Advanced Algorithms

l. Course Intro and Sorting Networks
Thomas Sauerwald

Easter 2019

5.5 UNIVERSITY OF
¥ CAMBRIDGE

Outline

Qutline of this Course

Rl b
I. Course Intro and Sorting Networks Outline of this Course

List of Topics

IA Algorithms J [IB Complexity Theory j [II Advanced Algorithmsj
/ /

I. Sorting Networks (Sorting, Counting)
= |I. Linear Programming

= [ll. Approximation Algorithms: Covering Problems

= |V. Approximation Algorithms via Exact Algorithms

= V. Approximation Algorithms: Travelling Salesman Problem
= VI. Approximation Algorithms: Randomisation and Rounding

= closely follow CLRS3 and use the same numberring
"ALGORITHMS = however, slides will be self-contained (mostly)
EECIIXTIO

o o 1. Course Intro and Sorting Networks Outline of this Course 3

Outline

Some Highlights

I. Course Intro and Sorting Networks Some Highlights

Linear Programming and Simplex

X3
X2
0,12,0
(0.12,0)
0,0,4.8) @
(0,0,4.8)
0,0; . ®(8,4,0)
(0.9, (8.25,0,1.5) @ 28
27.75
0\)51
9.0,0
(9.9,0)
maximize 3xy + Xo + 2X3
subject to
X1 + X2 + 3x3 < 30
2xy + 2% + 5x3 < 24
4 + x + 2x3 < 36
X1, X2, X3 > 0

el b
I. Course Intro and Sorting Networks Some Highlights

The Original Article (1954)

"n"n
"-E)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anp 8. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;; represents the ‘distance’ from 7 to J,
arrange the points in a cyelic order in such a way that the sum of the d;;
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,*”* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.

I. Course Intro and Sorting Networks Some Highlights

Travelling Salesman Problem: The 42 (49) Cities

O 00 =T DU W

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.
. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

. Carson City, Nev.
. Los Angeles, Calif.
. Phoenix, Ariz.

. Santa Fe, N. M.

. Denver, Colo.

. Cheyenne, Wyo.

. Omaha, Neb.

. Des Moines, Towa
. Kansas City, Mo.
. Topeka, Kans.

. Oklahoma City, Okla.
. Dallas, Tex.

. Little Rock, Ark.

. Memphis, Tenn.

. Jackson, Miss.

. New Orleans, La.

Q=

. Birmingham, Ala.
. Atlanta, Ga.

. Jacksonville, Fla.
. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

. New York, N. Y.

. Hartford, Conn.
.‘Providence, R. I.

Rl b
I. Course Intro and Sorting Networks

Some Highlights

Road Distances

21|137139 94 96 94 80 78 77 84 77 56 64 65 9o 87 8 36 68 0 30
2117122 77 8o 83 68 62 60 61 50 34 42 49 82 77 6o 30 62 70 49 21

43 77 7% 4! s

24| 85 89 44 48 53 41 34 28 29 22 23 35 69105102 74 56 88 99 81 54 32 29
25| 77 80 36 40 4b 34 27 19 20 14 20 30 77114111 84 b4 96107 87 6o 40 37
26| 87 89 44 46 46 30 28 29 32 27 36 47 78116112 84 66 98 95 75 47 36 39
27| 91 g3 48 50 48 34 32 33 36 30 34 45 77115110 83 63 97 91 72 44 32 36
28| 105106 62 63 64 47 46 49 3+ 48 36 59 85119115 88 6 98 79 9 31 36 42
29| 111113 69 71 66 S1 3 36 61 57 59 71 gb130126 98 75 98 BS b2 38 47 53
30| g1 92 50 51 46 3o 34 38 43 49 o 71103141136109 9O 1I§ 99 81 §3 6I 62
516 b0 93126108 88 6o 6 66

32| 89 T <5 §5 S0 34 39 44 49 63 76 87120155 150123100123 109 86 62 71 78
75 86 97126160 155 128 104 128 113 go 67 76 82

34| 73 81 44 43 35 23 30 39 44 62 78 89121159155 127 108 136 123 101 75 79 81
35| 67 69 42 41 31 25 32 31 46 64 83 90130164 160 133 114 146134 111 85 84 86
36| 74 76 61 60 42 44 ST 60 66 83102110147 185179 155133 159 146 122 98 105 107
37| 57 59 46 41 25 30 36 47 52 70 93 98136 172172 148 126 128 147124 121 97 99
38| 45 36 41 34 20 34 38 48 33 73 96 99137176 178 151 131 163 159 135 108 102 103
39| 33 37 35 26 18 34 36 46 51 70 03 97134171 176 151 129 161 163 139 118 102 101
40| 29 33 30 21 18 35 33 40 45 65 87 91117166171 144 125157156139 113 95 97
41 3 Tr 41 37 47 §7 55 58 63 83105 109 147 186 188 164 144 176 182 161 134 119 116
42| 5 12 55 31 53 by 61 br 66 84111 113150186192 166 147 180 188 167 130 124 119

84 88 101 108
90 94107114

2] 8 TABLE I

H B Roap Distances BETwEEN CITiEs 1N Apsustep Unirs

HE The figures in the table are mileages between the two specified numbered cities, less 11,
6| 61 62 21 20 17 divided by 17, and rounded to the nearest integer.

7| 58 6o 16 17 18 6

8] 39 15 20 26 17 10

9| b2 66 20 25 31 22 15

21
27
54
[

9

1306
4132 25
8332 6

1 2 3 4 5 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23

26 27 28 29

37

38 39 40 41

I. Course Intro and Sorting Networks

Some Highlights

The (Unique) Optimal Tour (699 Units ~ 12,345 miles)

This tour has a length of 12,345 miles when
the adjusted units are expressed in miles

Fic. 16. The optimal tour of 49 cities,

I. Course Intro and Sorting Networks Some Highlights 9

Outline

Introduction to Sorting Networks

Sl
§ E.-,‘

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks
= only perform comparisons

= can only handle inputs of a fixed size

= sequence of comparisons is set in advance

= Comparisons can be performed in parallel %

Allows to sort n numbers
in sublinear time!

[Simple concept, but surprisingly deep and complex theory!]

el b
I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Comparison Networks

A sorting network is a comparison network which

Comparison Network works correctly (that is, it sorts every input)

= A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y, returns two
operates in O(1) J outputs x” = min(x, y) and y’ = max(x, y)

= wire connect output of one comparator to the input of another
= special wires: ninput wires ay, ao, ..., an and n output wires by, by, ..., bn

AN
[Convention: use the same name for both a wire and its value.]

7 3

X —>| > x’ = min(x, y) x ———¢—= ¥ =min(x, y)
comparator 3 7
y—> >y =max(x,y) y————e——"—y =max(x,y)
(a) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x” = 3, y’ = 7 are shown.

el b
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

A horizontal line represents

a sequence of distinct wires
v
a |
A C
az
E
as
B D
a

by

by

Sl
I. Course Intro and Sorting Networks

Introduction to Sorting Networks

13.1

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

[V
aj ’ b1
A C
as T b2
E
as o l b3
D

as by
|
R I. Course Intro and Sorting Networks Introduction to Sorting Networks 13.2

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic v/

a V b;
A C
a» b2
E

as - bs

as . ba
=
R I. Course Intro and Sorting Networks Introduction to Sorting Networks 13.3

Example of a Comparison Network (Figure 27.2)

o

Interconnections between comparators
must be acyclic

v

aj ’ b1
4 c

a : , by

| e
as ! bs
6 D{
as . . . by

[

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

J

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

13.4

Example of a Comparison Network (Figure 27.2)

o

9 2

aj ’ b1
5 A [C 6

ao . bo
2 5 £

as bs
6 D 9

aa by

N

[This network is in fact a sorting network (Exercise)J

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

13.5

Example of a Comparison Network (Figure 27.2)

a . by
/{ c
a : by
as bs
B D
as ba

N
(This network would not be a sorting network (Why??)]

R I. Course Intro and Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2 2
aj ’ b1
5 A{ 9 C 6 5
ao . bo
2 2 5 £ 6
as bs
6 B 6 D 9 9
aa by
depth 0 1 1 2 2 3
. Maximum depth of an output
Depth of a wire: . Lo
st e e SR @ wire equals total running time

= |f a comparator has two inputs of depths dyx and d,, then outputs have
depth max{dx, dy} + 1

i
I. Course Intro and Sorting Networks Introduction to Sorting Networks

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-

puts if it works correctly on binary inputs.

Lemma 27.1
If a comparison network transforms the input a = (ai, az,...,an) into
the output b = (b1, bo, ..., by), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai),f(a2),...,f(an)) into
f(b) = (f(b1), f(b2), ..., f(bn)).

fx) —— min(f(x), f()) = f(min(x, y))

f»

s max(f(x), f(¥)) = f(max(x, y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

eI

Rl b
%E I. Course Intro and Sorting Networks Introduction to Sorting Networks

141

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-

puts if it works correctly on binary inputs.

Lemma 27.1
If a comparison network transforms the input a = (ai, az,...,an) into
the output b = (b1, bo, ..., by), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai),f(a2),...,f(an)) into
f(b) = (f(b1), f(b2), ..., f(bn)).

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’'s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Rl b
%E I. Course Intro and Sorting Networks Introduction to Sorting Networks

14.2

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers

Theorem 27.2 (Zero-One Principle)

correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.
» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;

Rl b

&

[,

before a; in the output

Define a monotonically increasing function f as:

f(x) = {

Since the network places a; before a;, by the previous lemma

= f(g) is placed before f(a;)

But f(a;)) = 1 and f(a;) = 0, which contradicts the assumption that the

0 ifx<a,
1 ifx> a.

network sorts all sequences of 0’'s and 1’s correctly

O

I. Course Intro and Sorting Networks

Introduction to Sorting Networks

Some Basic (Recursive) Sorting Networks

1 |
2 -
3 ! —
g | n-wire Sorting Network | 279
n—1 : .
n I —
n+1 !

These are Sorting Networks, but with depth ©(n).]

5 -
3]]

n-wire Sorting Network | ?27??

n—1;
n—| !
n+1 l

Rl b
* I. Course Intro and Sorting Networks Introduction to Sorting Networks

Outline

Batcher’s Sorting Network

I. Course Intro and Sorting Networks

Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

o

[Sequences of one or two numbers are defined to be bitonic. j

Examples:

* (1,4,6,8,3,2) v
- (6,9,4,2,3,5) v
- (9,8,3,2,4,6) v
- (4
= binary sequences: 0'1/0%, or, 170/1%, for i, j, k > 0.

7 1y &y

Sl
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.
N
LWe always assume that nis even.J

—— Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is clean.

=~

0O———0 0 —s 0

0 0 | bitonic, 0 0 bitonic
| 0 clean : | itonic
1 0 o 1 0

bitonic bitonic

1 1 1 1

0 0 bitoni 1 1 | bitonic,
0) itonic) . clean

0 — | 0 — |

Sl
I. Course Intro and Sorting Networks Batcher’s Sorting Network

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. J

divide compare combine
0 top top 0 bitonic,
|| H clean
bitonic { e " - wede | Q) R B
: ﬂ :
0 bottom bottom i bitonic
L L1]
(a)
0 . . 0
[op ki [1] , bitonic
] il e i 1
itonic i j i !
n n 1 bitonic,
T bottom bottom clean
L) L

o o I. Course Intro and Sorting Networks Batcher’s Sorting Network

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. J

top top 0 bitonic,
0 [0] [0] clean

bitonic { e C T |1 RS [T8 [ET | 18 T
0 9] o I e
[bottom bottom | bitonic

0 0

L © L

[0]

1 top top 0 bitonic,
] [0] [0] clean

bitonic { e it — ——
0 o] 1 | o
bottom bottom | bitonic

0

d L

(d) N

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

[
o o I. Course Intro and Sorting Networks Batcher’s Sorting Network 20.2

The Bitonic Sorter

—] E— - 0 0 0 I 0
] | Brronic- — 0 0 0 0
— [| SORTER[n/2] 1 0 0 I 0
— HALF- — — bitonic 1 0 0 ol .
__| CLEANER[n] L itonic 1 1 1 I 0 sorte
] | Brronic- — 0 0 0 1
— [| SORTER[n/2] | _ 0 1 1 1
— — L 0 1 1 I)
(@) (b)

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[#/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Henceforth we will always
assume that n is a power of 2.
z
0 ifn=1,
D(n/2) +1 ifn=2%

Recursive Formula for depth D(n):

D(n) =

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

el b
I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

= concatenating X with Y7 (the reversal of Y) = 0000011111110000
S

This sequence is bitonic!]

