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Growth of ML CAMBRIDGE

ML algorithms optimized:
@ Not only for task performance, e.g. accuracy.
@ But also other criteria, e.g. safety, fairness, providing the right to
explanation.
@ There are often trade-offs among these goals.

However,
@ Accuracy can be quantified.
@ Not precisely the case for the other criteria.
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What is interpretability?

@ Interpret means to explain or to present in understandable terms.

@ In the ML context: The ability to explain or to present in
understandable terms to humans.

@ What constitutes an explanation? What makes some explanations
better than others? How are explanations generated? When are
explanations sought?

@ Automatic ways to generate and, to some extent, evaluate
interpretability.
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Taxonomy CAMBRIDGE

Task-related:

o Global interpretability: A general understanding of how the system is
working as a whole, and of the patterns present in the data.

@ Local interpretability: Providing an explanation of a particular
prediction or decision.

Method-related (what are the basic units of the explanation?):
o Raw features.
@ Derived features that have some semantic meaning to the expert.

@ Prototypes.

The nature of the data/tasks should match the type of the explanation.
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Visualizing Deep Neural Network Decisions:

Prediction Difference Analysis

Zintgraf, Cohen, Adel, Welling, ICLR 2017
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@ Visualize the response of a deep neural network to a specific input.

@ For an individual classifier prediction, assign each feature a relevance
value reflecting its contribution towards or against the predicted class.
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Visualizing deep networks CAMBRIDGE

@ Looking under the hood: explaining why a decision was made.

@ Can help to understand strengths and limitations of a model, help to
improve it [wolves/huskies based on presence/absence of snow].

@ Important for liability: why does the algorithm decide this patient has
Alzheimer?

@ Can lead to new insights and theories in poorly understood domains.



Approach CAMBRIDGE

@ Relevance of a feature x; can be estimated by measuring how the
prediction changes if the feature is unknown.

o The difference between p(c|x) and p(c|x,;), where x,; denotes the set
of all input features except x;.

@ But how would a classifier recognize a feature as unknown?

o Label the feature as unknown.
o Retrain the classifier with the feature left out.
e Marginalize the feature.
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Marginalization of a feature "" CAMBRIDGE

plclx\i) = ZP(Xi’X\i)P(C‘X\i’Xi) (1)

Xi

Assume Xx; is independent of x,;

pclx\;) ~ Zp x;)p(clx\;, X;) (2)
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Weight of evidence AMBRIDGE

Compare p(c|x;) to p(c|x):

odds(c|x) = %

WE;(c|x) = log, (odds(c|x)) — log, (odds(c|x,;)) , (3)

@ A large prediction difference — the feature contributed substantially
to the classification.

@ A small prediction difference — the feature was not important for the
decision.

@ A positive value WE; — the feature has contributed evidence for the
class of interest.

@ A negative value WE; — the feature displays evidence against the
class.
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Conditional sampling CAMBRIDGE

@ A pixel depends most strongly on a small neighbourhood around it.

@ The conditional of a pixel given its neighbourhood does not depend
on the position of the pixel in the image.

p(xilx\i) = p(xil%\) (4)
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Multivariate Analysis CAMBRIDGE

A neural network is relatively robust to the marginalization of just one
feature.

@ Remove several features at once
@ Connected pixels.

@ patches of size k x k.
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Experiments " CAMBRIDGE

Conditional sampling

input marginal conditional input marginal conditional
=) .

@ Red: For.
o Blue: Against.
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Experiments CAMBRIDGE

Multivariate analysis
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CAMBRIDGE
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CAMBRIDGE
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Conclusions CAMBRIDGE

@ A method for visualizing deep neural networks by using a more
powerful conditional, multivariate model.

@ The visualization method shows which pixels of a specific input image
are evidence for or against a node in the network.
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InfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets

Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel, NIPS 2016
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Motivation

How can we achieve
unsupervised learning of disentangled representation?

In general, learned representation is entangled,
i.e. encoded in a data space in a complicated manner

When a representation is disentangled, it would be
more interpretable and easier to apply to tasks




Generative Adversarial Nets(GANSs)

Generative model trained by competition between
two neural nets:

v Generator x = G(2), z ~ p.(Z)
p,(Z): an arbitrary noise distribution

v'Discriminator D(x) € [0,1]:
probability that x is sampled from the data dist. pgata(X)
rather than generated by the generator G(z)

Optimization problem to solve:
rr(l;in max Vean (G, D), where

Vean(6,D) = Ey o oI D] + Ezop i [In (1= D(6() )|
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Problems with GANs

From the perspective of representation learning:

v'No restrictions on how G(z) uses z
+ z can be used in a highly entangled way

« Each dimension of z does not represent
any salient feature of the training data
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Proposed Resolution: InfoGAN
-Maximizing Mutual Information -

Observation in conventional GANs:

a generated date x does not have much information
on the noise z from which x is generated

because of heavily entangled use of z

Proposed resolution = InfoGAN:

the generator G(z,¢) trained so that

it maximize the mutual information /(C|X) between
the latent code € and the generated data X

mén mgx{VGAN (G,D) = 2AI(C|X =G(Z,C))}
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Experiment
— Disentangled Representation —

« InfoGAN on MNIST dataset
» Latent codes
v'¢y: 10-class categorical code

v ¢y, ¢ continuous cod

v'¢, can be used as a
classifier with 5% error
rate.

v’ ¢, and c¢; captured the
rotation and width,
respectively

AN v 162 0n BafoBAN (Wi

Figure 2 in the original paper
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— Disentangled Representation —

Dataset: P. Paysan, et al, AVSS,
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Figure 3 in the original paper



Experiment
— Disentangled Representation —
Dataset: M. Aubry, et a/, CVPR, 2014, pp. 3762-3769.
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InfoGAN learned salient features without supervision
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Experiment
— Disentangled Representation —

Dataset: Street View House Number

(a) Continuous variation: Lighting (b) Discrete variation: Plate Context

Figure 5 in the original paper
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Experiment
— Disentangled Representation —
Dataset: CelebA
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Flguve 6 in the original paper
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Future Prospect and Conclusion

v'Mutual information maximization can be applied to
other methods, e.g. VAE

v'Learning hierarchical latent representation
v Improving semi-supervised learning
v'High-dimentional data discovery

Goal

Unsupervised learning of disentangled representations
Approach

GANs + Maximizing Mutual Information

between generated images and input codes

Benefit

Interpretable representation obtained

without supervision and substantial additional costs
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The End



