
${Unix_Tools}

– exercises and solution notes

Markus Kuhn

Computer Science Tripos – Part IB

1 The shell

Exercise 1: Write a shell command line that appends :/usr/X11R6/man to the end of
the environment variable $MANPATH.

Answer:

$ MANPATH="$MANPATH:/usr/X11/man"

Exercise 2: Create a new subdirectory and in it five files with unusual filenames that
someone unfamiliar with the shell will find difficult to remove. Ask a fellow student to
write down for each file the command line that will remove it.

[Your MCS Linux home directory sits on a Windows NTFS/CIFS file server, which does
not use a Unix-style file system and has many additional restrictions on filenames. There-
fore, better perform this experiment in a local subdirectory, which you can create with
“mkdir /tmp/$USER-odd-names/”.]

Answer:

$ mkdir /tmp/$USER-odd-names ; cd /tmp/$USER-odd-names

$ touch -- -i ' ' "\t" 'test.txt ' '...' $(echo -e "\177\177\177")

Exercise 3: Given a large set of daily logfiles with date-dependent names of the form
log.yyyymmdd, write down the shortest possible command line that concatenates all files
from 1 October 1999 to 7 July 2002 into a single file archive in chronological order.

You can fill a directory with 1000 test files using the following make-logs.pl Perl script:

#!/usr/bin/perl

use POSIX;

for $i (1..1000) {

$t=rand 60*60*24*365*45;

$f=strftime("log.%Y%m%d\n", localtime($t));

$a=localtime($t);

`echo "$a" >$f`;

}

Answer:

$ cat log.19991??? log.200[01]???? log.20020[1-6]?? log.2002070[1-7] >archive

1

Exercise 4: Write down the command line that appends the current date and time (in
Universal Time) and the Internet name of the current host to the logfile for the respective
current day (local time), using the above logfile naming convention.

Answer:

$ date -u >>log.$(date +'%Y%m%d') ; hostname >>log.$(date +'%Y%m%d')

or

$ { date -u ; hostname ; } >>log.$(date +'%Y%m%d')

Exercise 5: What outputs will be the result of typing in the following shell command
lines (in that order)? Explain why.

$ a=1

$ a=2 echo $a ; echo $a

$ a=3 ; echo $a ; echo $a

$ (a=4 ; echo $a) ; echo $a

$ { a=5 ; echo $a ; } ; echo $a

$ a=6 bash -c 'echo $a'

$ a=7 ; bash -c 'echo $a'

$ bash -c "echo $a"

$ export a

$ bash -c 'echo $a'

Answer:

$ a=1

$ a=2 echo $a ; echo $a

1

1

The assignment a=2 merely passes on the environment variable a=2 to the first invocation of echo, which
ignores it. It does not affect the shell variable a that is substituted in the command-line argument. It
does not affect the next invocation of echo at all.

$ a=3 ; echo $a ; echo $a

3

3

Here, with the added semicolon, the first command now assigns a new value to the shell variable a. It
does so before any parameter expansion takes place in the second command, therefore all subsequent
commands are affected by the new value.

$ (a=4 ; echo $a) ; echo $a

4

3

The assignment of a new value to a shell variable only affects the subshell created by the parenthesis,
but not the next command outside this subshell.

$ { a=5 ; echo $a ; } ; echo $a

5

5

The curly braces do not create a new subshell, therefore any assignments to shell variables inside them
persist beyond the closing brace.

$ a=6 bash -c 'echo $a'

6

An environment variable a is passed on to a new bash process, which imports it as its own shell variable
a, applying its value in parameter substitution when executing the command line “echo $a”.

2

$ a=7 ; bash -c 'echo $a'

Setting the (non-exported) shell variable a does not affect a newly started bash process, which considers
its own shell variable a to be empty. The single quotation marks pass “echo $a” on to the new bash

process without first applying parameter substitution.

$ bash -c "echo $a"

7

The double quotation marks mean that the current shell applies parameter substitution before invoking
the new bash process.

$ export a

$ bash -c 'echo $a'

7

Marking the shell variable a as exported causes it to be passed on to new processes as an environment
variable, resulting in the new bash process to import its value into its own shell variable a, and using it
in parameter substitution.