Z

[Hence in order to merge the sequences X and Y, it suf- }

fices to perform a bitonic sort on X concatenated with Y*.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (@n 241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (a1, @z, . .., @n/2, @n, @n—1, - - -, @nj241)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs i and n — i + 1 for
i=1,2,...,n/2
= Remaining part is identical to BITONIC-SORTER[n]

a 0, 0 by a £, 0 by
ored a 0 0 b, bionic a 0 0 b, bitonic
sorte a 1 0 by itonic o 0, itonic

a4 ! I o by bitonic “ , o bs

as 0 Ly, o L L,

0 1 0 0

a, b a b
sorted ° 0 0 © Y bitonic 7 0 1 7} bitonic

a; by ag bg

ag —Le L p as O v L b

(a) (b)

[Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.]

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGERn] transforms the two monotonic input sequences (a1, a2,, dy/2)
and (dy /241, dn/242, - - - » Gn) into two bitonic sequences (by, by, ..., by 2) and (by/241, bpj242,
..., bp). (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
(ar, azs ...y Guja—15 Anj2, Ans Ap—1, - - -5 An/2+25 Gp/2+1) is transformed into the two bitonic se-
quences (b1, bo, ..., by0) and (by, by_1,...,bp/241).

R I. Course Intro and Sorting Networks Batcher’s Sorting Network

23

Construction of a Merging Network (2/2)

L 0 0 0 I 0
BitonIC- — J 0 0 0 0
SORTER[n/2] |__ sorted 1 1 0
| 1 0 0 I 1
77417 L 0 I 1 1 I 1 sorted
BrroNic- — d 1 1 1 1
SORTER[n/2] | sorte 1 1 1 1
| 1 1 1 I 1
(a) (b)

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[7] can be viewed as BITONIC-SORTER[n] with the first half-cleaner altered to
compare inputs i andn —i+1fori =1,2,...,n/2. Here,n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

el
o o I. Course Intro and Sorting Networks Batcher’s Sorting Network 24

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER([n]
= sorts any bitonic sequence
= depth log n

2. MERGER([n]

* merges two sorted input sequences
= depth logn

Batcher’s Sorting Network
= SORTER[nN] is defined recursively:

= If n = 2%, use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.

Then merge them using MERGER[n].

= If n =1, network consists of a single wire.

AN

[can be seen as a parallel version of merge sort]

CLEANER[n]

Brronic-

SORTER[n/2]

BiTONIC-

SORTER[n/2]

BrroNic-
SORTER[1/2]

BiToNiC-
SORTER[/2]

SORTER[/2]

SORTER[n/2]

Rl b
I. Course Intro and Sorting Networks

Batcher’s Sorting Network

25

Unrolling the Recursion (Figure 27.12)

o [[MERGER[2] [[

| Sorter [n/2] [MERGER[4] [[

] [[MERGER[2] [[

o] MERGER[n] [T MERGER|[8]

o [MERGER[2] [

| Sorter [n/2] [MERGER[4] [[

] [[MERGER|[2] : :

1 0 0 0

041 - L o Recursion for D(n):

S e ¢

0 —— : 1 0 0 ifn=1,
90 0 o D(n)= . p
041 4 I D(n/2) +logn if n=2".
0 0 I 0 1 . 5

040 1 L Solution: D(n) = ©(log? n).

depth 1 2 2 3 4 4 4 45 56

SORTER[n] has depth ©(log?® n) and sorts any input.

[
R I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).]
N

[Quite elaborate construction, and involves huges constants.]

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2 smallerkeys in by, ..., b,z andthe n/2 larger keys in b, /241, . . ., bn.
N

[Perfect halver of depth log n exist ~ yields sorting networks of depth ©((log n)?).]

Approximate Halver

An (n, e)-approximate halver, e < 1, is a comparison network that for

every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bn/241, - .., bn and at most ek of it&k largest keys in by, ..., by/».

We will prove that such networks can be constructed in constant depth!

Rl b
R I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

Expander Graphs

~—— Expander Graphs \
A bipartite (n, d, u)-expander is a graph with:
= G has n vertices (n/2 on each side)
= the edge-set is union of d perfect matchings
= For every subset S C V being in one part,

IN(S)| > miny: - |S],n/2 — | S|}
AN

Specific definition tailored for sorting L R
network - many other variants exist!

Expander Graphs:
= probabilistic construction “easy”: take d (disjoint) random matchings

= explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

= many applications in networking, complexity theory and coding theory

Rl b
I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

From Expanders to Approximate Halvers

o o I. Course Intro and Sorting Networks Batcher’s Sorting Network

29.1

From Expanders to Approximate Halvers

o o I. Course Intro and Sorting Networks Batcher’s Sorting Network

29.2

From Expanders to Approximate Halvers

o o I. Course Intro and Sorting Networks Batcher’s Sorting Network

29.3

From Expanders to Approximate Halvers

[
o o I. Course Intro and Sorting Networks Batcher’s Sorting Network 29.4

Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with k smallest outputs -

= For every u € N(Y): 3 comparat. (u,v),ve Y u
t

= Let us, v be their keys after the comparator
Let uy, vy be their keys at the output (note

Further:ug < us <vi<vg=uge X

Since u was arbitrary:

|
| |
| |
o
| |
vg € X) |
| |
| 1
| |
| |
|

Y[+ IN(Y)[< k.

= Since G is a bipartite (n, d, u)-expander: - -

Y]+ IN(Y)| > | Y]+ min{u| Y|, n/2 — Y|}

=min{(1 +)| Y|,n/2}. y
t

Combining the two bounds above yields:
(A +mlYl <k

= Same argument = at most ¢ - k,

e:=1/(n+ 1), of the k largest input keys are
placedin by, ..., by/2. O

= typical application of expander graphs in parallel algorithms
= Much more work needed to construct the AKS sorting network

Rl b

o o I. Course Intro and Sorting Networks Batcher’s Sorting Network

AKS network vs. Batcher’s network

Donald E. Knuth (Stanford)

“Batcher’s method is much
better, unless n exceeds the
total memory capacity of all
computers on earth!”

Richard J. Lipton (Georgia Tech)

“The AKS sorting network is
galactic: it needs that n be
larger than 278 or so to finally
be smaller than Batcher’s
network for n items.”

Rl b
I. Course Intro and Sorting Networks

Batcher’s Sorting Network 31

Siblings of Sorting Network

Sorting Networks comparator
= sorts any input of size n o<
= special case of Comparison Networks =
2] > |7
Switching (Shuffling) Networks - switch R
= creates a random permutation of n items . o
= special case of Permutation Networks i’,,:
N
YR ' I
Counting Networks balancer
= balances any stream of tokens over n wires L L~
= special case of Balancing Networks A’IA
2 | | 4

.;_E S I. Course Intro and Sorting Networks Batcher’s Sorting Network 32

Outline

Counting Networks

Sl
§ E.-,‘

I. Course Intro and Sorting Networks

Counting Networks

33

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
ANN

Values could represent addresses in memories
or destinations on an interconnection network

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

O

O O

Rl b
I. Course Intro and Sorting Networks Counting Networks

34.1

Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
ANN

Values could represent addresses in memories
or destinations on an interconnection network

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

© C

(Number of tokens differs by at most one]

O

Rl b
I. Course Intro and Sorting Networks Counting Networks 34.2

Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xq, X2, . . ., Xn be the number of tokens (ever received) on the
designated input wires

2. Let y1,¥s, ..., yn be the number of tokens (ever received) on the
designated output wires

3. Inaquiescent state: 37, xi =31, yi
4. A counting network is a balancing network with the step-property:

0<yi—y <tforanyi<j.

Bitonic Counting Network: Take Batcher's Sorting Network and re-

place each comparator by a balancer.

Rl b
I. Course Intro and Sorting Networks Counting Networks 35

Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,x,and yi, ..., y, have the step property. Then:

1. We have Y72 x5y = [1 20, xi], and 072 xoi = | 3 350, X

2. |fZL1Xf72,v:1y/,then)q7y,for/71,...,

B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

——— Key Lemma

have the step property, then so does the output y1, ..., ya.

Consider a MERGER[n]. Then if the inputs Xy, ..., Xn/2 and X, 241, - .

., Xn

Proof (by induction on n being a power of 2)
= Case n = 2is clear, since MERGER(2] is a single balancer

Rl b
I. Course Intro and Sorting Networks Counting Networks

36.1

Correctness of the Bitonic Counting Network (non-examinable)

Facts

1. We have 72 xiq = [13°0,

2. 1E3°0, xi =310, yi, then x; =
B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

Let x1,...,x,and yi, ..., y, have the step property. Then:

%], and 7/ = 3 74)

yifori=1,...,n

X1
X2
X3
X4
X5
X6
X7
X8

1

22

23

24

>—9 9 o9 o4

Proof (by induction on n being a power of 2)
= Case n = 2is clear, since MERGER(2] is a single balancer

" n>2 letz,...,zand z,. ..

: 2y be the outputs of the MERGER[n/2] subnetworks

Rl b
I. Course Intro and Sorting Networks

Counting Networks

36.2

Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,x,and yi, ..., y, have the step property. Then:

1. We have Y72 x5y = [1 20, xi], and 072 xoi = | 3 350, X

2. |f27:1xf7Z,v:u//,thenxify,-forlf1,...,

B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

X1 1
Xo z1’ I
X3 22
X4 Zé I
% l 2
6 7z |
X7 Z‘lt
xg 24 I

Proof (by induction on n being a power of 2)
= Case n = 2 is clear, since MERGER|2] is a single balancer
" n>2 letz,...,zand z,. .. ,z,’7/2 be the outputs of the MERGER[n/2] subnetworks

Rl b
I. Course Intro and Sorting Networks Counting Networks

Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,Xxpand yi, ..., y» have the step property. Then:

1. We have Y72 x5y = [1 20, xi], and 072 xoi = | 3 350, X

2. |f27:1xf7Z,v:u//,thenxify,-forlf1,...,

B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

X1 1
%2 7 |
X3 22
% 7]
% l 7
X6 7 |
X7 Z‘lt
xg 24 I

Proof (by induction on n being a power of 2)

Case n = 2 is clear, since MERGER(2] is a single balancer
n>2 letz,...,zypand z, . .. ,z,’7/2 be the outputs of the MERGER[n/2] subnetworks

H=z,...,2,0and z{, ... ,z,/,/z have the step property
Let Z := Z"/2 ziand Z' = "2 2

i=1 “i
2
Claim: |2 — 2'| < 1(since Z' = [05 x| + [320001 Xi1)
Case 1: If Z = Z’, then F2 implies the output of MERGER([n] is y; = Zig ((i=1)/2) ¥

Case 2:If |Z — Z'| =1, F3implies z; = z/ fori = 1,. .., n/2 except a unique j with z; # .

Balancer between z; and zj’ will ensure that the step property holds.

