
An introduction to software
testing
Andrew Rice

Some problems can be detected statically

1 fun nth 0 (x::_) = x

2 | nth n (x::xs) = nth (n-1) x;

2

Many problems cannot

1 fun nth 0 (x::_) = x

2 | nth n (x::xs) = nth (n-1) xs;

3

4 var l = nth 10 [1,2,3];

3

Testing checks how software performs at run-time

System
under
test

Input
values

Output
behaviour

4

OraclePass
or

Fail?

Objectives

1. Identify different types of test
2. Be able to write a 'good' unit test
3. Know about some techniques for measuring test quality
4. Understand how testing fits into the software development process

5

Different types of test

6

Unit tests
check isolated pieces of functionality

Integration tests
check that the parts of a system work together

E2E (end-to-end) tests
simulate real-user scenarios

We will consider three kinds of testing

7

Unit tests
70%

Integration tests
20%

E2E tests
10% Complex &

Expensive

Simple &
Cheap

8

These form the 'testing pyramid'

(1) What kind of test is this?

Testing whether clicking the logout button on a website clears the cookie set in the
user's browser.

9

Unit

Integration

E2E

(2) What kind of test is this?

Testing that the computeShortestPath function returns a sensible result when
there are negative edge-weights in the graph.

10

Unit

Integration

E2E

(3) What kind of test is this?

Testing whether the room booking system is able to query a user's calendar
correctly

11

Unit

Integration

E2E

Unit testing demo

static long calculateAgeInDays(String dateOfBirth) {
Instant dob = dateFormat.parse(dateOfBirth).toInstant();
Instant currentTime = new Date().toInstant();
Duration age = Duration.between(dob, currentTime);
long ageInDays = age.toDays();
if (ageInDays < 0) {

return 0;
}

return ageInDays;
 }
}

12

Unit testing takeaway points

Design for test: dependency injection

Test naming

One property per test

Arrange, Act, Assert

Writing assertions

JUnit lifecycle

Using @Before vs constructors

13

Mocking can be used to simulate a dependency

1 import static org.mockito.Mockito.mock;
2 import static org.mockito.Mockito.when;
3 import static org.mockito.Mockito.verify;
4
5 LinkedList mockedList = mock(LinkedList.class);
6
7 // can specify behaviour that you want
8 when(mockedList.get(0)).thenReturn("first");
9
10 mockedList.add("added");
12 // assert that things got called
11 verify(mockedList).add("added");

14

Integration and E2E tests are more complicated

Testing whether clicking the logout button on a website clears the cookie set in the
user's browser

1. Start up a test instance of the server
2. Start a webdriver
3. Login to the site and collect the session cookie
4. Simulate a click on the logout button
5. Check the response from the server contains the directive to clear the cookie

15

A 'flaky' test will pass and fail on the same code

non-hermetic reliance on external systems

more complex tests tend to be more flaky

% of tests that are flaky

All tests 1.65%

Java webdriver 10.45%

Android emulator 25.46%

https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
16

Automated test generation can find unnoticed bugs

Many approaches

One example is random testing

● Generate inputs at random
● Use search to refine these inputs to make them more effective
● Check for 'bad things' like a buffer overflow
● See https://github.com/google/oss-fuzz - found thousands of security

vulnerabilities in open source code

17

https://github.com/google/oss-fuzz

How good are my tests?

18

Code coverage detects how much code you execute

(Demo)

19

100% coverage does not mean bug-free!

public static void xPlusYMinusZ(double x, double y, double z) {
double t = x + y;
return t - z;

}

@Test
public void xPlusYMinusZ_correctlyCombines_smallNumbers() {

double r = xPlusYMinusZ(2.0, 2.0, 2.0)
// check floating point values with error tolerance...
assertThat(r).isWithin(0.1).of(2.0);

}

This has 100% coverage but the code still has a bug...

20

Test coverage can use various properties

1 if (a == 0) {

2 ...;

3 }

4 else {

5 if (b) {

6 ...;

7 }

8 if (c) {

9 ...;

10 }

11 }

21

Statement coverage: all lines were
executed

Branch coverage: all decisions were
explored at every branch

Path coverage: all paths through the
program were taken

Data flow coverage: is every possible
definition tested

Mutation testing can tell us how robust our tests are

Generate small changes to the program under test

● change + to a -
● change constant term
● negate a condition

Verify that this causes a test to fail

22

Integrating testing into your software
engineering process

23

Defects in software are inevitable

Expect 1-25 errors per 1000 lines for delivered software

See Steve McConnell, "Code Complete" 2nd edition, p521, p517

80% of errors are in 20% of the project's classes

24

Defects in software are inevitable

Expect 1-25 errors per 1000 lines for delivered software

● when we find a problem we need to know we've fixed it
● once we fix a bug it needs to stay fixed

See Steve McConnell, "Code Complete" 2nd edition, p521, p517

80% of errors are in 20% of the project's classes

● if we can't test everything then prioritise the error prone parts

25

Continuous integration automatically runs tests

Don't want broken code committed to the repository

Run test suite on every change: can reject changes which break tests or just
report

26

Regression testing preserves existing functionality

1. Write tests that exercise existing functionality
2. Develop new code
3. Run tests to check for regressions

27

Regression testing helps with bug fixing

1. Write test that reproduces bug
2. Check that it fails
3. Fix bug
4. Check that test passes

28

We can't run all the tests on every change

Google has 4.2 million tests and 150 million test executions every day

Need to deliver results to developers quickly

Need to manage the execution cost of running tests

See "The State of Continuous Integration Testing @Google"

29

Test suite minimisation
Choose a subset of tests which achieve coverage on the project

Test set selection
Choose a subset of tests which are appropriate for the change submitted

Test set prioritisation
Choose an ordering such that tests more likely to find a defect are run earlier

30

Example: test suite minimisation

Select a minimal subset of tests which maximise coverage over the project

NP-complete problem so use heuristics

If some test is the only test to satisfy a test requirement then it is an essential test.

1) Choose all the essential tests
2) Choose remaining tests greedily in order of coverage added

31

Test Driven Development uses tests as specification

1. Write tests which demonstrate the desired behaviour
2. Implement new functionality
3. Check tests now pass
4. Repeat

Pros: guarantees that you write tests and that your code is testable, tests can be
written that directly describe the customer's requirements.

Cons: early commitment to how the project will work, changes in approach are
hard, some areas are more important to test than others.

32

Objectives

1. Identify different types of test
2. Be able to write a 'good' unit test
3. Know about some techniques for measuring test quality
4. Understand how testing fits into the software development process

33

...program testing may convincingly demonstrate the presence of bugs, but can
never demonstrate their absence…

--- E. W. Dijkstra

34

