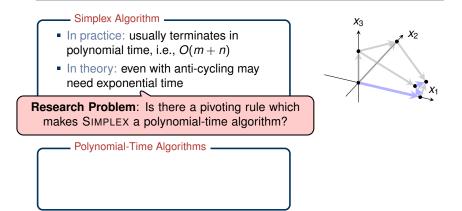
- In practice: usually terminates in polynomial time, i.e., O(m + n)
- In theory: even with anti-cycling may need exponential time



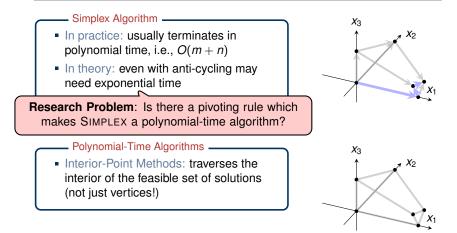
- Linear Programming —
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures



- Linear Programming ————
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures



- Linear Programming _____
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures



- Linear Programming _____
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