Rl b
I. Course Intro and Sorting Networks Counting Networks

36.4

Bitonic Counting Network in Action (Asychnronous Execution)

® xn—

® x

®® O x«—

)iz

V2]

bz

Ya

el b
I. Course Intro and Sorting Networks

Counting Networks

37

Bitonic Counting Network in Action (Asychnronous Execution)

X X X INONO)
. " ® @

v

X X X @

X4 b Ya @
=z

Counting can be done as follows:
Add local counter to each output wire i/, to
assign consecutive numbers i,i+n,i+2-n,...

o o I. Course Intro and Sorting Networks Counting Networks 37

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

Consists of log n BLOCK[n] networks each of which has depth log n

38

Counting Networks

I. Course Intro and Sorting Networks

[,

From Counting to Sorting [The converse is not true!]

Counting vs. Sorting)
| If a network is a counting network, then it is also a sorting network.]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}" to C by x; = 1iff a; = 0.
= Cis a counting network =- all ones will be routed to the lower wires
= S corresponds to C = all zeros will be routed to the lower wires

= By the Zero-One Principle, S is a sorting network. O
0o 1 1 1.1 1 0
1100 1f1 0 0
C 1 1]1]o. o0 0 1 S
0]0[{0O0]0 1 1

o o I. Course Intro and Sorting Networks Counting Networks

Il. Linear Programming
Thomas Sauerwald

Easter 2019

P CAMBRIDGE

Outline

Introduction

.‘,.! i II. Linear Programming Introduction

Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~——— Example: Political Advertising

= Imagine you are a politician trying to win an election

= Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

= Aim: at least half of the registered voters in each of the three regions
should vote for you

= Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

i
I!:? Il. Linear Programming Introduction

Political Advertising Continued

policy | urban suburban
build roads -2 5
gun control 8 2
farm subsidies 0 0
gasoline tax 10 0

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

g

= Possible Solution:
= $20,000 on advertising to building roads
= $0 on advertising to gun control
= $4,000 on advertising to farm subsidies
= $9,000 on advertising to a gasoline tax

= Total cost: $33,000

What is the best possible strategy?

Sl
Il Linear Programming Introduction

Towards a Linear Program

policy | urban suburban rural
build roads -2 5 3
gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control
= x3 = number of thousands of dollars spent on advertising on farm subsidies

= x4 = number of thousands of dollars spent on advertising on gasoline tax
Constraints:

= —2x1 +8xo +0x3 + 10x4 > 50

= 5x1 +2xo +0x3 + 0xs > 100

= 3x; —5x0 +10x3 — 2x4 > 25

[Objective: Minimize X1 + Xo + X3 + X4 j

Sl

. II. Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xy + Xo 4+ X3 + X4
subject to
—2X1 + 8x + Ox3s + 10x4 > 50
5x1 + 22X + 0x3 + 0x4 > 100
3Xq — 5xo + 10x3 — 2X4 > 25
X1, X2, X3, Xa > 0

g
‘(The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,X2,...,Xn) = @1 X1 + @Xo + - - + @nXn.

= Linear Equality: f(x1,X2,...,X2) = b { Linear Constraints]
« Linear Inequality: f(x1, X, ..., %) Zb

= Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

e II. Linear Programming Introduction

A Small(er) Example

X1 Xo

maximize
subject to

VIVIAIAI

R R

2X2

X1, X2

4X1
2X1
5X1

and x» satisfying
all constraints is a feasible solution

Any setting of x

[

R
5

74

Introduction

Il. Linear Programming

A Small(er) Example

maximize X1+
subject to
4X1 —
2xy +
5X1 —
X1, X2

X2

X2
X2
2X2

IV IV IAIA

[

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

II. Linear Programming

Introduction 7.2

Outline

Standard and Slack Forms

II. Linear Programming Standard and Slack Forms

Standard and Slack Forms

Standard Form

n
maximize > cx {Objective Function]
=

subject to

n
dap<b fori=1,2,....m
n+ m Constraints } =1

x>0 forj=1,2,...,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximize c'x {Inner product of two vectors]
subject to

Ax<b {Matrix-vector product]
x>0

Rl e
II. Linear Programming Standard and Slack Forms

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.
4

. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program
which is in standard form

/L
Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

A

minimization, sign of objective value changes.

el b
II. Linear Programming Standard and Slack Forms 10

[When switching from maximization to }

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.

| minimize —2X1_+ 3x |
subject to
Xy + X2 = 7
X1 — 2X2 < 4
X1 > 0

|
|
i Negate objective function
v

| maximize 2x1 — 33X |
subject to
Xq =+ Xo = 7
X1 — 2X2 < 4
X1 > 0

;_a % II. Linear Programming Standard and Slack Forms

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize
subject to

maximize
subject to

2X1 — 3X2
Xq + X = 7
Xq — 2X% < 4

| xi > 0]

i Replace x. by two

| variables x; and x3’
A

non-negative

2x; — [3xs + 3x)

X 4+ lx = x| = 7

Xi — 12x5 4+ 2x) | < 4
X1, X5, X5 > 0|

.;,E o II. Linear Programming

Standard and Slack Forms

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize
subject to

maximize
subject to

2y — 3x3 + 3x7
(X + X - X = 7
X - 2% 4+ 2x < 4
X1, Xz, Xo' > 0

I Replace each equality

\}’ by two inequalities.

2y — 3x3 + 3x7
i+ o - X <7
X+ x5 - x> 7
X — 2% + 2x35 < 4
X1, X5, X3 > 0

.;,E o II. Linear Programming

Standard and Slack Forms

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2xy — 3x3 + 3x5
subject to
i+ X - x < 7
L+ % - x> 7]
Xy - 2x5 + 2x) < 4
X1,)\(év Xé/ > 0

|
i Negate respective inequalities.

A\
maximize 2xy — 3x3 + 3x)
subject to
x + x - x) < 7
Bl
Xy - 2x5 + 2x) < 4
X1, X5, X5 > 0

.;_E % II. Linear Programming Standard and Slack Forms

Converting into Standard Form (5/5)

[Rename variable names (for consistency).]

N
maximize 2xy — 3x2 + 3x3
subject to
X1+ X2 - X3 < 7
-X1 - X + x3 < =7
Xy — 22X + 2x3 < 4
X1, X2, X3 > 0

l It is always possible to convert a linear program into standard form. '

II. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

N

/L

[For the simplex algorithm, it is more con- 1

venient to work with equality constraints.

Introducing Slack Variables

= Let Z}; ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi—) ajx
[s measures the slack between } ' ; v

the two sides of the inequality.
> 0.

= Denote slack variable of the ith inequality by X,

Rl b
II. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (2/3)

maximize
subject to

maximize
subject to

2X1 — 3Xo + 3Xx3
X1+ Xo - X3
-X = X2+ X3
X1 — 2X2 =+ 2X3
X1, X2, X3
I
I
|
|
A\
2X1
X4 = 7 — X1
X5 = -7 + X1
X6 = 4 — X1

X1, X2, X3, X4, X5, Xg

vV + +

IVIANININ

Introduce slack variables

3x2 +

X2+

Xo —

2X2 —
0

3X3

X3
X3
2X3

Il Linear Programming

Standard and Slack Forms

Converting Standard Form into Slack Form (3/3)

maximize 2x; — 3x2 + 3x3
subject to
X4 = 7 - X1 - X2 =+ X3
Xxs = -7 + X1+ X2 — X3
Xs = 4 — X1 + 2Xx - 2X3
X1, X2, X3, X4, X5, Xs > 0

!
I Use variable z to denote objective function
\l(and omit the nonnegativity constraints.

z = 2xy — 33X + 3x3 \

X4 = 7 - X1 — X2 + X3

xXxs = -7 + X1+ X2 — X3

Xeg = 4 — Xq + 2X — 2X3
/1

[This is called slack form.]

el b
II. Linear Programming Standard and Slack Forms 18

Basic and Non-Basic Variables

V4 = 2X1 — 3Xxo + 3x3

X4 = 7 - Xy = Xo + X3

X = -7 4+ X1 + X - X

X6 = 4 — X1 + 2Xo — 2X3
A N

[Basic Variables: B = {4,5,6}] [Non-Basic Variables: N = {1,2,3}]

Slack Form (Formal Definition)
Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+Y ax
jen
Xj=b - ajx forieB,
jen

and all variables are non-negative. \
4[Variables/Coefficients on the right hand side are indexed by B and N.]

Rl b
%E’ Il Linear Programming Standard and Slack Forms 19

Slack Form (Example)

x4_187§+%

Slack Form Notation
= B={1,2,4}, N={3,5,6}

a3 ais as -1/6 -1/6 1/3
dog dos Adog | = 8/3 2/3 *1/3
sz ass Qe 12 —-1/2 0

o (8)-(2) - (3)- (35)

A

=y =28

II. Linear Programming Standard and Slack Forms 20

The Structure of Optimal Solutions

— Definition N
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.]

~—— Theorem
If the slack form has an optimal solution, one of them occurs at a vertex.

\. J

=~

Proof Sketch (informal and non-examinable):

= Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
= Jvector d s.t. x — d and x + d are feasible

= Since A(x+d)=band Ax =b= Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a function of A > 0

= Case 1: There exists j with a; < 0

= Increase X from 0 to \’ until a new entry of x + \d
becomes zero

= x + N'd feasible, since A(x + X\'d) = Ax = b and
X+XNd>0

=cT(x+Nd)=cTx+c"Nd>cTx

el b
II. Linear Programming Standard and Slack Forms 21.1

The Structure of Optimal Solutions

— Definition N
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If the slack form has an optimal solution, one of them occurs at a vertex.

\. J

Proof Sketch (informal and non-examinable):

= Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
= Jvector d s.t. x — d and x + d are feasible

= Since A(x+d)=band Ax =b= Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a function of A > 0

= Case 2: Forallj, d; >0

= x 4+ A\d is feasible for all A > 0: A(x + A\d) = b and
X+Xd>x>0
= If A\ — oo, then ¢T(x + Ad) — o
= This contradicts the assumption that there exists an
optimal solution. O

[
o o II. Linear Programming Standard and Slack Forms

Outline

Formulating Problems as Linear Programs

.‘,.! i II. Linear Programming Formulating Problems as Linear Programs

22

Shortest Paths

Single-Pair Shortest Path Problem
= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t ¢ V
= Goal: Find a path of minimum weight
fromstotin G
\\

[p = (w = S, Vi,...,¥ = t)such that}

w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

maximize a;
subject to —
I d < duv + w(u,v) foreachedge(u,v)ceeE,
this is a maxi- a = O ~
mization problem! Solution d satisfies dy = miny; (u,v)ce {Bu + w(u,v) }J

i
Il. Linear Programming Formulating Problems as Linear Programs 23

Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R*,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

(2) 7] =19
® ® ®

Maximum Flow as LP

maximize Sveviv = Xevfs
subject to
fw < c(u,v) foreachu,veV,
Sweviw = Y ,cyfw foreachue V\ {s,t},
v 2 0 foreachu,ve V.

II. Linear Programming Formulating Problems as Linear Programs

24

Minimum-Cost Flow

Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA
= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3° ,) a(u, v)fu incurrred by the flow.

[Optimal Solution with total cost:

2 wvyee &, Vit = (2:2)+(5-2)+(3-1)+(7-1)+(1-3) = 27

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to . (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to ¢. For each edge, the flow and capacity are written as flow/capacity.

5| II. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize 2 wwyee AU, V)t
subject to

leV

zvevf‘/“ - ZvevaV
Zvevfsv - Zvevas

fuv

IN

c(u,v)
0

d,

0

foreachu,v e V,
foreachu € V\ {s,t},

foreach u,v € V.

Real power of Linear Programming comes
from the ability to solve new problems!