Exercise 6: Configure your MCS Linux account, such that each time you log in, an email
gets sent automatically to your Hermes mailbox. It should contain in the subject line the
name of the machine on which the reported login took place, as well as the time of day. In
the message body, you should add a greeting followed by the output of the “w” command
that shows who else is currently using this machine.

Answer: Add the following line to one of your startup scripts:

{ echo 'Hello there!' ; w ; } | \

mail ${LOGNAME}@cam.ac.uk -s "Login on `hostname` on `date`"

Add this line to the file ‘.bash_profile’, which will be executed whenever you log in via the text console
(press Alt-Ctrl-F1) or remotely (e.g. ssh linux.ds.cam.ac.uk). Where to add it such that it gets
executed when you log in via the X Window System depends a lot on the specific installation that you
use (usually you have to use ~/.xsession).
[The backslash at the end of the first line says that this command line continues in the next line.]

Exercise 7: Explain what happens if the command “rm *” is executed in a subdirectory
that contains a file named “-i”.

Answer: The file ‘-i’ is placed by the pathname expansion as one of the first words onto the command
line. The rm command will recognize it as the command line option that asks for the interactive confir-
mation of each filename before it is deleted. (Some people place an empty ‘-i’ file in important directories
as a safeguard against an accidentally executed ‘rm *’)

Exercise 8: Write a shell script “start_terminal” that starts a new “xterm” process
and appends its process ID to the file ~/.terminal.pids. If the environment variable
$TERMINAL has a value, then its content shall name the command to be started instead
of “xterm”.

Answer:

#!/bin/bash

if ["$TERMINAL" != ''] ; then

$TERMINAL &

else

xterm &

fi

echo $! >>~/.terminal.pids

3

Exercise 9: Write a further shell script “kill_terminals” that sends a SIGINT signal
to all the processes listed in the file generated in the previous exercise (if it exists) and
removes it afterwards.

Answer:

#!/bin/bash

if [-f ~/.terminal.pids] ; then

for i in `cat ~/.terminal.pids` ; do

kill $i

done

rm ~/.terminal.pids

fi

2 Text tools

Exercise 10: Write down the command line of the single sed invocation that performs
the same action as the pipe

head -n 12 <input | tail -n 7 | grep 'with'

Answer:

$ sed -e '6,12!d' -e '/with/!d' input

3 File tools

4 Revision control

Exercise 11: Generate a Subversion repository and place all your exercise solution files
created so far into it. Then modify a file, commit the change, and create a patch file
that contains the modification you made. And finally, retrieve the original version of the
modified file again out of the repository.

5 Build tools

Exercise 12: Add a Makefile with a target solutions.tar.gz that packs up all your
solutions files into a compressed archive file. Ensure that calling make solutions.tar.gz

will recreate the compressed package only after you have actually modified one of the files
in the package.

4

Exercise 13: Write a C program that divides a variable by zero and execute it. Use gdb

to determine from the resulting core file the line number in which the division occurred
and the value of the variable involved.

Answer:

$ ulimit -S -c unlimited # enable generation of core files

$ cat >t.c <<EOF

#include <stdio.h>

int main(void) {

int a = 0;

a = 1/a;

printf("a = %d\n", a);

return 0;

}

EOF

$ gcc -ggdb -o t t.c

$./t

Floating point exception (core dumped)

$ gdb t core

[...]

Core was generated by `./t'.

Program terminated with signal 8, Arithmetic exception.

[...]

#0 0x08048347 in main () at t.c:4

4 a = 1/a;

(gdb) p a

$1 = 0

(gdb) q

6 Perl

Exercise 14: When editing sentences, users of text editors occasionally leave some word
duplicated by by accident. Write a Perl script that reads plain text files and outputs all
their lines that contain the same word twice in a row. Extend your program to detect
also the cases where the two occurrences of the same word are separated by a line feed.

Answer:

#!/usr/bin/perl

spot consecutive repetition of the same word

while (<>) {

split line into array of words, separated by space or punctuation

@words = split /[\s.,\'\`\(\)\[\]\{\}]+/;

compare neighboring words

for ($i = 0; $i < $#words; $i++) {

if ($words[$i] eq $words[$i+1]) {

print "$_ => double '$words[$i]'\n";

}

}

compare first word of this line with last word of previous line

if ($words[0] eq $prevword) {

print "$prevline$_ => double '$prevword'\n";

}

$prevword = $words[$#words];

$prevline = $_;

}

5