II. Linear Programming Formulating Problems as Linear Programs

26

Outline

Simplex Algorithm

II. Linear Programming

Simplex Algorithm

27

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints
= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, it is a greedy algorithm.
= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

el b
Il Linear Programming Simplex Algorithm 28

Extended Example: Conversion into Slack Form

maximize 3x1
subject to
X4
2X1
4X1

X4
X5
Xe

+ 4+

X2

X2
2X2
X2

Jr

Jr
+
Jr

X1, X2, X3

30
24
36

2X3

3X3
5X3
2X3

IV AN INIA

30
24
36

0

! . .
1 Conversion into slack form

\4

3X1

X1
2X1
4X1

—+

X2
X2
2X2
X2

2X3
3X3
5X3
2X3

Rl b
o o Il Linear Programming

Simplex Algorithm

29

Extended Example: Iteration 1
z = 31 4+ X 2X3
Xxs = 30 -— X1 — Xo 3x3
Xs = 24 — 2x5 — 2x 5x3
X6 = 36 — 4x5 - Xo 2X3
7

[Basic solution: (X1, Xz, ...,Xs) = (0,0, 0, 30,24, 36)]
N

N
/L

[This basic solution is feasible] [Objective value is 0.]

[
o

Il Linear Programming

Simplex Algorithm

30.1

Extended Example: Iteration 1

Increasing the value of x; would increase the objective value.]7

v
z = 3x; + X2 + 2x3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x - 2x — bxs
X = 36 — 4x; - Xo — 2X3
N
[The third constraint is the tightest and limits how much we can increase xq]
A\
(1
Switch roles of x; and xg:
= Solving for x¢ yields:
Xo X3 X6
XX=9———— — =,
! 4 2 4
= Substitute this into x; in the other three equations
& J

[
o o Il Linear Programming Simplex Algorithm

30.2

Extended Example: lteration 2
Increasing the value of x3 would increase the objective value.

N
z = 27 + % 4 %—%
stG\—%—4x3+%

[Basic solution: (X1, %2,...,Xs) = (9,0,0,21,6,0) with objective value 27]

[
o o Il Linear Programming Simplex Algorithm 30.3

Extended Example: Iteration 2

[

)

X X3 3%
z 27 + 2 + > Z
_ X2 X3 X6
g 9 4 2)
_ 3 _ 5 X6
X 21 4 2 4
Xs 6 - % — 4x3 %
N
The third constraint is the tightest and limits how much we can increase xs.
A\
(1
Switch roles of x; and xs:
= Solving for x3 yields:
3 3% X5 Xs
=—— — — — — —.
2 8 4 8
= Substitute this into x3 in the other three equations
& J

[
o

Il Linear Programming

Simplex Algorithm

30.4

Extended Example: Iteration 3

Increasing the value of x» would increase the objective value.

3 11

_ 111 X X5 Xe

zZ = 5 * 718 8 16
_ 33 X2 X5 55X
o= 6 © B 16
_ 3 _ 3x X5 X6
=3 8 2 8
_ 89 3% 5% _ X
x = 3 *t 3 T 3 16

N

[Basic solution: (X7, Xz,...,%s) = (£,0, 3, 2,0,0) with objective value 1 = 27,75]

o o Il Linear Programming Simplex Algorithm 30.5

Extended Example: Iteration 3

_ m X B X5 11X
zZ = 5 * 718 8 16
_ 38 _ x Xs 5Xs
o=y 6 © 8 16
. - 3 _ 3% _ x %
3 2 8 4 8
_ 89 3x2 5Xs X6
X = 3 T 35 T 3 16

N

[The second constraint is the tightest and limits how much we can increase xz.]

[\N

\

-
Switch roles of x» and xs:
= Solving for x; yields:

-

= Substitute this into x» in the other three equations

~

J

o o Il Linear Programming Simplex Algorithm

30.6

Extended Example: Iteration 4
TAII coefficients are negative, and hence this basic solution is optimal!

N
x4:18—§+%
N

[Basic solution: (X1, Xz,...,Xs) = (8,4,0,18,0,0) with objective value 28]

[
o o Il Linear Programming Simplex Algorithm 30.7

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) ®
9.6
(0,0; ‘ ® (8,4,0)
0 (8.25,0,1.5) @ 28
27.75
X4
(0.0.0)
27

(Exercise: How many basic solutions (including non-feasible ones) are there?]

Rl b

R Il. Linear Programming Simplex Algorithm 31

Extended Example: Alternative Runs (1/2)

z
X4
X5

X

X2

Xa

X

X1

X2

X4

30
24
36

18

31+ X2
Xq — Xo
2X1 — 2Xo
4x4 — Xo
|

| Switch roles of
\4 %
2x4 — >
5x3

oo o
_ X

X2 >
X

?X1 + >
| Switch roles of

\4

X3 X5
6 6
X X
5 T 6
B _ 26
3 3
X X
2 T2

+ 2x3
— 3x3
— 5x3
— 2X3
Xo and X5
_ X
2
- %
2
X5
o2
X5
o2
X1 and X6
X 2%
3
_ X
3
X5 X5
o3

el b
. o Il Linear Programming

Simplex Algorithm

32

X1

X3

X4

Extended Example: Alternative Runs (2/2)

z = 3xq + Xo + 2Xx3
X4 = 30 — X1 — Xo — 3X3
X5 = 24 — 2xq — 2X2 — 5x3
X6 = 36 — 4x4 — Xo — 2X3
|
! Switch roles of x3 and xs
- 48 X X _ 2%
z = % *t =5 * 3 5
X X 3x:
. 24 _ 2 20 00X
ST 5 5 5 5
_ 12 _ 1&x X 2x3
% = 5 5 5 T 5
Switch roles of x; and X5_ -~~~ - TTe-l _ Switch roles of x; and x3
< “>
11 X X _ 11X _ X3 X5 2X
= 7Tt 36 8 16 z = 8 - F - % 3
= 3 _ Xo X 5% - X X X
= 7 T 03B 16 o= 8+ 75 + 3 3
- 3 _ 3 00X Xo - _ B 26 X
= 2] 7 " 8 e = 4 3 3 3
- 8 3x 5 X = 18 - % X%
= 7 t T t 3 16 X 8 2 2
o o Il Linear Programming Simplex Algorithm 33

The Pivot Step Formally

PIVOT(N, B, A,b,c,v,1,e)
1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m x n matrix

A = bi/aj.

dej = aij/are for enterring variable Xe.
el = 1/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}

2
3

4 for eachj € N — { Rewrite “tight” equation
p _ . .

6

7

8

~
9 bi = bi —aicbe Substituting xe into
10 foreachj € N — e} other equations.

11 ﬁ,-‘,» = dajj — a,-eﬁe,-)
12 ZZ\[l = _a[eael

13 // Compute the objective function.

14 v =v+che . . h
15 foreach j € N — {e} Substituting xe into
16 Cj = ¢j — Colly objective function.
17 E] = —c,ﬁe; J
18 // Compute new sets of basic and nonbasic variables. ~
19 N=N—{e}uU{l} Update non-basic
20 B=B—{l}ufe} and basic variables

21 return (N, B, A, b,2.7) J

[
o o Il Linear Programming Simplex Algorithm

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIvOT(N, B, A, b, c, v,l,e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b,/a,e.
3. X; = b — ajeb, for each i € §\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = B,' — Z/éllxh
jeN
we have X; = b; for each i € B. Hence Xe = be = bi/ae.
3. After the substituting in the other constraints, we have

Xi = B,' = b,‘ — a,—eBe. O

el b
Il Linear Programming Simplex Algorithm 35

Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?

* How do we choose the entering and leaving variables?

[Example before was a particularly nice one! J

Rl b
II. Linear Programming Simplex Algorithm

36

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)
(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢)

1

[cBEN Be WV, I SRS I S

feasible basic solution (if it exists)

Returns a slack form with a]

choose an index e € N for which ¢, > 0

for each indexi € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X = b;
else x; =0
return (X, X5, ..., Xn)

&

(Main Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and Xxe

J

ﬁ Return corresponding solution.]

Il Linear Programming

Simplex Algorithm

371

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)
1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢)

2 let A be a new vector of length m

3 while some index j € N hasc; > 0

4 choose an index e € N for which ¢, > 0
5 for each indexi € B

6 ifa;, >0

7 A; = bi/ai.

8 else A; = o0

9 choose an index [€ B that minimizes A;
10 if A ==00

11 retnrn “nnbonnded”

Proof is based on the following three-part loop invariant:
the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

1.
2.
3.

for each i € B, we have b; > 0,
the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 .’,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Rl b
II. Linear Programming Simplex Algorithm

37.2

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1+ X + X3
X4, = 8 - Xq - X
X5 = Xo — X3

i Pivot with x4 entering and x4 leaving
\4

z = 8 + X3 — X4
X1 = 8 — X2 — X4
X5 = Xo — X3

|
Cycling: If additionally slack at two iterations ! Pivot with x3 entering and xs leaving
are identical, SIMPLEX fails to terminate! v

zZ = 8 4+ X2 - Xs& — X5
Xq = 8 — Xo — X4
X3 = X2 — X5

Rl b
II. Linear Programming Simplex Algorithm 38

Termination and Running Time

It is theoretically possible, but very rare in practice.j

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
S

LRepIace each b; by bi = bi + €;, where ¢; > ;.1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most (") iterations.

Every set B of basic variables uniquely determines a slack
form, and there are at most ("/™) unique slack forms.

Rl b
Il. Linear Programming Simplex Algorithm

Outline

Finding an Initial Solution

II. Linear Programming

Finding an Initial Solution

40

Finding an Initial Solution

maximize 2xy — Xo
subject to
2x1 — x < 2
X1 — 5X2 < —4
X1, X2 Z 0
|
i Conversion into slack form
v
z = 2x1 - Xo
X3 = 2 — 2X1 + X2
X4 = -4 — X1 + 5x
N

[Basic solution (x4, X2, X3, X2) = (0,0, 2, —4) is not feasible!]

[
R Il. Linear Programming Finding an Initial Solution

Geometric lllustration

maximize 2X1
subject to

2X1

X1

X2

— Xo
— 5X2

IV AN IA

2

—4 | Questions:
0

= How to determine whether
there is any feasible solution?

= |f there is one, how to determine
an initial basic solution?

bl
. o Il Linear Programming

Finding an Initial Solution 42

Formulating an Auxiliary Linear Program

maximize o G
subject to
Siap < b fori=1,2,....m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2, ...,Xn)
= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximize —xg, this is optimal for Laux
= “<": Suppose that the optimal objective value of Laux is O
= Then Xo = 0, and the remaining solution values (X1, X2, ..., Xpn) satisfy L. O

Sl
II. Linear Programming Finding an Initial Solution

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X; = b for i € B, X; = 0 otherwise.

1

15
16

[,

let k be the index of the minimum b; -
ith, >0 // is the initial basic solution feasible?
return ({1.2,....n} {n+1,n+2,..., n+m}, A b, c,0)
form L, by adding —xj to the left-hand side of each constraint
and setting the objective function to —x, " " "
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the leaving variable so
I =n+k that x, has the most negative value.
// L, has n + 1 nonbasic variables and m basic variables.
(N.B.A.b.c.v) = PIVOT(N. B, A.b.¢.v.1.0) ‘(Pivot step with X, leaving and xo entering. J
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
if the optimal solution to L, sets ¥y to 0 This pivot step does not change
if X is basic))) the value of any variable.
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”

Il Linear Programming Finding an Initial Solution 44

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < —4
X1, X2 > 0

|
i Formulating the auxiliary linear program

A\
maximize - X
subject to
21 — X2 - X < 2
XX — 5% — X < -4
Basic solution X1" Yo, %o = 0
(0,0,0,2,—4) not feasible! | Converting into slack form
N ¥
z = - X0
X3 = 2 - 2 + X + X
Xx = -4 - X + 5x + X

[
o o Il Linear Programming Finding an Initial Solution

Example of INITIALIZE-SIMPLEX (2/3)

V4 = — Xo
X3 = 2 - 2x5 + X2 4+ X
X4 = —4 — Xq +4 5x + Xo
|
i Pivot with xo entering and x4 leaving
v
z -4 — x5 4+ 5xo - x4
Xo = 4 + X1 — 5X2 + X4
X3 = 6 — X — 4% + Xa
” |
[Basic solution (4,0,0,6,0) is feasible!] | Pivot with x; entering and xo leaving
v
z = — Xo
— 4 _ Xo X1 Xa
X = 5 A2 + o3 T3
N

[Optimal solution has xp = 0, hence the initial problem was feasible!]

Rl b

o o Il. Linear Programming Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (3/3)

z = - Xo
X3 = % + % - 9% + %
I Set X, = 0 and express objective function
[2X1—X2—2X1—(§—X—5°+%‘+%4)] i by non-basic variables
N : 9x1 4
PRI B
X2 = 5 T T t 7

1
[Basic solution (0, 2, ¥, 0), which is feasible!]

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Rl b

o o Il Linear Programming Finding an Initial Solution 47

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

2\
If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

el b
. o Il Linear Programming Finding an Initial Solution 48

Workflow for Solving Linear Programs

[Linear Program (in any form)]

|

[Standard Form j
(Slack Form j
No Feasible Solution Feasible Basic Solution
INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX followed by SIMPLEX

A

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum

[
o o Il Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary and Outlook

Linear Programming
= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
0~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

Sl
II. Linear Programming Finding an Initial Solution

50

lll. Approximation Algorithms: Covering Problems
Thomas Sauerwald

Easter 2019

B UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction

el b
I1l. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-

tant to be abandoned.

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time. N

—[We will call these approximation algorithms.]

Rl b
I1l. Covering Problems Introduction

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

» Minimization problem: £ > 1

« . B . - @
max (%’ %) < o(n). Maximization problem: = > 1

N
A\] L
v

[This covers both maximization and minimization problems.]

[For many problems: tradeoff between runtime and approximation ratio.]

Approximation Schemes
An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + €)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. [For example, O(n?/<).
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/e and n. G:or example, O((1/¢)2 - ”3)-j

Rl b
I1l. Covering Problems Introduction 4

Outline

Vertex Cover

el b
I1l. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertioes!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V °
such that if (u,v) € E(G),thenue V' orv e V.
D ©
(This is an NP-hard problem.] °
Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Perform all tasks with the minimal amount of resources
= Extensions: weighted vertices or hypergraphs (~ Set-Covering Problem)

Sl
I1l. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Rl b
11Il. Covering Problems Vertex Cover 71

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Edges removed from E’:
1. {b,c}
2. {ef}
3. {d,g}

’
v
’

® @&

N

[APPROX-VERTEX-COVER produces a set of size 6.]

Rl b
11Il. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (1, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N N R

[The optimal solution has size 3.]

Rl b
11Il. Covering Problems Vertex Cover 7.3

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(C{A "vertex-based" Greedy that adds one vertex at each iter-]

1 C=90 ation fails to achieve an approximation ratio of 2 (Exercise)!
2 E' =G.E v

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ We can bound the size of the returned solution

7 return C without knowing the (size of an) optimal solution!

&
Theorem 35.1

| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.]
Proof:

* Running time is O(V + E) (using adjacency lists to represent E’)
= Let A C E denote the set of edges picked in line 4
= Every optimal cover C* must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: | |C*| > |A]|

= Every edge in A contributes 2 vertices to |C|:] IC| = 2|A| < 2|C*). \ O

Rl b
") Ill. Covering Problems Vertex Cover 8

Solving Special Cases

——— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

:,,E,-,, I1l. Covering Problems Vertex Cover

Vertex Cover on Trees

There exists an optimal veriex cover which does not include any leaves.

NN
[Exchange-Argument: Replace any leaf in the cover by its parent.]

I1l. Covering Problems Vertex Cover

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C=10
2: while 3 leaves in G
3: Add all parents to C
4
5

Remove all leaves and their parents from G
: return C

N
[Clear: Running time is O(V), and the returned solution is a vertex cover.]

\
Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

Sl
I1l. Covering Problems Vertex Cover 11

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=0
while Jleaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

a R

el b

o o Ill. Covering Problems Vertex Cover

12.1

Execution on a Small Example

After iteration 1

N

~
’ ~
1 ~

’, N v N

R O O0®
O

N
v

VERTEX-COVER-TREES(G)
:C=0
while Jleaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

a R

o o Ill. Covering Problems Vertex Cover

12.2

Execution on a Small Example

Q After iteration 2
/Q Q\
7 Q ~ 7 Q ~
4 N 4 1 N

VERTEX-COVER-TREES(G)
1: C=10
2: while 3 leavesin G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

(Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.]

el b
I1l. Covering Problems Vertex Cover 12.3

Exact Algorithms

-
LSuch algorithms are called exact algorithms.

— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Focus on instances where the minimum vertex cover is small, that is,

less or equal than some given integer k.

[Simple Brute-Force Search would take = (7) = ©(n*) time.]

.;,E;, I1l. Covering Problems Vertex Cover

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.

[\
A\

Proof:

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

= Assume G has a vertex cover C of size k, which contains, say u.
Removing u from C yields a vertex cover of G, which is of size k —1. O

[Reminiscent of Dynamic Programming.]

I1l. Covering Problems Vertex Cover 14

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return 0

If k=0and E # 0 return L

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(G,, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if Sy # L return S; U {u}

if S; # L return S; U {v}

return L

@ N2 ah N2

(N
[Correctness follows by the Substructure Lemma and induction.]

[N

Running time:
= Depth k, branching factor 2 = total number of calls is O(2%)
= O(E) work per recursive call
= Total runtime: O(2* - E).
~o

[exponential in k, but much better than ©(n¥) (i.e., still polynomial for k = O(log n))]

i
o o Ill. Covering Problems Vertex Cover 15

Outline

The Set-Covering Problem

I1l. Covering Problems

The Set-Covering Problem

The Set-Covering Problem

Set Cover Problem S

= Given: set X of size n and family of subsets F ° °

= Goal: Find a minimum-size subset C C F

Number of sets st. X= U S. o
(and not elements) Sec
I 1 \ . .
[Only solvable if (Jg.» S = X!] S

Remarks:
= generalisation of the vertex-cover problem and hence also NP-hard.
= models resource allocation problems

o oo o

el b
Ill. Covering Problems The Set-Covering Problem

Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements. —
Si
GREEDY-SET-COVER (X,) —
1 U=X
2 €=90 L S J
3 whileU # 0 o | o
4 select an S € ¥ that maximizes |S N U |
5 U=U-S§
6 € ="cu{s} o il L
7 return € S,
—/ N
N

Greedy chooses Sy, S4, Ss and S;
(or Ss), which is a cover of size 4.

.;_E % Ill. Covering Problems The Set-Covering Problem 18.1

Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements. ° Py °
Si
GREEDY-SET-COVER (X,) (o ° ——.\
1 U=X
2 €=90 S
3 whileU # 0 o | o
4 select an S € ¥ that maximizes |S N U |
5 U=U-S§
6 € ="cu{s} g il L
7 return € N Ss S-
N

N
Optimal cover is C = {S3, S, Ss}]

in time polynomial in |X| and |F|

. —/
{ Can be easily implemented to run 1

How good is the approximation ratio?

;_E w I1l. Covering Problems The Set-Covering Problem 18.2

Approximation Ratio of Greedy

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S]: |S| € F}) < In(n) +
LH(k)::sz_ K)+1)

Idea: Distribute cost of 1 for each added set over newly covered elements.

Definition of cost

If an element x is covered for the first time by set S; in iteration /, then

1
IS\ (S1USU---USi_1)|
{

Notice that in the mathematical analysis, S; is the set chosen in itera-
tion i - not to be confused with the sets S;, S, ..., Ss in the example.

Cx =

SHy
SE

I1l. Covering Problems The Set-Covering Problem 19

lllustration of Costs for Greedy picking S;, S;, Ss and S;

)

1

ol
o=

Si

ol
o=

S

[
wl=
[
wl=
[
=

o1 ([]

wl=
[]
o=

S
N/ —/

1 1 1 1 1 1 1 1 1 1 1
stetetstststgtstgtatatl=4

.;_E % Ill. Covering Problems The Set-Covering Problem

Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢ := !

[SI\(S1USU--US;)|

Proof.
= Each step of the algorithm assigns one unit of cost, so

IC| = Z Cx (1)
xeX
= Each element x € X is in at least one set in the optimal cover C*, so

DD @

Sec* xe$ xeX

= Combining 1 and 2 gives

Cl< > > ex< > H(S) < IC7|- Hmax{|S]|: S € F}) O

Sec* xS Sec*
[Key Inequality: >3, g cx < H(|S\).J

Rl b
Ill. Covering Problems The Set-Covering Problem

21

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S]) ‘

[Remaining uncovered elements in SJ [Sets chosen by the aIgorithmJ

~NJ =
= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US))|

= [S|=up>us >--- > ¢ = 0and uj_1 — u; counts the items in S covered first

time by S;.
=
k 1
ox =) (Ui—1—u)-
xezs ; IS\ (S1USU---USi_1)]
= Further, by definition of the GREEDY-SET-COVER:

ISIN(S1USU---US_1)| > [S\(S1USU---USi4)] =Uj_1.

= Combining the last inequalities gives:

<
|

i

k
ZCXSZU/ 1—Up) .U‘L:

x€S i=1 i—1

1

Uj—q

M-

Jj=uj+1

<
|

i

-

— =

J=uit

Il
.M*‘

(H(uj—1) = H(u)) = H(uo) — H(uk) =

H(IS)-

O

Rl b
* Ill. Covering Problems The Set-Covering Problem

22

Set-Covering Pr9blem (Summary)

The same approach also gives an approximation ratio
of O(In(n)) if there exists a cost function ¢ : S — Z*

Theorem 35.4 /4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = Hmax{|S|: |S| € F}) <In(n)+1.

SN

[Can be applied to the Vertex Cover Problem for Graphs with]

maximum degree 3 to obtain approximation ratio of 1 + % 4F % < 2.

= |s the bound on the approximation ratio in Theorem 35.4 tight?

= |s there a better algorithm?

Lower Bound
Unless P=NP, there is no c-In(n) polynomial-time approximation algorithm
for some constant 0 < ¢ < 1.
11l Covering Problems The Set-Covering Problem 23

Example where the solution of Greedy is bad

Instance
= Given any integer kK > 3
= There are n = 2" — 2 elements overall (so k ~ log, n)

= Sets S1, Sy, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
each set S1,Ss, ..., Sk

k =4,n=30:

...............7-1)

o||® Oe||®6 6 o o6 o6 o o o o o o Tg)
S4

AN J

Rl b
I1l. Covering Problems The Set-Covering Problem

Example where the solution of Greedy is bad

Instance
= Given any integer kK > 3
= There are n = 2K*" — 2 elements overall (so k = log, n)

= Sets S1, Sy, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset $1,S,,..., Sk

k=4,n=30:
o0 ofl]6 © o o6 © o o o o o o 7'1)
o0 o6 © © o6 © o © o o o o Tz)
\S_D\SZJ\ Ss U _ S J

[Solution of Greedy consists of k sets. J

.;_E % Ill. Covering Problems The Set-Covering Problem

Example where the solution of Greedy is bad

Instance
= Given any integer kK > 3
= There are n = 2" — 2 elements overall (so k ~ log, n)

= Sets S1, Sy, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset $1,S,,..., Sk

k =4,n=30:

00000000000000‘7-1]

o|(fe eoj|l®6 ©¢ o /(06 ©6 6 6 © o o0 o |)
S3 Sy

AN J

[Optimum consists of 2 sets. J

Rl b
Ill. Covering Problems The Set-Covering Problem

24.3

IV. Approximation Algorithms via Exact Algorithms
Thomas Sauerwald

Easter 2019

5 UNIVERSITY OF
<% CAMBRIDGE

Outline

The Subset-Sum Problem

IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, X2, .. ., Xo} and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
N

LThis problem is NP—hardJ

t =13 tons
X =10 [)
[
X2:4
| _—>
X5:1

[
o o IV. Approximation via Exact Algorithms The Subset-Sum Problem 3.1

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, X2, .. ., Xo} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes >
[\

i x;eS’ Xi < .

LThis problem is NP—hardJ

t =13 tons
4 N

x
Il
o

P9
Il
IN

| _—>
X3+ Xs+ x5 =12
| _—>

RIE
Il I
(o] (3}

| __—>

&
I
—

[
o o IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

implementable in time O(|L;—+|) (like Merge-Sort) J

EXACT-SUBSET-SUM (S, 1) [

1 n=1S] Returns the merged list (in sorted
2 Loy =(0) order and without duplicates)

3 fori =1ton z-
4 L; = MERGE-LISTS(Li_y, Liy + x;) (S+x:={s+x:s€S})
5 remove from L; every element that is greater than ¢

6 return the largest element in L,

Example:
= S={1,4,5},t=10
* Lo =(0)
= [=(0,1)
= [, =(0,1,4,5)
= [3=(0,1,4,5,6,9,10)

el b
IV. Approximation via Exact Algorithms The Subset-Sum Problem 4.4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS (L;_y, Lj—1j~——

; i)
6

remove from L; every element th| €an be shown by induction on n

1 PRSI 4

return the largest Z
= Correctness: L, contains all sums of {x1,Xz,..., Xy}

* Runtime: O(2' +2% +... +2") = O(2")

[There are 2 subsets of {x1, Xz, . .. ,x,—}.] Better runtime if ¢
and/or |L;| are small.

Rl e
IV. Approximation via Exact Algorithms The Subset-Sum Problem 4.2

Towards a FPTAS

Idea: Don’'t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1

= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L’:

Yy

<z<y
146 =~
(= [=(10,11,12,15,20, 21,22, 23, 24, 29)
"= 5=0.1
TRIM(L, §) L = [/ = (10,12, 15,20, 23, 29)
1 letm be the length of L
2 L= ()
3 last = y;
4 fori =2tom
5 if y; > last - (1 + 6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L'
(TRIM works in time ©(m), if L is given in sorted order.]
i

.;,E;, IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

lllustration of the Trim Operation

TRIM(L,)
1 letm be the length of L
2 L= (y)
3 last = y,
4 fori =2tom
5 if y; > last - (1 + 6) // y;i > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L'
0=0.1 PP E—
‘ After the initialization (lines 1-3) ‘
last

L=(10,11,12,15,20,21,22, 23,24, 29)

]i
L' = (10)

Rl b
IV. Approximation via Exact Algorithms The Subset-Sum Problem 6.1

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

6=0A1
\The returned list L’ \

last

L=(10,11,12,15,20,21,22, 23, 24, 29)
[i

L' =(10,12,15,20, 23, 29)

Rl b
IV. Approximation via Exact Algorithms The Subset-Sum Problem

6.2

The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S, 1)
n=1S| n =S|
Lo = (0) Lo = (0)
fori = 1ton fori = lton

L; = MERGE-LISTS(L;—y, L~ + X;) L; = MERGE-LISTS(L;_y, Li—; + x;)

remove from L; every element that is greater than ¢

[N I

remove from L; every element that 1s greater than ¢
let z* be the largest value in L,
return z*

1

2

3

4

5 L; = TRIM(L;,€/2n)
6 return the largest element in L,
7

8

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

.
[Solution is a careful choice of 6!]

el b
IV. Approximation via Exact Algorithms The Subset-Sum Problem 7

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=]|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S =(104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)

* line 4: Ly = (0,104)

= line 5: Ly = (0,104

= line 6: Ly = (0,104

= line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102,206

= line 6: L, = (0,102,206

= line 4: L3 = (0,102,201, 206, 303, 407)
*= line 5: L3 = (0,102,201, 303, 407)

= line 6: L3 = (0,102,201, 303)

= line 4: Ly = (0,101, 102,201, 203, 302, 303, 404)
= line 5: Ly = (0,101,201, 302, 404)

= line 6: Ly = (0,1

,101,201,302) Returned solution z* = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

Rl b
IV. Approximation via Exact Algorithms The Subset-Sum Problem 8

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,.. ., X;, there exists an element z € L] s.t.:
— <oy T L _ <oy
(1 +e€/(@n)) (1 +¢/(2m)"
! y* e\”
< —
(Can be shown by induction on ij z ~ (1 + 2n) ’

e/2)n n— oo

and now using the fact that (1 + Z2) 25 ee/2 yields

/2 (Taylor approximation of ej
/
<14e/24 (/2> <1+e

IN

v
z

el bl
* IV. Approximation via Exact Algorithms The Subset-Sum Problem 9.1

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [l0gy_ (25 | additional values.
Hence,

_ Int
" In(1 +¢/(2n))
< 2n(1+¢/(2n)) Int 42

10g14c/(2m t+2

€

[Forx>f1,ln(1+x)2% 3n|nt+2'
= This bound on |L;| is polynomial in the size of the input and in 1/e. O
1

(Need log(t) bits to represent t and n bits to represent S]

Rl e
* IV. Approximation via Exact Algorithms The Subset-Sum Problem 9.2

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > gXi <t

i x;€

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

——— Theorem 35.8]

\.

[A more general problem than Subset-Sum]

The Knapsack Problem

d
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). Vi

2. satisfies ;o w; < t

[Algorithm very similar to APPROX-SUBSET-SUM '_

——— Theorem -]

There is a FPTAS for the Knapsack problem.

\.

el b
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Outline

Parallel Machine Scheduling

IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . .., pn, and
midentical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = Mmaxi<j<n C;, where Cy is the completion time of job Jk.

A)

|
w (o ;)

T T T
T T

8 9 10 1

y

1 12 13 14 15

= 4
N
w
A
(6)]
»
\,

Rl b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 12.1

Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, s, . .., Jy with processing times p1, po, . .., pn, and
midentical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = Mmaxi<j<n C;, where Cy is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.

M

"I T 8

[.
M; g[b]

T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rl b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 12.2

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
AT G 6

M1[Jo . _]i

I T T
L T T T

01éé4é6789101112131415

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U2, . .., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
o\

[How good is this most basic Greedy Approach?j

el b

o o IV. Approximation via Exact Algorithms Parallel Machine Scheduling 13

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Chax > Max Pg.
max = 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

1 n
C;ax Z E Zpk

k=1

Proof:
b. The total processing times of all n jobs equals >, _, p«
= One machine must have a load of at least X - >/ _, p«

sl

.;_E S IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~——— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Ciax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 <k <m

= Averaging over K yields: [Using Ex355a &b_j

1 m 1 n 1 1 ~N *
Cj*piSE;Ck:E;pk = Cjﬁmzpk+1?sl§xnpk§2-cmax

k=1

DC D)

)) |
X 4)
L)) i

) e
Cl-fp,' Crmax

X

O T — —
J
/)

Rl b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs

—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jn, m)
1: Sort jobs decreasingly in their processing times
2. fori=1tom
3 C,‘ =0
4 S,' = @
5: end for
6: forj=1ton
7
8
9
10

i =argmin, .., Ck
Si=SuU{j},Ci=Ci+p
: end for
creturn Sy, ..., Sy,

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).

Rl b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]
N

[This can be shown to be tight (see next inde).J
Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Chax > 2 - pm1.
= As in the analysis for list scheduling, we have

« 1 .. 3
Cnax = Cj = (Cj —pi)+Ppi < Crax + ECmax = ECmax~ O
1
(This is for the case i > m + 1 (otherwise, an even stronger inequality hoIds))

[
o o IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof of an instance which shows tightness:

= m machines
* n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: L demee

[T I

I o oy

L e Y E R I

O e Y B R T

ol :\ A :\ :\ ! I . N

| 1 | ‘\ ‘\ | | !) ! “Y ‘Y ‘
Ms 1 ligiiall ol
M T ‘\7\\7\\ o :\ :\ :
. I S H R
M SEREREERERE
M, (MR EE R R
M1 [L U S L L 'Y S A A

0123456 7 8 91011121314151617 1819 20

Rl b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18.1

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof of an instance which shows tightness:

= m machines
* n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19

Crax = 19

)
)
8) 6)
)

9) 5) 5)
123 45 6 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18.2

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
= m machines
* n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19
Optimum is Chax = 15

Ms 5 N 5 X 5)
My (8)l 7]i
M3[8][7]: Crax = 15
Mo 9 X 6)
M, 9) 6 }

(
0123456 7 8 91011121314151617 1819 20

Rl b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

18.3

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 4 €) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[%
SUBROUTINE can be implemented in time n®(/<)

\.

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3-"_ py.

—2

(polynomial in the size of the input

~\

Since 0 < Chax < P and Gy is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(J1,J2,...,J,,,m) —_—

1: Do binary search to find smallest T s.t. Cnax < (1 +€) - max{T, Cnax}-

2: Return solution computed by SUBROUTINE(Js, Uo, ..., Jn,m, T)

el b
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Implementation of Subroutine

SUBROUTINE(J1, o, ..., Jp,m, T)
1: Either: Return a solution with Cnax < (1 4 €) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < ¢- T} and Jage = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{ T, Cyax}-

Proof:
= Let M; be the machine with largest load
= |If there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 1 <&
Cj*piﬁmzpk = CjSPiJrEZ,Dk
N k=1 k=1
(the “well-known” formulaj <e T+ Chax
<(1+e) -max{T, Crax} O

el b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Proof of Key Lemma (nhon-examinable)

Use Dynamic Programming to schedule Jiage With makespan (1 +¢) - T.

ijz

= Let b be the smallest integer with 1/b < e. Define processing times pj = [~ - #
= Every plf = - b_7; fora=b,b+1,... ,b2 {Can assume there are no jobs with p; > T!]
2 T q
= LetC be all (Sp, Spat,- .., Sp2) With S s j. L < 7. JAssignments to one machine
(S5 541, w) Sl g s with makespan < T.

= Let f(np, Np11, ..., Nye) be the minimum number of machines required to schedule

all jobs with makespan < T: (" agsign some jobs to one machine, and then
£(0,0,...,0)=0 use as few machines as possible for the rest.

f = 1 in — f
(b Mot -5 Mp2) = 14 (sb,s,,+1n,1.l.r.],sb2)ec (Mo — Sby M1 — Sbyts -+ M2 — Sp2)-
15T = e=05 15T
1.25-T . b 1.25-T
1.7 b=2 1.7
0.75-T +|P1 0.75- T 1 |pj
05 - TH{ {1} — - 05T P
025-T Ps 025-T
0 0
Jlarge Jsmall Jlarge

Rl b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

211

Proof of Key Lemma (nhon-examinable)

Use Dynamic Programming to schedule Jiage With makespan (1 +¢) - T.

ib?
Let b be the smallest integer with 1/b < €. Define processing times p; = [p’T] . é
Every p; :a~b—T2fora:b,b+1,...,b2
. b2 LT
LetC be all (sp, Sp1,- .., Sp2) With 3577 s+ j - 7 < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
f(np, Npsty .-, N2) =1+ min f(Np — Spy Npii — Shatys .-+, N2 — Sp2)-
(+ b) (Sp»Spt1seee» s2)€C (+ + b bz)

Number of table entries is at most n?”, hence filling all entries takes nO(*)
If f(np, Np41, ..., Ne) < m(for the jobs with p’), then return yes, otherwise no.

As every machine is assigned at most b jobs (o] > %) and the makespanis < T,

Cmax < T+b- _max (pi *p,/')

! eJlarge

;
ST+b o <(+q:T. O

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21.2

Final Remarks

——— Graham 1966 N
List scheduling has an approximation ratio of 2.

——— Graham 1966 N
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

~——— Theorem (Hochbaum, Shmoys’87) N
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/<) . log P), where P := 30 px.

Can we find a FPTAS (for polynomially bounded processing times)?
No! =

Because for sufficiently small approximation ratio
1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

el b
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 22

V. Approx. Algorithms: Travelling Salesman Problem
Thomas Sauerwald

Easter 2019

Outline

Introduction

V. Travelling Salesman Problem Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
[\
Solution space consists of at most n! possible tours! 3
g 2444+1+1=8

[Actually the right number is (n — 1)!/2J

Special Instances - .
Even this version is
* Metric TSP: costs satisfy triangle inequality: <\ NP hard (Ex. 35.2-2)

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Rl b
V. Travelling Salesman Problem Introduction 3

History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

Rl b

R V. Travelling Salesman Problem Introduction

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

Introduction 51

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

! Additional constraint to cut
4 N T the solution space of the LP

4x1 +9x < 36
)) :))))) — X
0 1 2 3\4 5 6 7 8 9

[More cuts are needed to find integral solution j

Rl b
o o V. Travelling Salesman Problem Introduction

5.2

Outline

General TSP

V. Travelling Salesman Problem General TSP

Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof- Idea: Reduction from the hamiltonian-cycle problem.

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’I\: (V, E") be a complete graph with costs for each (u,v) € E’:

[

Can create representations of G’ and 1 if (u7 v) cE,
¢ in time polynomial in |V| and |E|! C(U, V) = L Large weight will render
plV|+1 otherwise. this edge useless!

Reduction

G=(V,E) —_— 1 G =(V,E)

p-4+1

Rl b
V. Travelling Salesman Problem General TSP

74

Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof- Idea: Reduction from the hamiltonian-cycle problem.

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

o v) = {1 if (u,v) € E,

plV|+1 otherwise.

= If G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|

O
Reduction
G=(V,E)
p-4+1

Rl b

:,,E,-,, V. Travelling Salesman Problem General TSP

7.2

Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof- Idea: Reduction from the hamiltonian-cycle problem.

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

o(u,v) = 1 if (u,v) € E,
"7 1plVI+1 otherwise.

= If G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
If G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

= o(T) = (plVI+ 1)+ (IVI=1) = (p+ DIVI.

= Gap of p 4+ 1 between tours which are using only edges in G and those which don’t
= p-Approximation of TSP in G’ computes hamiltonian cycle in G (if one exists) O

p-4+1

Reduction
—

p-4+1

G=(V,E)

Rl b
V. Travelling Salesman Problem General TSP 7.3

Proof of Theorem 35.3 from a higher perspective

General Method to prove inapproximability results!)

All instances with a
hamiltonian cycle

All instances
with cost < k

All instances
with cost > p - k

instances of Hamilton instances of TSP

Rl b
V. Travelling Salesman Problem General TSP 8

Outline

Metric TSP

V. Travelling Salesman Problem Metric TSP

Metric TSP (TSP Problem with the Triangle Inequality)

' Idea: First compute an MST, and then create a tour based on the tree. '

APPROX-TSP-TOUR(G, ¢)
1: select a vertex r € G.V to be a “root” vertex
2: compute a minimum spanning tree Tni, for G from root r
3 using MST-PRIM(G, ¢, r)
4: let H be a list of vertices, ordered according to when they are first visited
5
6

in a preorder walk of Thin
: return the hamiltonian cycle H
™~

[Runtime is dominated by MST-PRIM, which is e(vz).]

(Remember: In the Metric-TSP problem, G is a complete graph.)

Rl b
V. Travelling Salesman Problem Metric TSP

Run of APPROX-TSP-TOUR

1. Compute MST Tpin

Metric TSP

V. Travelling Salesman Problem

Rl b
o

Run of APPROX-TSP-TOUR

1.2

Metric TSP

£

£

~

[

(%0}

=

ey

T (o]

|
| | N nma
I T R

O O R £ 3

| | | I I ~ ©
” ” ” , ” =2 .
i S Q@ % 2
| | | | = 2 [
| | | | | o 2 <
| | | | | 5 € g
| | | | | Q = 8
E 2 3
o o >
O a E
. s
- £
>

Run of APPROX-TSP-TOUR

1. Compute MST Tmin v/
2. Perform preorder walk on MST Trin v/
3. Return list of vertices according to the preorder tree walk

Rl b
V. Travelling Salesman Problem Metric TSP

1.3

Run of APPROX-TSP-TOUR

[Solution has cost ~ 19.704 - not optimal!]

1. Compute MST Trin v/
2. Perform preorder walk on MST Tmin v/
3. Return list of vertices according to the preorder tree walk v/

Rl b

R V. Travelling Salesman Problem Metric TSP

1.4

Run of APPROX-TSP-TOUR

1. Compute MST Trin v/
2. Perform preorder walk on MST Tmin v/
3. Return list of vertices according to the preorder tree walk v/

Rl b
* V. Travelling Salesman Problem Metric TSP

1.5

Run of APPROX-TSP-TOUR

[This is the optimal solution (cost ~ 14.715).]

1. Compute MST Trin v/
2. Perform preorder walk on MST Tmin v/
3. Return list of vertices according to the preorder tree walk v/

Rl b

R V. Travelling Salesman Problem Metric TSP

1.6

Approximate Solution: Objective 921

i
+ V. Travelling Salesman Problem Metric TSP 12

Optimal Solution: Objective 699

el
R V. Travelling Salesman Problem

Metric TSP

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR

is a polynomial-time 2-approximation for the

traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and ¢(T) < ¢(H*) # exploiting that all edge

costs are non-negative!

J

| . | | |
Il et 7@7\77 - = - 7+7+7@}7\77

| | | | | | | | | |
- - -+ ‘ - - - -+ - ‘ -

| @ | @ | @ | @ | @ | @
- [I S [- [I S [

@ . | | | | @ . | | | |

I) T R S ") T i

| | @ | | | | | @ | | |

| | | | | | | | | | | |
solution H of APPROX-TSP spanning tree T as a subset of H*

V. Travelling Salesman Problem Metric TSP 141

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and ¢(T) < c(H*)

= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tin) < 2¢(T) < 2¢(H")

@
i SRS
P AR CamOn
RC Ry AREEEEE
,,L,L,C,‘D,,:,J,,i,,

optimal solution H*

By
SE

V. Travelling Salesman Problem Metric TSP

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and ¢(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tin) < 2¢(T) < 2¢(H*) [exploiting triangle inequality! j

V
= Deleting duplicate vertices from W yields a tour H with smaller cost:

o(H) < o(W) < 2¢(H") O

Ceeel el
N
IO B O
R A ROy A
,,L,L,@,J,J,,:,, ,,L,L,@,,:,J,,:,,

| | | |
| | | |
Walk W = (a,b,c.p.h.p.4.d.e.f,f.a.¢.4.a optimal solution H*

V. Travelling Salesman Problem Metric TSP 14.3

Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, ¢)
: select a vertex r € G.V to be a “root” vertex
: compute a minimum spanning tree Ty, for G from root r
using MST-PRIM(G, ¢, r)
: compute a perfect matching Mp,i, with minimum weight in the complete graph
over the odd-degree vertices in Tpin
: let H be a list of vertices, ordered according to when they are first visited
in a Eulearian circuit of Trin U Mmin
: return the hamiltonian cycle H

OND GO A WN =

Theorem (Christofides’76)

There is a polynomial-time %-approximaﬁon algorithm for the travelling salesman
problem with the triangle inequality.

Rl b
V. Travelling Salesman Problem Metric TSP

Run of CHRISTOFIDES

1. Compute MST Tpin

16.1

Metric TSP

V. Travelling Salesman Problem

Rl b
o

Run of CHRISTOFIDES

1. Compute MST Tnin v/
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin v/

Rl b
V. Travelling Salesman Problem Metric TSP 16.2

Run of CHRISTOFIDES

1. Compute MST Tnin v/
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin v/
3. Find an Eulerian Circuit in Tm&Mmin v

(AII vertices in Tmin U Mpin have even degree!j

Rl b
V. Travelling Salesman Problem Metric TSP 16.3

Run of CHRISTOFIDES

[Solution has cost &~ 15.54 - within 10% of the optimum!]

1. Compute MST Tnin v/

2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin v/
3. Find an Eulerian Circuit in Tin U Muin v/

4. Transform the Circuit into a Hamiltonian Cycle v/

Rl b

o o V. Travelling Salesman Problem Metric TSP 16.4

Proof of the Approximation Ratio

Theorem (Christofides’'76)
3

There is a polynomial-time 3-approximation algorithm for the travelling
salesman problem with the triangle inequality.

Proof (Approximation Ratio): LProof is quite similar to the previous anaIyS|s]

= As before, let H* denote the optimal tour
= The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin @and the minimum-weight matching Mnin exactly once:

C(W) = C(Tmin) + C(Iwmin) < C(H*) + C(Mmin) (1)

Let H},, be an optimal tour on the odd-degree vertices in Tmin

= Taking edges alternately, we obtain two matchings My and M. such that
c(Mi) + ¢(Mz) = c(Hoaa)

= By shortcutting and the triangle inequality,

1 " 1 "
C(Mmin) < EC(Hodd) < EC(H) (2
= Combining 1 with 2 yields
(W) < o(H) + c(Mun) < c(H) + %C(H*) _ gc(H*).

el b

o o V. Travelling Salesman Problem Metric TSP 17

Concluding Remarks

Theorem (Christofides’'76)

There is a polynomial-time %-approximation algorithm for the travelling
salesman problem with the triangle inequality.

(Both received the Godel Award 201 0]
z

Theorem (Arora’96, Mitchell’96)
| There is a PTAS for the Euclidean TSP Problem.]

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It's an addiction.”

Jon Bentley 1991

el b
V. Travelling Salesman Problem Metric TSP 18

VI. Approx. Algorithms: Randomisation and Rounding
Thomas Sauerwald

Easter 2019

[5-F UNIVERSITY OF
4% CAMBRIDGE

Outline

Randomised Approximation

.‘,.! i VI. Randomisation and Rounding Randomised Approximation

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and

optimal cost C™ satisfy:

c cC
mw(g,c)_mm

N

\

[Call such an algorithm randomised p(n)-approximation algorithm.]

extends in the natural way to randomised algorithms]

7

Approximation Schemes 1
An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + €)-approximation algorithm.
= It is a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n?/¢).
= ltis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ and n. G:or example, O((1/€)? - n®).

Sl
VI. Randomisation and Rounding Randomised Approximation

o B

Outline

MAX-3-CNF

.;,E,;, VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability

%
= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXsVX)A(XI VXV Xs)A (X2 VXV X5) A (X1 V X2V X3)
N
[x1 =1,x%=0,x =1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

Idea: What about assigning each variable uniformly and independently at random?

Bl el
ﬁ',‘ VI. Randomisation and Rounding MAX-3-CNF 5

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

. - 1 1 1 1
Pr[clause i is not satisfied] = —= - = - = ==

1
= Pr[clause i is satisfied] = 1 — 5= g

= E[Y,-]:Pr[Y,-=1]-1:g.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

ZY/}_ZE[Y/']_Zg_g'm O
= =

i=1

E[Y] =E

[Linearity of Expectations] [maximum number of satisfiable clauses is m)

Sl
%‘,‘ VI. Randomisation and Rounding MAX-3-CNF 6

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

~\

\.

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1 T .
[There is w € Q such that Y(w) > E[Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous CoroIIary.]

s
E:',' VI. Randomisation and Rounding MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E[Y]:%-E[Y|x1:1]+%~E[Y | X1 =0].

Y is defined as in S
the previous proof. J [One of the two conditional expectations is at least E [Y]!]

GREEDY-3-CNF(¢, n, m)
1: forj=1,2,...,n

2: Compute E[Y | X1 =vi..., X1 =Vj_1,Xx=1]

3: Compute E[Y | x1 = v1,...,X—1 = Vj—1,X, = 0]

4: Let x; = v; so that the conditional expectation is maximized
5: return the assignment vi, vo, ..., v,

Sl
%‘,‘ VI. Randomisation and Rounding MAX-3-CNF 8

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /2
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm

= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=v,....X1=V_,x=1] => E[Yi|xi=v,...,X_1=V_1,5=1]
I'7

-
= Step 2: satisfies at least 7/8 - m clauses P

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xi=vi... ., 51 =Vi_,5=V]| 2E[Y Xy =vi,...,X_1 = V_1]
SE[Y|x1=v,....,X_2=V_2]
7

Sl
%‘,‘ VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

X1V VX)AXI VX VX)AN(X1 VX VX)) A (XTI VXV X)) A (X1 V X2V Xg) A
CaAVXe VXA VX VX)AXT VXV X3)A (X1 VX3V Xa)A(XeV X3V Xa)

[
o o VI. Randomisation and Rounding MAX-3-CNF 10.1

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVYX)ATACRVY X)) A (X VX3)A (VX)) ATA (X VX5V Xe)

[
o o VI. Randomisation and Rounding MAX-3-CNF 10.2

Run of GREEDY-3-CNF (¢, n, m)

ITATATAGYX)ANTATAG)ATATA (XS V Xs)

[
o o VI. Randomisation and Rounding MAX-3-CNF 10.3

Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL

[
o o VI. Randomisation and Rounding MAX-3-CNF 10.4

Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL

[
o o VI. Randomisation and Rounding MAX-3-CNF 10.5

Run of GREEDY-3-CNF (¢, n, m)

X1V VX)AXI VX VX)AN(X1 VX VX)) A (XTI VXV X)) A (X1 V X2V Xg) A
CaAVXe VXA VX VX)AXT VXV X3)A (X1 VX3V Xa)A(XeV X3V Xa)

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable. j

Rl b
o o VI. Randomisation and Rounding MAX-3-CNF 10.6

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-SAT unless P=NP.

N

\
[Essentially there is nothing smarter than just guessing!]

.;,E;, VI. Randomisation and Rounding MAX-3-CNF

Outline

Weighted Vertex Cover

Rl b
* VI. Randomisation and Rounding

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

3
4
Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E) e‘
= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V' orve V. 5
N
A\
[This is (still) an NP-hard problem.] G °
3 1
Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person

= Perform all tasks with the minimal amount of resources

Rl b
* VI. Randomisation and Rounding Weighted Vertex Cover 13

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (1, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N N R

100

® © O ©
1 /)1 1
[Computed solution has weight 101]

Rl b
VI. Randomisation and Rounding Weighted Vertex Cover 141

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (1, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N N R

100

® © O ©
1 /)1 1
[Optimal solution has weight 4]

Rl b
VI. Randomisation and Rounding Weighted Vertex Cover 14.2

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

veV

subject to x(u)y+x(v) > 1 for each (u,v) € E
€

x(v) {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreach v e V

2
Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]_

Rl b
%E VI. Randomisation and Rounding Weighted Vertex Cover 15

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
1 C=9

2 compute X, an optimal solution to the linear program
3 foreachv eV

4 ifx(v) >1/2

5 C =CU{}

6 return C

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

.

[is polynomial-time because we can solve the linear program in polynomial timej

o o VI. Randomisation and Rounding Weighted Vertex Cover

Example of APPROX-MIN-WEIGHT-VC

(7(3) =X(b) =x(e) = % x(d) =1,x(c) = OJ (x(a) =x(b) = x(e) =1, x(d) =1, x(¢c) = OJ
V4 =

3 3 3
b b b

4 4 4
(@) @ (@)
Rounding
—_— e

() O
2 2

2

O—@ O0—0©@ 0—=0O

3 1 3 1 3 1
fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

Rl b
R VI. Randomisation and Rounding Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" <w(C)
= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

w(C) >z =S wx(v) > Y w(v)~%:

veV veV:x(v)>1/2

Rl b
E:E VI. Randomisation and Rounding Weighted Vertex Cover 18

Outline

Weighted Set Cover

VI. Randomisation and Rounding

Weighted Set Cover

The Weighted Set-Covering Problem

[) [] []
Set Cover Problem Si |
= Given: set X and a family of subsets F, d L o)
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F) (J 2 [J
Sum over the costs | S-t X = U S.
of all sets in C sec hd ht o
I
S S5

Si S S S S5 S
Remarks: c:2 3 3 5 1 2
= generalisation of the weighted vertex-cover problem

= models resource allocation problems

.;,E;, VI. Randomisation and Rounding Weighted Set Cover 20

Setting up an Integer Program

— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to dovS) = 1 for each x € X
SeF: xeS
y(S) € {0,1} foreachSeF
Linear Program
minimize > e(S)y(S)
SeF
subject to Sooy(s) = 1 for each x € X
SeF: xeS8
y(S) € [0,1] foreach S € F

;_E % VI. Randomisation and Rounding

Weighted Set Cover

21

Back to the Example

° ° °
Sy

[
&

[

S1 82 83 S4 85 SG
C: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 12

Cost equals 8.5

/\

[The strategy employed for Vertex-Cover would take all 6 sets!]
N\

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]

Sl

R VI. Randomisation and Rounding Weighted Set Cover

Randomised Rounding

S1 32 33 S4 85 SG
C: 2 3 3 5 1 2

y(): t1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding

= Let C C F be arandom set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

_ 1 with probability y(S)
= for all .
¥(S) {O otherwise. orall S e »

= Therefore, E[y(S)] = y(S).

.;_E S VI. Randomisation and Rounding Weighted Set Cover

23.1

Randomised Rounding

S S S S S S
C: 2 3 3 5 1 2

y(): t1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF
= The probability that an element x € X is covered satisfies

Pr{erS]21—1g.

Sec

__E 5 VI. Randomisation and Rounding Weighted Set Cover

23.2

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — le

Proof:
= Step 1: The expected cost of the random set C

Elc(C)] =E [ch)] ~E {Z 1SeC'C(3)]

sec SeFr
=Y Pr(Secl-c(8) =Y y(S)-cS)
SeF Ser
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 =[] Pris¢cl= [(1-x(8)

SeF: xe8 SeF: xeS

—y(s
< JI e® y solves the LP!
(1 + x < e* for any xﬁ Se7: xes

= e~ Xscr: xes V(S < e ! O

Rl b
%E VI. Randomisation and Rounding Weighted Set Cover 24

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — 2—9

Z;

[Problem: Need to make sure that every element is covered!j

' Idea: Amplify this probability by taking the union of (log n) random sets C. I

WEIGHTED SET COVER-LP(X, F,c)
1: compute y, an optimal solution to the linear program

2C=0

3: repeat 2In ntimes

4: foreach S e F

5 let C = C U {S} with probability y(S) __ ~_

6: return C [clearly runs in polynomial—time!]

VI. Randomisation and Rounding Weighted Set Cover 25

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover

= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2lnn 1
Prx & UgsceS] < (E) =

n2
= This implies for the event that all elements are covered:
PriX =UsecS]=1-Pr| | {x & UsccS}
xeX
(Priaus) < Pria)+priB] Lot S prixgusees) 2 1-n L =11
xeX n

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3 gc = ¢(S) - ¥(S).
= Linearity = E[¢(C)] < 2In(n) - > gc 7 ¢(S) - ¥(S) < 2In(n) - c(C*) O
%@ VI. Randomisation and Rounding

Weighted Set Cover

26.1

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

\
[By Markov’s inequality, Pr [c(C) < 4In(n) - ¢(C*)] > 1/2.]
vy

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

VI. Randomisation and Rounding Weighted Set Cover 26.2

Outline

MAX-CNF

.;,E,;, VI. Randomisation and Rounding

MAX-CNF

27

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXs VXs) A (X2 VX3V X5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

——— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (X1 VXs) A (X2 VX3V Xa VX5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches

Sl
ﬁ',‘ VI. Randomisation and Rounding MAX-CNF 28

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
Pr[clause i is satisfied] =1 — 27 := a.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
= As before, let Y :=}"7", Y; be the number of satisfied clauses. Then,

E[Y]:E[iyf]:iE[Yi]>i%:%~m. m
i—1 i—1 i1

VI. Randomisation and Rounding MAX-CNF 29

Approach 2: Guessing with a “Hunch”

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

— 0-1 Integer Program

o m These auxiliary variables are used to
maximize 3z reflect whether a formula is satisfied or not
i=1
Ve
subjectto > yi+ > (1-y) > z foreachi=1,2,....m
ject jeco
1 z € {0,1} foreachi=1,2,....m
C;" is the index set of the un- y, € {01} foreachj=1,2,....n
negated variables of clause i. ’ T

= In the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let (y*, z") be the optimal solution of the LP
Obtain an integer solution y through randomised rounding of y*

VI. Randomisation and Rounding MAX-CNF 30

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

L . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) - z7.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V -+ - V X¢)
k k
= Pr[clause iis satisfied] =1—J[Pr[yjisfalse] =1 -] (1 - y")
j=1 j=1

Arithmetic vs. geometric mean: k N
¢ i (T =y")

ar+...+a P >1— [————

sz/ax...xak. ¢

ko ¢ £
i=1Yj Z;

:1—<1—Z ‘y’> 21—<1——).
¢ l

Sl
i‘,‘ VI. Randomisation and Rounding MAX-CNF 31.1

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

L . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) - z7.

Proof of Lemma (2/2):
= So far we have shown:

*\ £
Z:
Pr[clause i is satisfied] > 1 — (1 - 7)

= Forany ¢ > 1, define g(z) := 1 — (1 — £)". This is a concave function
4
with g(0) = 0and g(1) =1 (1-1) = 4. 9(2)

= g(2)>p-z foranyze[0,1] 1-(1-1P|----

= Therefore, Pr[clause i is satisfied] > 8, - z;". O

VI. Randomisation and Rounding MAX-CNF 31.2

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

L . 1\¢
Pr[clause i is satisfied] > <1 - (1 - Z)) - z7.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

~\

\.

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E[Y]=iE[Yf]2 i<1—(1—%)li)~272i<1—15>~z72 (1—%>-OPT

= i=1 ! s N
. LP solution at least
_ X
By Lemma [SII’ICG(‘I 1/x)* < 1/e] [as good as optimum }

VI. Randomisation and Rounding MAX-CNF

31.3

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorier clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

HYBRID-MAX-CNF (¢, n, m) /7‘
1: Let b € {0, 1} be the flip of a fair coin ¢ \<c
. ~Yc 3)
2: If b = 0 then perform random guessing \4
3: If b = 1 then perform randomised rounding S ‘J
4: return the computed solution P

Algorithm sets each variable x; to TRUE with prob. 3 - 3 + 1 -y,
Note, however, that variables are not independently assigned!

Sl
VI. Randomisation and Rounding MAX-CNF 32

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z*
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 — 2% = a > ay - zr.
= Algorithm 2 satisfies it with probability 8 - z;*.
= Note O"‘TW* =3/4 for k € {1,2}, and for k > 3, ‘”Tw" > 3/4 (see figure)
= = HYBRID-MAX-CNF (¢, n, m) satisfies it with prob. at least 3/4 - z/ O

Bl
*‘,‘ VI. Randomisation and Rounding MAX-CNF 33

MAX-CNF Conclusion

Summary
= Since ax = B2 = 3/4, we cannot achieve a better approximation
ratio than 4 /3 by combining Algorithm 1 & 2 in a different way
= The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution
= The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!

Bl el
*‘,‘ VI. Randomisation and Rounding MAX-CNF

34

Outline

Conclusion

VI. Randomisation and Rounding

Conclusion

35

Spectrum of Approximations

MAX-CLIQUE

SET-COVER

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX log-APX poly-APX

36

Conclusion

VI. Randomisation and Rounding

[Thank you and Best Wishes for the Exam!]

.;_E S VI. Randomisation and Rounding Conclusion

37

